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Brief Communications

Involvement of Newborn Neurons in Olfactory Associative
Learning? The Operant or Non-operant Component of the
Task Makes All the Difference

Nathalie Mandairon,* Sébastien Sultan,* Morgane Nouvian, Joelle Sacquet, and Anne Didier
INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, F-69000, France, University Lyon, University Lyon 1, F-69000, France

New neurons are continuously generated in the adult mammalian olfactory bulb. The role of these newborn neurons in olfactory learning
has been debated. Blocking the addition of neurons has been reported either to result in memory alteration or to have no effect at all
(Imayoshi et al., 2008; Breton-Provencher et al., 2009; Lazarini et al., 2009; Sultan et al., 2010). These discrepancies may have arisen from
differences in the behavioral paradigms used: operant procedures indicated that neurogenesis blockade had substantial effects on
long-term memory (Lazarini et al., 2009; Sultan et al., 2010) whereas other methods had little effect (Imayoshi et al., 2008; Breton-
Provencher et al., 2009). Surprisingly, while operant learning is known to modulate the survival of new neurons, the effect of non-operant
learning on newborn cells is unknown. Here we use mice to show that compared with operant learning, non-operant learning does not
affect cell survival, perhaps explaining the current controversy. In addition, we provide evidence that distinct neural substrates at least
partly underlie these two forms of learning. We conclude that the involvement of newborn neurons in learning is subtly dependent on the
nature of the behavioral task.

Introduction
The formation of new functional neurons in the olfactory bulb
(OB) originates in the proliferation of stem cells in the subven-
tricular zone which generate neuronal progenitors migrating
along the rostral migratory stream to reach the OB. Once in the
OB, adult-born cells differentiate into granule and periglomeru-
lar interneurons, and shape the output message of the OB (Lledo
et al., 2006). Numerous studies have investigated the role of new-
born neurons in olfactory learning and have yielded conflicting
results (Imayoshi et al., 2008; Breton-Provencher et al., 2009;
Lazarini et al., 2009; Sultan et al., 2010). Indeed, a deficit in long-
term olfactory memory was reported after reducing bulbar neu-
rogenesis by irradiation (Lazarini et al., 2009) or by using an
antimitotic agent (Sultan et al., 2010), with no effect on learning
performance. In sharp contrast, other studies using genetic abla-
tion of neurogenesis (Imayoshi et al., 2008) or an antimitotic
agent (Breton-Provencher et al., 2009) reported no deficit on
long-term memory.

Because the age of the ablated newborn neurons was similar in
the studies reporting an effect (Lazarini et al., 2009; Sultan et al.,
2010) or no effect (Imayoshi et al., 2008; Breton-Provencher et

al., 2009) on long-term memory, this parameter cannot account
for the discrepancy. Furthermore, the technique used to block
neurogenesis cannot explain the discrepancies. Indeed, two inde-
pendent studies using irradiation or antimitotic drug infusion
reported impairment in long-term olfactory memory while the
two studies using antimitotic infusions yielded conflicting data.
We thus made the hypothesis (Sultan et al., 2010) that discrepan-
cies may arise from differences in the behavioral paradigms used.
Indeed, the studies reporting no effect of neurogenesis blockade
on long-term memory used an associative task in which animals
made a non-operant association between an odor and a reward
that were simultaneously present and accessible to the animals
(Imayoshi et al., 2008; Breton-Provencher et al., 2009). Animal
behavior during training did not determine whether it obtained
the reward. In contrast, the studies reporting an effect of neuro-
genesis blockade on olfactory memory used a task with an oper-
ant component in which the animals used the odor cue to elicit
specific behavior aimed at obtaining the reward (Lazarini et al.,
2009; Sultan et al., 2010). Thus, as in the non-operant task, the
animals made an odor-reward association but this association
also reinforced an active, motivated behavior to obtain the re-
ward. For simplicity, we will name this odor-cue associative task
including an operant component the operant task. The different
nature of the task may imply differential needs for adult-born
neurons. Furthermore, while operant learning has been shown to
modulate newborn cell survival, surprisingly, no such modula-
tion in the non-operant paradigm has been studied.

To clarify this question, we studied the effect of operant or
non-operant conditioning on the survival and functional in-
volvement of bