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We investigate harmonically trapped, laser-pumped bosons with infinite-range interactions induced by a
dissipative high-finesse red-detuned optical cavity with numerical and analytical methods. We obtain multiple
cavity and atomic observables as well as the full phase diagram of the system using the multiconfigurational
time-dependent Hartree method for indistinguishable particles (MCTDH-X) approach. Besides the transition
from an unorganized normal phase to a superradiant phase where the atoms self-organize, we focus on an
in-depth investigation of the self-organized superfluid to self-organized Mott-insulator phase transition in the
superradiant phase as a function of the cavity-atom coupling. The numerical results are substantiated by an
analytical study of an effective Bose-Hubbard model. We numerically analyze cavity fluctuations and emergent
strong correlations between atoms in the many-body state across the Mott transition via the atomic density
distributions and Glauber correlation functions. Unexpectedly, the weak harmonic trap leads to features like a
lattice switching between the two symmetry-broken Z2 configurations of the untrapped system and a reentrance
of superfluidity in the Mott-insulating phase. Our analytical considerations quantitatively explain the numerically
observed correlation features.
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I. INTRODUCTION

Enormous progress in preparing and controlling ultracold
atoms in high-finesse optical cavities has been instrumental
in bringing the strongly coupled regime of cavity quantum
electrodynamics to experimental reality [1–3]. In particular,
Bose-Einstein condensates (BEC) in optical cavities [4,5]
have emerged as a successful platform to study novel phases
of matter stabilized by light. The strong light-matter coupling
achieved in these systems of light and matter has led to the
realization of the long-sought Hepp-Lieb superradiant phase
transition in the Dicke model [6–11]. Cavity-matter coupled
systems have since then also provided a versatile arena to
realize novel topological states [12–14], limit cycles [15], and
various correlated phases in the presence of an optical lattice
[16–19], with recent experiments on spinor condensates high-
lighting even the formation of spin textures [20].

Cavity engineering thus provides a promising path to
devising new exotic correlated phases of matter. The self-
organized superradiant state in a cavity-BEC system offers
an excellent example of a light-matter phase in which corre-
lations play a crucial role. At a critical atom-field coupling,
a quantum phase transition from a normal phase (NP) to a
superradiant phase (SP) manifests itself as self-organization
of the atoms of the condensate into a lattice [11,21]. In the
SP, a further transition between an uncorrelated self-organized
superfluid (SSF) phase and a correlated self-organized Mott-
insulator (SMI) phase can be observed at higher pump powers
[22]. This cavity-induced transition is fundamentally similar
to the Mott transition observed in Bose-Hubbard models
realized in optical lattices [23–25]. The SSF-SMI transition
cannot be captured with standard Gross-Pitaevskii mean-field

theories usually used to describe the atomic ensemble in
such systems, because these theories neglect the correlations
present in the SMI phase [26]. The Mott transition was studied
qualitatively by mapping the system to an effective Bose-
Hubbard model in Refs. [27–29]. However, a full examination
of the transition in this problem—including the role of cavity
fluctuations and associated many-body correlations—is still
lacking.

A quantitative study of the emergence and properties of
strongly correlated phases in these systems is rather complex.
On the one hand, typical theoretical approaches rely on mean-
field techniques [10,21,30], which are tailored to capturing
only a particular phase and ignore quantum fluctuations and
correlations. On the other hand, most of the numerical meth-
ods designed to study correlated phases are adapted to lattice
systems, whereas cavity-matter systems may, depending on
the pumping strength, require a continuum description. An
ideal methodology for cavity-BEC systems should be able to
deal with both the continuum and discrete spatial aspects of
the problem at the same degree of complexity. A tool that
enables such a numerical description of correlated many-body
states with quantum fluctuations is the multiconfigurational
time-dependent Hartree method for indistinguishable particles
(MCTDH-X) [31–34]. MCTDH-X uses a variationally opti-
mized basis set to represent the many-body wave function for
realistic experimental setups, and was recently verified with
experimental results [35].

In the present work, we use this methodology to study the
full phase diagram of a single-component BEC coupled to a
red-detuned cavity in one spatial dimension. We rigorously
study the standard NP-SP transition as well as the SSF-SMI
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transition in the self-organized phase. In previous studies of
the problem using MCTDH-X [26,36], cavity fluctuations
were structurally ignored, and an in-depth comprehension of
the origin of the Mott-insulator phase and the emergence of
so-called “fragmentation” in this phase was lacking. Frag-
mentation is present in a many-body system of bosons if the
reduced one-body density matrix of the quantum state has
more than one macroscopic eigenvalue [37,38]. Fragmenta-
tion is a many-body effect intertwined with the emergence
of quantum correlations and fluctuations, and thus it cannot
be captured by mean-field approaches [39]. In this work,
we go beyond the mean-field approach in our description of
both the cavity and the atomic fields and demonstrate how
cavity fluctuations build up close to the NP-SP transition and
how strong correlations between the atoms’ positions and
momenta emerge. We find that the presence of the harmonic
trap leads to an interesting switching between the two Z2

symmetry-broken configurations in the superradiant phase
and a reentrance of superfluid features in the Mott phase. Both
phenomena stem from the competition between the harmonic
trapping potential and the particle-particle interaction energy.
Additionally, we provide a mapping of the cavity-BEC sys-
tem to a Bose-Hubbard (BH) model, whose results are in
mutual agreement with the numerical ones obtained using
MCTDH-X.

This paper is structured as follows. In Sec. II, we intro-
duce the cavity-BEC system and show that the dissipative
cavity leads to an effective Hamiltonian for the bosonic
atoms with infinite-range two-body interactions that retains
the non-mean-field properties of both the cavity field and the
atomic field. Our numerical and analytical results on the phase
diagram and phase transitions of the cavity-BEC system are
presented in Sec. III. We conclude in Sec. IV.

II. MODEL, METHOD, AND QUANTITIES OF INTEREST

A. Model

We study a BEC of N weakly interacting and harmonically
trapped ultracold bosons coupled to a high-finesse lossy op-
tical cavity. The cavity has a single mode of frequency ωc

and wave vector kc. A pump laser of frequency ωp coherently
drives the BEC perpendicular to the cavity axis. We study a
one-dimensional version of the system as sketched in Fig. 1.
As we will show later, the cavity leads to infinite-range
interactions between atoms. Since any two atoms are always
interacting with and within the correlation range of each other
regardless of their distance, the actual spatial dimensionality
does not affect the physics of the system qualitatively. The
one-dimensional cavity-BEC system can be described by the

κ
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â
η

FIG. 1. Schematic setup of a harmonically trapped driven BEC
in a dissipative optical cavity.

following Hamiltonian in the rotating frame [30],

Ĥ =
∫

dx�̂†(x)

{
p2

2m
+ g

2
�̂†(x)�̂(x) + Vtrap(x)

}
�̂(x)

+ h̄U0â†â
∫

dx�̂†(x)�̂(x) cos2(kcx)

+ h̄η(â + â†)
∫

dx�̂†(x)�̂(x) cos(kcx)

− h̄�câ†â. (1)

Here, �̂ (†)(x) denote atomic field operators at position x and
â(†) represent photonic operators. The atoms are confined
by an external harmonic trap Vtrap(x) = 1

2 mω2
x x2 and interact

repulsively through a contact interaction with strength g. The
parameter U0 encodes the light shift of a single maximally
coupled atom, while η is the two-photon Rabi frequency
describing the fluctuations of the light-atom interaction. In
the following, we refer to η as pump rate for convenience.
Finally, �c = ωp − ωc � ωp, ωc is the detuning between the
pump frequency and the cavity resonance frequency. The
lossy cavity is characterized by a dissipative rate given by κ .

This system has been amply studied within a mean-field
approximation where the cavity field operator is substituted by
its expectation value α = 〈â〉 and the atoms are treated within
the Gross-Pitaevskii mean-field approach [10,15,21]. Under
this approximation, the cavity-atom coupling generates an
effective one-body potential for the bosons, as shown in detail
in Appendix C. Therefore, we call this the effective potential
approach. However, the mean-field treatment of the cavity
field ignores the cavity and atomic field fluctuation around
the NP-SP critical point. Additionally, the Gross-Pitaevskii
mean-field treatment of the atomic field makes it impossible
to capture the experimentally observed SMI phase [22], which
is a correlated phase of matter.

To access both the fluctuations at the critical point and the
SMI phase, one needs to treat fluctuations in a self-consistent
manner, which requires the study of the full dynamical behav-
ior of the operators. Since the cavity is dissipative, assuming a
Lindblad approach to dissipative systems [40], the cavity field
is described by the following equation of motion [30]:

∂

∂t
â = [i�c − iU0B̂ − κ]â − iη	̂, (2)

with

B̂ =
∫

dx�̂†(x)�̂(x) cos2(kcx), (3a)

	̂ =
∫

dx�̂†(x)�̂(x) cos(kcx). (3b)

Since we are interested in the steady-state physics of the
system [Eq. (1)], we first adiabatically eliminate the cavity
field by setting ∂t â = 0. The steady-state solution of the cavity
field operator is formally given by [30]

â = η[�c − U0B̂ + iκ]−1	̂. (4)

This simplification is valid in the bad-cavity limit h̄κ �
h̄2k2

c /2m, where the cavity adiabatically follows the atomic
motion [30]. Under this simplification, some of the dynamical
phenomena related to an ultra-high-finesse cavity cannot be
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captured, for example, the hysteretic behavior across the NP-
SP boundary discussed in Ref. [41]. However, the properties
of the steady states should be retained. This assertion is
confirmed by the agreement between the results obtained from
modeling the cavity photons with Eq. (4) with the results from
an effective potential approach, where the cavity dissipation is
treated explicitly and the bad-cavity limit is not exploited (see
Appendix C).

Inserting Eq. (4) in the Hamiltonian Eq. (1), we notice
that the operator B̂ always appears in the form �c − U0B̂,
including in the second and fourth lines of Eq. (1). In the limit
|�c| � |NU0|, the density profile is mainly determined by the
operator 	̂, while the operator B̂ can be approximated by
its expectation value, the bunching parameter B = 〈B̂〉 [30].
Consequently, we obtain the following Hamiltonian for the
atoms [42]

Ĥ =
∫

dx�̂†(x)

{
p2

2m
+ g

2
�̂†(x)�̂(x) + Vtrap(x)

}
�̂(x)

+ h̄η2(�c − BU0)

(�c − BU0)2 + κ2

∫
dxdx′�̂†(x)�̂†(x′)

× cos(kcx) cos(kcx′)�̂(x)�̂(x′). (5)

We note that although the cavity operator â [Eq. (4)] is non-
Hermitian because of the cavity loss rate, it always enters
the Hamiltonian Eq. (1) in the Hermitian forms â†â and
â† + â, rendering the final effective Hamiltonian Eq. (5) also
Hermitian.

The cavity effectively induces an infinite-range two-body
interaction between the atoms, as described by the third
line of Eq. (5). For this reason, we call it the long-range
interaction (LRI) approach. Note that if B̂ is retained as an
operator, three- and many-body interactions among the atoms
occur, because B̂ is a function of the atomic field operator
[Eq. (3b)]. To understand the steady-state properties of the
system, it suffices to investigate the ground state of the LRI
Hamiltonian [Eq. (5)]. Deep in the red-detuned cavity region
−�c > |NU0| [11,22], the prefactor of this interaction term
is negative. In this case, the induced two-body interaction
is minimized by two lattice configurations of the atoms. In
the even lattice, the atoms are localized at the maxima of
the function cos(kcx) [x = 2nπ/kc, n ∈ N], while in the odd
lattice, they are localized at the minima [x = (2n + 1)π/kc,
n ∈ N]. This implies that the atoms of the condensate can in
principle self-organize into a lattice with spacing 2π/kc. In the
absence of the harmonic trap, these are the two configurations
of the spontaneously broken Z2 symmetry accompanying the
normal phase (NP)–superradiant phase (SP) transition [43].

B. Method

To study the full effect of the long-range interactions,
we analyze the problem using MCTDH-X [31–34]. This is
a variational method used to obtain the many-body wave
function of the system. The ansatz for the wave function

|�〉 =
∑

n={n1,...,nM }
Cn(t )

M∏
k=1

[
(b̂†

k (t ))nk

√
nk!

]
|0〉 (6)

is composed of a total number of M adaptive single-particle
wave functions, or orbitals ψi(x; t ), each of which is created
by an operator b̂†

i (t ),

ψi(x; t ) = 〈x|b̂†
i (t )|0〉. (7)

Since both the orbitals ψi(x; t ) and the coefficients Cn(t ) vary
in time, the adaptive single-particle basis enables MCTDH-
X to optimally represent the many-body wave function of
interacting bosons. Using imaginary time propagation, the
wave functions and energies of the low-lying steady states
of the problem can be obtained. MCTDH-X can capture
the correlations between the bosons and study the effects of
inhomogeneities like the harmonic trap. Details on the theory
of MCTDH-X are presented in Appendix A.

The concept of orbitals, as well as their total number M,
are important for correctly capturing the correlations (see
Appendix A). With a single orbital M = 1, MCTDH-X is
reduced to the Gross-Pitaevskii mean-field limit, where the
many-body state � is described by a product of single-particle
wave functions ψ , �(x1, ..., xN ) = ∏N

i=1 ψ (xi ). With M > 1,
MCTDH-X works beyond the mean-field limit, and the many-
body state is a superposition of many symmetrized states of N
particles in at most M different single-particle wave functions.
For a large orbital number M, MCTDH-X approaches the
exact solution and all the correlations inside the system are
captured [33,34,44]. Strongly localized phases like the Mott
insulator may need many orbitals to correctly capture the
physics [45]. For a given number of particles N , since the
required computational resources scale as ( N+M−1

N ) [33], the
requirement of convergence with respect to the number of or-
bitals M constrains the number of particles that can be studied.
In our simulations, it suffices to work with M = 5 orbitals to
obtain converged results for a large range of particle numbers.

In the Gross-Pitaevskii mean-field limit, the Hamiltonians
[Eqs. (1) and (5)] are invariant under rescaling of the atom
number N → N ′, provided that the parameters g, U0, and η

change according to [21]

g 
→ N

N ′ g, U0 
→ N

N ′ U0, η 
→
√

N

N ′ η. (8)

It can be verified that the MCTDH-X results for M = 1 orbital
are consistent with this scaling. Beyond the Gross-Pitaevskii
mean field, this scaling is invalid. To obtain results like
correlations for large number N of atoms beyond M = 1,
we explicitly simulate systems with different atom numbers
N = 50 and 100 and extrapolate the results to higher N .
While changing the atom number N , we rescale parameters
according to Eq. (8). In this way, the mean-field properties are
kept unchanged and it is easier to extract physics beyond mean
field from our computations.

C. Quantities of interest

The properties of the atoms, especially the correlations
within the system, can be revealed by density distributions and
correlation functions. These include the density distribution in
position and momentum spaces ρ(x) and ρ̃(k),

ρ(x) = 〈�̂†(x)�̂(x)〉/N, (9a)

ρ̃(k) = 〈�̂†(k)�̂(k)〉/N, (9b)
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as well as the one-body and two-body Glauber correlation
functions g(1)(x, x′) and g(2)(x, x′)

g(1)(x, x′) = ρ (1)(x, x′)√
ρ (1)(x, x)ρ (1)(x′, x′)

, (10a)

g(2)(x, x′) = ρ (2)(x, x′)
ρ (1)(x, x)ρ (1)(x′, x′)

, (10b)

where ρ (1)(x, x′), ρ (2)(x, x′) are the one-body and two-body
reduced density matrices in position space, which are defined
as

ρ (1)(x, x′) = 〈�̂†(x)�̂(x′)〉, (11a)

ρ (2)(x, x′) = 〈�̂†(x)�̂†(x′)�̂(x)�̂(x′)〉. (11b)

The Glauber correlation functions g(1) and g(2) quantify
the local first- and second-order coherence of the many-body
state. First-order (second-order) coherence is achieved when
|g(1)| = 1 (g(2) = 1) holds and implies that the reduced one-
body (two-body) density matrix ρ (1) (ρ (2)) can be sufficiently
described by one single-particle state. The proximity of |g(1)|
and g(2) to unity gives a quantitative and spatially resolved
measure for the departure of a many-body state from a Gross-
Pitaevskii mean-field description, which presupposes that the
many-body system is described by a product of one effective
single-particle state [39,46].

Many physical phenomena, like the transition between
phases, are reflected in the natural orbitals φi(x) and their
occupancies ρi, which are defined, respectively, as the
eigenvectors and eigenvalues of the one-body reduced density
matrix ρ (1),

ρ (1)(x, x′) =
M∑

i=1

Nρiφ
∗
i (x′; t )φi(x; t ), (12)

with 1 � ρ1 � ρ2 � · · · � ρM � 0. A state is said to be
fragmented if more than one orbital is macroscopically
occupied, i.e., if ρ2 becomes significant. Fragmentation
is closely related to nontrivial correlations between atoms
[37,39,47,48]. For example, a BEC is nonfragmented, while
a Mott insulator is highly fragmented [39,49,50].

III. RESULTS

We now describe the predictions of MCTDH-X for the
cavity-BEC problem and the associated analytical mapping
to a Bose-Hubbard model. The simulations use roughly the
same experimental parameters for the 87Rb atom gas and the
optical cavity as given in Ref. [11], which are listed in detail
in Appendix B. In principle, MCTDH-X is also applicable
to simulate other experimental realizations. Unless specified
otherwise, in this work all the parameters and results of the
simulations are given and presented with respect to three
interdependent scales, i.e., the frequency scale ω̃, the length
scale L̃, and the energy scale Ẽ ; see Appendix B.

One key result of our simulations is the phase diagram in
Fig. 2 and the corresponding density distributions and corre-
lation functions in Fig. 3. In the phase diagram, the transitions
from a normal phase (NP) to a self-organized superfluid phase
(SSF) to a self-organized Mott-insulator phase (SMI) can be

FIG. 2. The full phase diagram of the BEC coupled to a cavity
as a function of the cavity detuning and the pump rate. The phase
diagram is divided into three phases: the normal phase (NP), the
self-organized superfluid (SSF) phase, and the self-organized Mott-
insulator (SMI) phase. The solid and dashed white lines indicate
the transitions NP-SSF and SSF-SMI, respectively. The colors cor-
respond to the number of peaks in the spatial density profile, where
blue, red, orange, and yellow correspond to NP, three, four, and five
peaks in the position space density ρ(x), respectively. All the other
parameters used in these simulations are described in Appendix B.
The results discussed in the rest of this work are obtained by fixing
the detuning at �c = −4 × 104ω̃ (2π × 10.1 MHz) and varying the
pump rate along the dotted light blue line.

clearly seen. Additionally, the number of peaks in the position
space profile increases from three to four to five, implying
configuration switchings between the even and odd lattices
[cf. Figs. 3(b I)–3(e I) and 6]. In Fig. 3 and the rest of this
work, the cavity detuning is fixed at �c = −4 × 104ω̃ (2π ×
10.1 MHz) in all simulations. Figure 3 shows the density
distribution in position space ρ(x) and momentum space ρ̃(k),
as well as the one-body g(1)(x, x′) and two-body g(2)(x, x′)
Glauber correlation functions for five states with different
pump rates. The values of these pump rates correspond to a
state in the NP, one on the boundary between the NP and the
SSF, one in the the SSF on the boundary between the SSF
and the SMI, and one in the SMI, respectively. The features
of these simulation results will be discussed in detail in the
following sections.

Part of the features shown in these two figures have already
been discussed in Ref. [26]. A crucial difference in method-
ology between the work presented here and in Ref. [26] is
that we use the LRI approach, treating the action of the cavity
photons on the atoms as an infinite-range two-body interaction
and retaining the cavity fluctuation. Meanwhile, Ref. [26]
focused on fragmentation of the condensate as a function of
pump rate using the effective potential approach mentioned
earlier (see Appendix C). We will show that the change in
fragmentation is indeed related to the SSF-SMI transition.

A. Normal-superradiant phase transition

As the pump rate η increases, the cavity-BEC system is
expected to transition from the normal phase (NP) to the
superradiant phase (SP). Figures 3(a)–3(c) show how the
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FIG. 3. Density distributions and correlation functions in different phases as functions of pump rate at fixed cavity detuning �c =
−4 × 104ω̃ (2π × 10.1 MHz), corresponding to the light blue line in Fig. 2. The vertical panel (I) corresponds to the position space density
distributions ρ(x), panel (II) the momentum space density distributions ρ̃(k), panel (III) the one-body correlation functions ρ (1)(x, x′), and
panel (IV) the two-body correlation functions ρ (2)(x, x′). Each horizontal panel corresponds to a given pump rate. The pump rates have been
chosen such that panel (a) describes the physics in a NP state, where the BEC has a spatial profile close to a Thomas-Fermi cloud and trivial
correlations. Panel (b) shows a SSF state near the NP-SSF boundary, where the system starts to self-organize and the critical behaviors like
cavity fluctuations and atomic long-range correlations are significant. The red dashed parabola in panel (b I) indicates the superfluid portion.
Panel (c) features a SSF state far from both transition boundaries, where in momentum space the peaks corresponding to spatial modulations
become significant, while the cavity fluctuation becomes negligible again. Panel (d) depicts a state near the SSF-SMI boundary, where nonlocal
correlations between atoms start to decrease. Lastly, panel (e) portrays a SMI state, where the atomic correlations are completely localized. The
white spaces in panels (d IV) and (e IV) come from the fact that we only plot g(2)(x, x′), where ρ (1)(x, x)ρ (1)(x′, x′) > 10−7 to avoid numerical
singularities.

density distributions and correlation functions evolve from a
NP state with η

√
N = 0 to a SSF state with η

√
N = 636ω̃

(2π × 160 kHz). At a low pump rate, the system is in the

NP. It has a density profile close to a Thomas-Fermi cloud in
position space [Fig. 3(a I)] and correspondingly a high and
narrow distribution centered at k = 0 in momentum space
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[Fig. 3(a II)]. Its g(1) is trivially unity [Fig. 3(a III)], but its g(2)

shows small structures differing slightly from 1 [Fig. 3(a IV)].
These structures imply that the system is close to but slightly
beyond a Gross-Pitaevskii mean-field description. As the
pump rate increases, the system goes into the SP, where the
atoms self-organize into a lattice. Near the phase boundary,
the atoms start to gather around the lattice sites, but a clear
superfluid portion can still be seen in the density profile, as
indicated by the red parabola in Fig. 3(b I). In momentum
space, two peaks at k = ±kc start to appear, corresponding to
the periodic modulation in position space [Fig. 3(b II)]. In the
correlation functions ρ (1)(x, x′) and ρ (2)(x, x′), fluctuations
with a period of 2π/kc in both x and x′ directions can be seen
[Figs. 3(b III) and 3(b IV)]. These atomic field fluctuations
are related to the cavity field fluctuations 〈δâ2〉 discussed
in the following paragraphs. As the increasing pump power
drives the system further into the SSF phase, the peaks in
position space become separated from each other [Fig. 3(c I)].
In momentum space, the two peaks at k = ±kc become more
discernible while the height of the central peak ρ̃(k = 0)
becomes significantly lower than before. In the correlation
functions [Figs. 3(c III) and 3(c IV)], the fluctuations vanish
and the superfluid features dominate again, with additional
features stemming from the self-organization.

The NP-SP transition can also be characterized by the cav-
ity order parameter |〈â〉| and the cavity fluctuations 〈δâ2〉 =
〈â†â〉 − 〈â†〉〈â〉 [21,51,52]. Within the LRI approach, the
cavity field operator [see Eq. (4)] can be approximated by
â ≈ η

�c

∫
dx�̂†(x)�̂(x) cos(kcx) when |�c| � NU0, κ . The

expectation values of the cavity field and fluctuations can then
be calculated by

|〈â〉| =
∣∣∣∣ η

�c

∫
dxρ (1)(x, x) cos(kcx)

∣∣∣∣, (13a)

〈â†â〉 = η2

�2
c

∫
ρ (2)(x1, x2) cos(kcx1) cos(kcx2)dx1dx2

+ η2

�2
c

∫
ρ (1)(x1, x1) cos2(kcx1)dx1, (13b)

where the reduced density matrices ρ (1) and ρ (2) are defined
in Eq. (11).

We now use Eqs. (13) to calculate cavity field expectations
and fluctuations as functions of the pump rate η

√
N across the

NP-SP critical point, as shown in Fig. 4(a). In the NP, |〈â〉|
takes a small finite value because the harmonic trap breaks
the Z2 symmetry. The NP-SP transition around the critical
value ηc

√
N ≈ 480ω̃ (2π × 121 kHz) is signaled by a sharp

increase in |〈â〉| > 0, accompanied by enhanced fluctuations
〈δâ2〉. This is consistent with theoretical [52] as well as
experimental [51] results.

In MCTDH-X, these large fluctuations in the vicinity of
the critical point also manifest in the convergence of the
results with respect to the number of orbitals [cf. Eq. (12)].
Figure 4(b) shows that in the critical region, at least M = 5
orbitals are occupied and required to describe the system. The
inadequacy of the orbital number manifests itself as kinks
in the cavity fluctuation curve around η

√
N = 390ω̃ (2π ×

98.3 kHz) and 570ω̃ (2π × 144 kHz). Additionally, three or-
bitals have a sizable occupation in the SP, corresponding to the

FIG. 4. (a) The expectation values of the cavity field |〈â〉| (red
triangles, coordinates on right) and the cavity field fluctuation 〈δâ2〉
(blue dots, coordinates on left) as functions of the pump rate η

√
N .

The cavity fluctuations are strongly enhanced in the vicinity of the
critical pump rate ηc

√
N = 480ω̃ (2π × 121 kHz). (b) The orbital

occupancies ρi as functions of the pump rate η
√

N [cf. Eq (12)]. The
first orbital is maximally occupied, so we only plot the occupancies
of the higher order orbitals (ρ2 to ρ5 from top to bottom). Higher
order orbitals are more significantly occupied in the vicinity of the
critical pump rate.

self-organization pattern of the atoms. Similar results are seen
for higher particle numbers. To summarize, the LRI-MCTDH
method is able to describe the NP and the NP-SP transition in
a quantitative manner for a realistic experimental system.

B. Mapping to the Bose-Hubbard model

In the self-organized SP, more interesting features can be
observed, for example, a lattice switching between the two
configurations of the broken Z2 symmetry [cf. Figs. 3(c I)
and 3(d I)] and the vanishing of superfluidity [cf. Figs. 3(e I)–
3(e IV)]. These phenomena reflect emergent correlations in
the steady state of the system and can be better understood by
a mapping of the system to an effective Bose-Hubbard (BH)
model.

In the SP, the atomic density distribution has peaks at the
lattice sites xi = iπ/kc, with i even (odd) integers for the even
(odd) lattice configuration. Assuming that only one Wannier
function Wi(x) ≡ W (x − xi ) is required for each lattice site,
the atomic field operator �̂(x) can be rewritten as �̂(x) =∑

i W ∗
i (x)ĉi, where the ĉi are the annihilation operators for

bosons in the Wannier functions W ∗
i (x). With this substitution,

the cavity-BEC Hamiltonian [Eq. (1)] can be approximated
by an effective Bose-Hubbard (BH) model with fixed total
number of particles:

ĤBH = −t
∑
〈i, j〉

(ĉ†
i ĉ j + H.c.) + Us

2

∑
i

n̂2
i +

∑
i

μin̂i, (14)

where the first summation only runs over neighboring lattice
sites, n̂i = ĉ†

i ĉi gives the number of particles at site i, and
constant terms are omitted. Expressed in dimensionful units,
the hopping strength t = h̄2

2m

∫
dxW (x)∂2

x W (x + 2π
kc

) origi-
nates from the kinetic term, Us = g

∫
dx|W (x)|4 is the on-site
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interaction, and μi = ∫
dx|W (x − xi )|2Vtrap(x) plays the role

of a chemical potential.
The Wannier function W (x) is determined by the cavity-

induced interaction. To obtain it, we treat the long-range
interaction in Eq. (5) within a Hartree approximation: 	̂2 =
2〈	̂〉	̂ − 〈	̂〉2, where the operator 	̂ is defined in Eq. (3b).
The cavity-induced two-body interaction is now approximated
by a one-body potential. When this potential is deep, the
atoms are strongly confined and effectively experience local
harmonic potentials of the form 1

2 m�2(x − xi )2, with � =
ηkc

√
2Nh̄/m|�c|. We thus approximate the Wannier func-

tion by the ground state of the harmonic potential W (x) ≈
(m�/π h̄)1/4 exp(−m�x2/2h̄). Under this approximation, the
hopping strength, the on-site interaction, and the local chemi-
cal potential in the Bose-Hubbard model [Eq. (14)] are given
respectively by

t ≈ h̄2

2m
exp

(
−m�

h̄

π2

k2
c

)[
−m�

2h̄
+

(
m�π

h̄kc

)2
]
, (15a)

Us ≈ g

√
m�

2π h̄
, (15b)

μi ≈ m

2

ω2
xπ

2

k2
c

i2 ≡ 1

2
ω2i2. (15c)

These results are similar to the ones obtained in Ref. [27]
for the two-dimensional case. This similarity stems from
the fact that the interaction between the atoms is infinite
range, which renders the dimensionality of the problem
unimportant.

C. Self-organized superfluid–self-organized
Mott-insulator transition

A transition from a self-organized superfluid phase (SSF)
and a self-organized Mott-insulator phase (SMI) in the SP
has already been observed in experiments [22]. In MCTDH-X
simulations, this transition clearly manifests itself in both the
momentum space density distribution ρ̃(k) [see Fig. 5(a)] and
in the orbital occupancies [see Figs. 5(c) and 7].

Typically, measures of superfluidity can be extracted from
the momentum space distribution, either from the height
ρ̃(k = 0) [24,53] or the full width at half maximum (FWHM)
[22,23,53] of the central peak. The transition to the Mott phase
is described in Figs. 3(d) and 3(e). As the pump rate increases,
the system gradually loses its superfluid features both in the
momentum space distribution and in the correlation functions.
In momentum space [Fig. 3(d II)], the two peaks located at
k = ±kc slowly merge with the central peak. The off-diagonal
terms of g(1) [Fig. 3(d III)] and the diagonal terms of g(2)

[Fig. 3(d IV)] both show that the system is now far from the
Gross-Pitaevskii mean-field limit. Deep in the SMI phase, the
momentum distribution is almost flat [Fig. 3(e II)]. In g(1),
the diagonal terms are unity, while the off-diagonal terms are
zero [Fig. 3(e III)]; in g(2), the diagonal terms are antibunched,
while the off-diagonal terms are unity [Fig. 3(e IV)]. All
these features indicate that the nonlocal correlation between
the peaks in position space has completely vanished and the
hopping term in the BH model is t = 0. In the position space

FIG. 5. Density distribution in momentum space ρ̃(k) of (a) N =
50 and (b) N = 100 atoms in the lowest energy steady state of the
coupled cavity-BEC system as a function of the pump rate η

√
N .

The height ρ̃(k = 0) and the full width at half maximum (FWHM)
of the central peak are superimposed as light green dots and light blue
crosses, with axes on the right and left, respectively. Both transitions,
as well as the reentrance of superfluidity in the SMI phase, can be
clearly seen. In panels (a) and (b), both momentum and FWHM are
given in units of 1/L̃. (c) The occupancy order parameter � [cf.
Eq (16)] as a function of pump rate η

√
N simulated with (orange

dots) N = 50 and (blue triangles) N = 100 atoms. It has similar
behaviors as the central peak height in momentum space. The vertical
white dashed (dotted) lines in panels (a) and (b) indicate the NP-SP
(SSF-SMI) phase boundary, and they are repeated as black lines in
panel (c).

density distribution [Figs. 3(d I) and 3(e I)], the peaks become
more separated from each other.

An alternative measure is the occupancy order parameter
�, which is defined through the orbital occupancies ρi,

� =
M∑

i=1

ρ2
i , (16)

and can be detected in experiments by single-shot measure-
ments [50]. As shown in Fig. 5(c), it has similar behaviors
as the momentum space central peak height ρ̃(k = 0) in
Figs. 5(a) and 5(b) and is also able to differentiate among the
NP, the SSF, and the SMI.

Critical behavior is not observed in our simulations across
the SSF-SMI transition. This is in agreement with exist-
ing numerical and experimental results on Bose-Hubbard
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systems [22–24,27,29,53]. The momentum space density dis-
tributions in the SP, especially the heights and FWHMs of
the central peak, are very similar to those encountered in
the pure BH model without optical cavity [53]. This is a
direct consequence of vanishing cavity fluctuations deep in
the SP, as shown previously in Fig. 4. Because of the lack
of critical behavior, the boundary between the SSF and the
SMI is ambiguous. One criterion is to choose the boundary
as the point where the FWHM of the central peak starts to
increase [53], roughly at ηmi

√
N = 770ω̃ (2π × 194 kHz) in

our simulations. During the transition from the SSF to the
SMI, two unexpected behaviors can be seen in the density
distribution ρ̃(k) [see Fig. 5(a)]. The switching between the
even and odd lattice configurations results in the singularity
at around η

√
N = 680ω̃ (2π × 171 kHz), and a reentrance of

superfluidity occurs at around η
√

N = 930ω̃ (2π × 234 kHz).
Both of them are direct results of the presence of the harmonic
trap and will be explained in detail in Secs. III D and III E,
respectively.

The subdivision of the SSF and the SMI is not only
detected in the MCTDH-X simulation but is also an emer-
gent feature of the BH toy model [Eq. (14)] [54]. The
BH model predicts a transition from a superfluid phase to
a Mott-insulator phase at t/Us ≈ 0.15/dq, where d = 1 is
the dimension of the system and q is the filling factor
[55]. For our system with N = 50 particles, the density
profile implies a filling factor of q ≈ 15. Inserting the pa-
rameters of our system, this transition is predicted to oc-
cur at approximately ηbh

√
N ≈ 550ω̃ (2π × 139 kHz), which

is approximately 30% smaller than ηmi. This discrepancy
can be attributed to the fact that the Gaussian orbitals are
not a perfect approximation of the Wannier functions (see
Appendix F).

The transition between the SSF and the SMI is intrinsically
beyond the Gross-Pitaevskii mean-field limit, so its critical
pump rate ηmi is expected to change when the atom number
and parameters change [see Eq. (8)]. This change is captured
by the BH model. As the atom number increases, the filling
factor q increases accordingly. This renders a decrease in the
critical value of t/Us. Combining this observation with the
expression for t and Us from the BH model [Eqs. (15a) and
(15b)], we find that the critical pump rates at two different
particle numbers N and N ′ are related by

η′
mi

√
N ′ − ηmi

√
N ≈ kc

π2

√
2|�c| ln

(
N ′

N

)
. (17)

It is clear that the critical pump rate will increase as the atom
number increases.

To obtain the dependence of ηmi on N in MCTDH-X,
we simulate a system of N ′ = 100 atoms and compare the
results with those from N = 50 atoms. Though no changes
are seen in the position space distribution ρ(x), significant
changes are observed in the momentum space distribution
ρ̃(k), which is shown in Fig. 5(b). Two satellite peaks emerge
at k = ±kc and the system enters the SP/SSF at the same
pump rate value ηc

√
N as with N = 50 atoms, underscoring

the mean-field nature of the NP-SP transition. In contrast, the
SSF-SMI transition occurs at a larger value of the pump rate
η′

mi

√
N ′ = 890ω̃ (2π × 224 kHz) as opposed to the pump rate

FIG. 6. Density distribution ρ(x) of the atoms in the lowest
energy steady state for the coupled cavity-BEC system as a function
of the pump rate η

√
N . The transition from the NP to the SP is clearly

seen while the transition from the SSF to the SMI is not visible.
However, an expansion of the atomic cloud and the accompanying
lattice switching between the two configurations of the broken Z2

symmetry can be seen. The energy difference between these two
lattice configurations, �En/N , is superimposed, with the numerical
results from MCTDH-X as green crosses and the analytical results
from Bose-Hubbard model [Eq. (19)] as a green line. A positive (neg-
ative) �En value represents that the even lattice has lower (higher)
energy than the odd lattice. As expected, the lattice configuration
switches every time �En vanishes. The results are invariant under a
change of atom number N .

ηmi

√
N = 770ω̃ (2π × 194 kHz) for N = 50. This increase

is qualitatively consistent with the one predicted by the BH
model [Eq. (17)]. Since the critical pump rate increases loga-
rithmically, the critical pump rate should remain at the same
order of magnitude ηim

√
N ≈ 2000ω̃ (2π × 500 kHz) even in

a usual experiment, where the number of atoms in the original
two-dimensional system is effectively roughly N ∼ 103 [18].
We conclude that just like in the Bose-Hubbard model, the
cavity-BEC system can host a Mott phase for any particle
number with appropriate cavity detunings and pump rates.

D. Lattice switching

We now focus on the spatial profile of the condensate as a
function of the pump rate (Fig. 6). Other than the expected
transition from the NP to the SP at ηc

√
N = 480ω̃ (2π ×

121 kHz) and the narrowing of the peaks as the pump rate
increases, we can further see a switching between the even and
odd lattice configurations. Using the BH model, we now show
that this switching stems from the presence of the harmonic
trap, which explicitly breaks the Z2 symmetry and lifts the
degeneracy of the two configurations. We also note that the
scenario where the harmonic trap leads to different domains in
different positions [56] is not observed in our system, because
the number of occupied lattice sites is too small near the
boundary between the SSF and the SMI.

In the atomic limit of the BH model (t = 0), we can
calculate the lowest energy configurations as a function of the
dimensionless parameter ξ ≡ NUs/ω

2 ∝ √
η. The detailed

calculation is shown in Appendix D 1, where the configuration
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and the energy of the lowest energy steady state are obtained.
The BH model predicts the dependence on ξ of the number of
occupied lattice sites nsite. In the range of pump rates relevant
for our simulations, nsite is given by

nsite =
⎧⎨
⎩

3, 8 < ξ � 20 (66 < η
√

N � 415)
4, 20 < ξ � 40 (415 < η

√
N � 1659)

5, 40 < ξ � 70 (1659 < η
√

N � 5080).

(18)

As the pump rate η
√

N and therefore ξ increase gradually,
the number of occupied lattice sites nsite increases by steps
of one at a time. Each step is accompanied by a switching
between the even and odd lattices. This is consistent with the
simulation results in Fig. 6 except for a shift in the pump rate,
which we attribute to the fact that the Gaussian orbital is not a
perfect approximation for the Wannier orbital [see Appendix
F].

The BH model can also predict the energies of higher
energy states. For example, it can be used to calculate the
energy differences �Ensite between the two lowest energy
steady states at different pump rates (see Appendix D 1),

�En

Nω2
= − (n3 − n − 3ξ )[n(n + 1)(n + 2) − 3ξ ]

18n(n + 1)ξ
. (19)

For the sake of clarity, the notation for the number of occupied
sites nsite(ξ ) is simplified as n in this formula. This energy
difference is also accessible in MCTDH-X. The analytical and
numerical results for �En are compared in Fig. 6, and they
agree with each other except for a shift (see Appendix F).

With MCTDH-X and the BH model, we can probe the
number of atoms localized at each lattice sites both nu-
merically and analytically. As the atom peaks are locally
correlated deep in the Mott phase, for any given position
x = x0, there should be at most one macroscopically occu-
pied orbital which is localized nearby. The diagonal term of
the two-body correlation function g(2)(x, x) [see Eq. (10b)]
establishes a direct connection between the density peaks and
the occupancy ρi of this orbital [see Appendix D 2 and cf.
Eq. (12)],

g(2)(x0, x0) = 1 − 1

Nρi
. (20)

The orbital occupancy ρi, on the other hand, reflects the
fraction of the total number of atoms in the corresponding
peaks located at x = x0. This can be substantiated with a
comparison of the orbital occupancies ρi from simulations
with the atom fractions in the corresponding peaks using the
BH model (see Appendix D 1),

ni

N
= 1

nsite
+ n2

site − 3i2 − 1

6ξ
. (21)

The orbital occupancies of the five orbitals as functions of
pump rate are shown in Fig. 7(a), and they are compared
to the analytical results Eq. (21) in the inset. The ana-
lytical and numerical results agree with each other except
for a horizontal shift (see Appendix F), confirming our
claim.

Combining the results from Eq. (20) and our claim, the
value of g(2)(x, x) at each peak is directly related to the number

FIG. 7. (a) Occupancies ρ1 to ρ5 of the M = 5 orbitals for N =
50 particles as functions of the pump rate η

√
N . The background

color shows whether the ground state has an even (pink) or odd (light
green) lattice configuration. Inset: Occupancies of the first and third
orbitals (ρ1 and ρ3) obtained from MCTDH-X simulations (markers)
compared with the proportions of atoms in the corresponding peaks
calculated from the analytical BH model in Eq. (21) (solid lines).
For the even lattices, these two orbitals correspond respectively to
the peaks at x = 0 (n0/N in BH model) and x = 2π/kc (n2/N). For
the odd lattices, they correspond to the peaks at x = π/kc (n1/N) and
x = 3π/kc (n3/N). [(b), (c)] The diagonal of the two-body correla-
tion function g(2)(x, x) in two self-organized Mott-insulator states.
The states are simulated at (b) η

√
N = 2828ω̃ (2π × 713 kHz) and

(c) 2150ω̃ (2π × 542 kHz) with N = 50. The occupancies of the five
orbitals in (b) the first state are 28%, 24%, 24%, 12%, and 12%, while
in (c) the second state they are 30%, 26%, 24%, 10%, and 10%. The
blue lines are simulation results and the red crosses are analytical
results obtained from Eq. (20).

of atoms Ni = Nρi therein. The simulation results and the
analytical results from Eq. (20) of two SMI states simulated at
η
√

N = 2828ω̃ (2π × 713 kHz) and 2150ω̃ (2π × 542 kHz)
are compared in Figs. 7(b) and 7(c), respectively. The calcula-
tions faithfully reproduce the MCTDH-X results. In partic-
ular, the asymmetry encountered in the x = ±2π/kc peaks
in the state simulated at η

√
N = 2150ω̃ (2π × 542 kHz) is

a consequence of the indivisibility of the atoms and is also
visible in the second and third orbital occupancies in Fig. 7(a).

E. Reentrance of superfluid features on the Mott-insulator side
of the SSF-SMI boundary

Besides the switching between the even and odd lattices,
the harmonic trap also induces a reentrance of correlation and
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superfluidity in the SMI phase. This can be seen around the
pump rate η

√
N = 930ω̃ (2π × 234 kHz) in the momentum

space density distributions in Fig. 5 for N = 50 atoms. As a
global effect, it is not captured by a local density approxi-
mation [57,58]. The reentrance can also be explained by the
physics of the BH model. Deep in the SMI, as η increases,
Eq. (15b) shows that the on-site repulsive interaction between
atoms Us becomes progressively more significant than local
chemical potentials μi induced by the harmonic trap. Con-
sequently, the atoms minimize their energy by populating
lattice sites further from the minimum of the trap instead of
congregating at its center. Because of the finite number of
atoms and their indivisibility, only one atom from each of the
inner peaks hops outward at a time. This process also occurs
in the SMI region close to the SSF-SMI phase boundary—the
fact that the hopping strength t is still comparable to the on-
site interaction 0.01Us (cf. Sec. III C) leads to the reentrance
of correlations and superfluidity.

As the pump rate η increases across a certain critical pump
rate η∗, the system gradually transitions from a state |1〉,
where more atoms sit in the inner lattice sites to another
state |2〉, where they move outward. The energy difference
2ε between these two states is a function of Us and ω, and
hence of η. The correlation strength among the lattice sites
is determined by the ratio between the energy difference
ε(η) and the hopping strength t (η) (see Appendix E). Far
away from η∗, the energy difference is much larger than the
hopping strength |ε| � t , so the steady state of the system
is dominated by either |1〉 or |2〉. However, in the vicinity
of η∗, the energy difference is comparable to or smaller
than the hopping strength |ε| < 10t , and the steady state is
a superposition of many states, including |1〉 and |2〉. This
superposition reestablishes coherence between the lattice sites
and causes the reentrance of superfluidity in the SMI. An
example with nsites = 4 lattice sites is calculated and discussed
in detail in Appendix E.

The MCTDH-X simulation results confirm this mecha-
nism. The density distributions in momentum space and po-
sition space around the reentrance region for N = 50 atoms
are shown in Figs. 8(a) and 8(b), respectively. As the central
peak height in momentum space ρ̃(k = 0) enhances, while in
position space the inner peaks shrink and the outer peaks grow
rapidly in height [see Fig. 8(c)]. This implies that an atom
is moving from each of the inner to the outer peaks when
the superfluid features reenter, which is consistent with the
discussion above.

The reentrance also manifests itself in other observables
like the one-body and two-body correlation functions in both
position and momentum space. It is also seen for N = 100
atoms [see Fig. 5(b)], where it occurs at η

√
N = 1050ω̃ (2π ×

265 kHz). There is no reentrance at higher pump rates as the
hopping t decays exponentially.

IV. CONCLUSIONS

In summary, we have studied the steady-state properties
of laser-pumped harmonically trapped weakly interacting
bosons coupled to a red-detuned dissipative high-finesse op-
tical cavity. We explicitly considered experimentally relevant

FIG. 8. Density distributions in position and momentum spaces
as functions of the pump rate η

√
N in the reentrance region for

N = 50 atoms. (a) Density distributions in momentum space ρ̃(k).
Superimposed is the height of the central peak ρ̃(k = 0). (b) Density
distributions in position space ρ(x). (c) The heights of the inner
peaks ρ(x = ±π/kc ) (brown dots) and outer peaks ρ(x = ±3π/kc )
(red crosses) of the position space density distribution. The rapid
change in the peak heights imply an atom hops from each of the
inner peaks into an outer peak in the reentrance region, resulting in a
reconstruction of correlations between peaks.

parameters for our simulations, permitting a direct compari-
son of our results with state-of-the-art experimental setups.

We showed that the bosonic atoms manifest three different
phases as a function of the strength of the pump laser for a
fixed cavity detuning: a normal phase (NP) where the atoms
form a BEC, a self-organized superfluid (SSF) phase, and a
self-organized Mott-insulator (SMI) phase. In the steady state,
each phase is characterized by distinct features in its momen-
tum space density distribution and its correlation functions.
In the NP, the atoms form an almost perfect condensate; i.e.,
only a single orbital is macroscopically occupied. The density
distribution in position and momentum space displays a single
peak, whose shape depends very weakly on the pump rate.
Around the critical point between the NP and the SSF phase,
the cavity fluctuations are significantly enhanced even for a
small number of atoms, in accordance with the expected di-
vergence of the fluctuations for a symmetry-breaking quantum
phase transition. The system then becomes fragmented as it
enters the SSF phase. In the SSF phase, a fraction of the
atoms form clusters in position space. Correspondingly, the
momentum space density distribution is characterized by two
satellite peaks located at the wave vectors k = ±kc, indicat-
ing a strong correlation between the atom clusters. As the
pump rate increases further, the system smoothly transitions
from the SSF into the SMI phase without exhibiting critical
behavior. The transition is signaled by changes in the height
and width of the central peak in momentum space as well
as in the occupancy order parameter. This is in agreement
with previous numerical and experimental studies of the Mott
transition in standard Bose-Hubbard models. Deep in the
SMI phase, the atomic state is highly fragmented and locally
correlated.
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Surprisingly, we find two novel features inside the super-
radiant phase: (i) an expansion and switching of the self-
organized lattice between the two configurations of the broken
Z2 symmetry and (ii) a previously unseen reentrance of super-
fluid features in the SMI phase. The observed phenomena can
be qualitatively explained via a mapping of the cavity-BEC
system to the Bose-Hubbard model, and they are attributed
to the competition between the harmonic trapping potential
and the contact interaction energy between the atoms. Slight
discrepancies between the analytical model and the numerical
simulations are attributed to the inaccuracy of our approxima-
tion for the Wannier function used to obtain the Bose-Hubbard
model.

Our work shows that the combination of numerical
MCTDH-X simulations and analytical results from effective
Hubbard models offers a comprehensive approach to study
correlated phases of matter in cavity-cold atomic gases se-
tups. Additional prospects for application of this methodology
range from cavity-coupled multicomponent bosons—where
exploratory studies have already been conducted [36]—to
ultracold fermionic gases and other engineered light-matter
systems with multimodal cavities or with the presence of
additional optical lattices. The easy incorporation of time
dependence provided by the MCTDH-X algorithm further en-
ables a highly controlled and systematic way to investigate the
dynamical behaviors of both quantum quenches and Floquet
systems.
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APPENDIX A: NUMERICAL METHOD

In this work, we use the multiconfigurational time-
dependent Hartree method for indistinguishable particles
[32–34] (encoded in the software MCTDH-X [31]) to accu-
rately investigate the ground state of the problem [Eq. (5)]. We
consider a general Hamiltonian containing at most two-body
operators:

Ĥ =
∫

dx�̂†(x)

{
p2

2m
+ V (x)

}
�̂(x)

+ 1

2

∫
dx�̂†(x)�̂†(x′)W (x, x′)�̂(x)�̂(x′). (A1)

Here V (x) represents the one-body potential and W (x, x′) is
the two-body interactions. The numerical method is based on
the following ansatz for the many-body wave function:

|�〉 =
∑

n

Cn(t )
M∏

k=1

[
(b̂†

k (t ))nk

√
nk!

]
|0〉, (A2)

where N is the number of atoms, M is the number of single-
particle wave functions (orbitals), and n = (n1, n2, . . . , nk )

gives the number of atoms in each orbital, i.e.,
∑M

k=1 nk =
N . The vacuum is denoted by |0〉 and the time-dependent
operator b̂†

k creates one atom in the ith working orbital ψi(x)

b†
i (t ) =

∫
ψ∗

i (x; t )�̂†(x; t )dx, (A3a)

�̂†(x; t ) =
M∑

i=1

b†
i (t )ψ∗

i (x; t ). (A3b)

Using the time-dependent variational principle [59], one finds
the equations for the time evolution of the coefficients Cn(t )
and the working orbitals ψi(x; t ).

Because of the existence of quasidegenerate states near the
ground-state energy, the variational procedure could relax the
system to some metastable states besides the ground state. To
circumvent this problem, we run imaginary time propagations
with several (10 or 20) randomly generated initial conditions
as ansatz for the wave function and choose the one with the
lowest energy as the final state. In this way, we can assure that
the ground state is reached and, as a by-product, we can also
access the low-lying excited states. The MCTDH-X has been
successfully used to study vortex formation in BECs [60], su-
perlattice switching in parametrically driven condensates [61],
and systems with long-range dipolar interactions [50,62–64],
among other.

In the MCTDH-X approach, the choice of the number of
orbitals M plays an important role in the convergence of the
results [33,34,44]. In the following, we provide a guideline
on how to choose it for systems described by Eq. (1). When
only M = 1 orbital is used, the solution is reduced to the
Gross-Pitaevskii-type mean-field approximation. In contrast,
when M goes to infinity, the MCTDH-X becomes numerically
exact, but a large M is computationally unrealistic. In some
cases, however, quasiexact solutions can be obtained [44]. To
obtain an optimal M, we perform imaginary time propagations
with different random initial guesses starting from M = 2
and increase M by one if the occupation of the last orbital
is nonvanishing in any one of the tests. The tests show that
for our present computations at most as many orbitals as the
number of density peaks (atom clusters) in position space are
needed, except in the vicinity of the NP-SP boundary. Since
there are at most five density peaks in our simulations, we
set M = 5 and consequently use N = 50 atoms due to com-
putational limitations. We can claim the numerical exactness
of our simulations as the higher order orbitals have vanishing
occupancies far from the NP-SP boundary.

APPENDIX B: PARAMETERS

In this paper, all the parameters are expressed in the scale of
energy Ẽ , scale of length L̃, and scale of frequency ω̃, which
can be chosen arbitrarily as long as they satisfy Ẽ = h̄2

mL̃2 =
h̄ω̃, where m is the mass of the atoms. For 87Rb atoms with
mass 1.44 × 10−25 kg, we can choose Ẽ = 3.34 × 10−31 J,
L̃ = 480 nm, and ω̃ = 2π × 504 Hz. In our simulations, all
the parameters and results are given in these units.

Most of the parameters are chosen here corresponding
to the experimental setup of Ref. [11], where the atoms
are usually split into multiple two-dimensional slices with
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TABLE I. Values of the system parameters and the energy and
length scales in dimensionful units.

Quantity Value

Harmonic trap ωx 2π × 504 Hz
Atomic contact interaction Ng 10.0 × 10−18eV m
Collective atom light shift NU0 2π × 107.4 kHz
Cavity detuning �c −2π × 20.2 MHz
Cavity mode wavelength 2π/kc 784 nm
Cavity mode wave vector kc 8.01 × 106 m−1

Cavity loss rate κ 2π × 2.60 MHz
Pump rate when η

√
N = 2000 2π × 1.01 MHz

Energy scale 2.07 × 10−12 eV
Length scale 480 nm

approximately N = 1000–2000 atoms in each slice [18],
ωx = 1.0ω̃, NU0 = 213ω̃, �c = −4 × 104ω̃, kc = 3.84/L̃,
κ = 5158ω̃, and η

√
N varying from 0 to 4000ω̃, while the

one-dimensional contact interaction strength Ng = 10.01ω̃L̃
is related to the three-dimensional scattering length according
to Ref. [65]. The values of these parameters expressed in
dimensionful units are shown in Table I.

APPENDIX C: EFFECTIVE POTENTIAL APPROACH

For comparison, we summarize the effective potential (EP)
approach, where the cavity field is treated in a mean-field
fashion. It is assumed to be in a coherent state with no cavity
fluctuation and the operator â is replaced by a complex num-
ber: â 
→ α [11,21]. Under this simplification, the evolution of
the cavity field is given by the following Heisenberg equation
of motion,

∂

∂t
α = i[�cα − U0Bα − η	] − κα, (C1)

where 	 = 〈	̂〉 and B = 〈B̂〉 are defined in Eq. (3), and the
Hamiltonian Eq. (1) is now dependent on the cavity field α as
[cf. Eq. (5)]

Ĥ =
∫

dx�̂†(x)

{
p2

2m
+ g

2
�̂†(x)�̂(x) + Vtrap(x)

}
�̂(x)

+ h̄U0

∫
dx�̂†(x) cos2(kcx)|α|2�̂(x)

+ h̄η

∫
dx�̂†(x) cos(kcx)(α∗ + α)�̂(x). (C2)

The cavity effectively provides two sinusoidal modifications
to the one-body potential of the atoms [11,30]. In the limit
|�c| � NU0, the first contribution is negligible. The second
modification favors either the even-i or odd-i lattice sites
depending on the sign of Re(α). Thus, these modifications
capture a periodic atomic density distribution with period
2π/kc, like the LRI approach.

The results obtained from the LRI and the EP approaches
are compared in Figs. 9(a)–9(c). In Fig. 9(a), we compare

FIG. 9. (a) Energy difference between the even and odd lattice
configurations �En/N as a function of the pump rate η

√
N for an

analytical computation using the BH model Eq. (19) (solid black
line) and the numerical computations (green markers and red dots)
using MCTDH-X. The green markers are results from the LRI
approach as shown in Fig. 6(a), while the red dots are results from
EP approach. [(b), (c)] Orbital occupancies as functions of pump rate
η
√

N (b) for the whole range of pump rates and (c) in the vicinity of
the NP-SP critical point. Only two orbitals are shown in each panel
for the sake of clarity. The solid lines show the LRI results as shown
in Figs. 7(a) and 4(b), and the dashed lines show the EP results. In SP,
the two approaches predict different lattice configurations in certain
intervals. Across the NP-SP critical point, a tiny enhancement in the
fourth orbital occurs only in the LRI approach. (d) Ratio between
the values of the on-site interaction Us calculated by the Gaussian
approximation and the simulation results Us,Gauss/Us,sim.

the energy difference between the two configurations of the
broken Z2 symmetry [cf. Fig. 6]. Both simulation results
from LRI and EP approaches are compared to the analytical
results obtained from the BH model. The latter approach also
captures the main features like the switching between lattices
and the expansion of the atomic cloud, but the energy differ-
ence and switching pump rate deviate much more from the
BH model than the ones obtained from the former approach.
In Figs. 9(b) and 9(c), we compare the orbital occupancies
obtained from the LRI and the EP approaches [cf. Figs. 7(a)
and 4(b)]. Both approaches give exactly the same occupancies
except for the intervals 550ω̃ < η

√
N < 750ω̃ and 1300ω̃ <
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η
√

N < 2400ω̃, and the vicinity of ηc

√
N = 480ω̃. In the

first case, the difference comes from the fact that the two
approaches predict different lattice configurations. In the sec-
ond case, compared to the LRI approach, the EP approach
completely ignores the cavity fluctuation at the critical point
ηc, so the tiny enhancement in the fourth orbital does not
occur.

In conclusion, compared to the LRI approach, the EP one
completely ignores the cavity fluctuations, but it is able to
reproduce the same atomic correlations in the system except
in the vicinity of the critical point between NP and SP. It
estimates different energies for a given state and consequently
sometimes reveals a state with the opposite lattice symmetry
as the lowest energy steady state.

APPENDIX D: CONFIGURATIONS AND ENERGIES IN
THE ATOMIC LIMIT

1. Lattice configurations predicted by the
Bose-Hubbard model

In the atomic limit where the hopping term in the Bose-
Hubbard model [Eq. (14)] vanishes, the energy of a state can
be written as

EBH = Us

2

∑
i

n2
i + ω2

2

∑
i

i2ni (D1)

= Nω2

2

∑
i

(
ξ

n2
i

N2
+ i2 ni

N

)
, (D2)

where ni with i = 0,±1,±2... denotes the number of atoms
inside each peak and ni = n−i due to the symmetry of the har-
monic trap. The parameter ξ = NUs/ω

2 is proportional to the
square root of the pump rate η. To look for the lowest energy
steady state, the energy is minimized under the constraint∑

i

ni = N. (D3)

For simplicity, we consider that the number of atoms N can be
divided arbitrarily.

The strategy to look for the lowest energy steady state
consists of two steps. First, we fix the number of occupied
sites nsite and look for the state with the lowest energy. Second,
we compare the results from different nsite and choose the
minimal energy state.

If nsite is even (odd), the lattice is in the odd (even)
lattice configuration and only n±1, n±3,... n±(nsite−1) [n0, n±2,...
n±(nsite−1)] are nonzero. Using the method of the Lagrange
multipliers, we can find the number of atoms ni at each site
i as a function of ξ and nsite,

n±i

N
= 1

nsite
+ n2

site − 3i2 − 1

6ξ
. (D4)

This configuration with nsite lattice sites has an energy of

Ensite

Nω2
= ξ

2nsite
+ 1

6

(
n2

site − 1
)

− 1

90ξ
nsite

(
n2

site − 1
)(

n2
site − 4

)
, (D5)

and exists only when ξ exceeds a certain value such that
n±(nsite−1) > 0,

ξ > ξnsite ≡ 1
3 nsite(nsite − 1)(nsite − 2). (D6)

Now that we have already obtained the configuration and
energy of the lowest-energy steady state with a given fixed
lattice site number nsite, we can compare the energies Ensite of
different lattice site numbers nsite. In the interval

ξnsite+1 < ξ < ξnsite+2, (D7)

the steady state with the lowest energy occupies nsite lattice
sites, while the one with the second lowest energy occupies
nsite + 1 lattice sites. The energy difference between these two
steady states �Ensite = Ensite+1 − Esite is

�En

Nω2
= − (n3 − n − 3ξ )[n(n + 1)(n + 2) − 3ξ ]

18n(n + 1)ξ
, (D8)

where the notation nsite has been simplified as n for the sake
of clarity.

2. Two-body correlation function

In the limit of the BH model, only on-site correlations exist.
In MCTDH-X, this local correlation manifests itself in the fact
that the orbitals are spatially well separated from each other. In
other words, at any given position x = x0, at most one natural
orbital φi is nonzero.

Combining the definition of the reduced density matri-
ces [Eq. (11)] and the expression of the operator �̂†(x) in
MCTDH-X [Eq. (A3b)], we arrive at

ρ (1)(x0, x0) = |φi(x0)|2〈b̂†
i b̂i〉 = |φi(x0)|2Nρi, (D9a)

ρ (2)(x0, x0) = |φi(x0)|4〈b̂†
i b̂†

i b̂ib̂i〉
= |φi(x0)|4Nρi(Nρi − 1), (D9b)

where b̂i annihilates the ith orbital φi whose occupancy is ρi

[cf. Eq. (12)]. As a result, the two-body correlation function
[cf. Eq. (10b)] at x = x0 can be expressed in ρi,

g(2)(x0, x0) = Nρi(Nρi − 1)

(Nρi )2
, (D10)

reproducing the result of Eq. (20) in the main body of the
paper.

APPENDIX E: EXAMPLE OF REENTRANCE OF
SUPERFLUIDITY

We now construct a simple model to explain the reentrance
of superfluidity. We suppose that in the region in question a
total number of atoms N occupy nsite = 4 lattice sites, which
is the case in the simulations for N = 50 atoms at η

√
N = 930

(2π × 234 kHz). As the pump rate increases, the atoms hop
from the inner to the outer peaks to reduce the on-site energy
cost every time η increases across a certain pump rate η∗. For
a finite interval before or after η∗, the number of atoms at
each lattice site remains fixed. The number of atoms in the
inner peaks before η reaches η∗ is n1 = �N (1 + 8/ξ ∗)/4� [cf.
Eq. (21)], where ξ ∗ = NU ∗

s /ω2 corresponds to η∗, and �· · · �
is the symbol for the ceiling function. We note that n1 is a
fixed number and can be read out directly from the occupancy
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n1 = Nρ1 = Nρ2 in simulations (see Sec. III D). When the
pump rate η increases across η∗, the state goes from |1〉 to |2〉,
which, together with the other two relevant configurations, are
defined as

|1〉 ≡ |N/2 − n1, n1, n1, N/2 − n1〉,
|2〉 ≡ |N/2 − n1 + 1, n1 − 1, n1 − 1, N/2 − n1 + 1〉,

(E1)|3〉 ≡ |N/2 − n1 + 1, n1 − 1, n1, N/2 − n1〉,
|4〉 ≡ |N/2 − n1, n1, n1 − 1, N/2 − n1 + 1〉.

In the subspace spanned by states {|1〉, |3〉, |4〉, |2〉}, the BH
Hamiltonian [Eq. (14)] can be written as

ĤBH ≈ H01 +

⎛
⎜⎝

0 t t 0
t ε 0 t
t 0 ε t
0 t t 2ε

⎞
⎟⎠, (E2)

where H0 = Us[n2
1 + (N/2 − n1)2] + ω2(9N/2 − 8n1) is the

energy of state |1〉 and ε = −Us|N − 4n1 + 2|/2 + 4ω2 is the
energy difference between the states |1〉 and |3〉.

As η and therefore Us increase but ω remains unchanged,
ε/t goes from a large positive number to zero and then to
a large negative number. For large positive (negative) ε/t ,
the lowest energy steady state is dominated by |1〉 (|2〉), and
there are no correlations among the four peaks. However, for
|ε/t | < 10, the ground state is a superposition of the four
states and the correlations among the four peaks become large.

APPENDIX F: ACCURACY OF THE GAUSSIAN
APPROXIMATION OF THE WANNIER FUNCTION

The discrepancy between the simulation and analytical
results stems from the inaccuracy of the Gaussian as an

approximation of the Wannier function. Consider the on-site
interaction Us, whose dependence on the Wannier function
is given by

∫
dx|W (x)|4 [cf. Eq. (15b)]. To estimate the

exactness of the Gaussian approximation, we calculate the
values of the integral for the central peak(s)

Us,sim

g
=

∫ π/kc

−π/kc
dxρ2(x)∫ π/kc

−π/kc
dxρ(x)

(F1)

for even lattices and

Us,sim

g
=

∫ 2π/kc

0 dxρ2(x)∫ 2π/kc

0 dxρ(x)
(F2)

for odd lattices in simulations, and compare them to the
prediction of the Gaussian ansatz from the BH model, which
is given by

Us,Gauss

g
=

√
ηkc

π

(
N

2|�c|
) 1

4

(F3)

in the dimensionless units. The ratio of these two values,
Us,Gauss/Us,sim, as a function of η

√
N is shown in Fig. 9(d).

The Gaussian always overestimates the on-site interaction,
especially at low pump rates. This is consistent with the fact
that the analytical results are always shifted toward the lower
pump rates compared to the numerical ones in Figs. 6, 7, and
9(a). However, when the pump laser is sufficiently strong,
our approximation becomes close to the correct Wannier
functions.
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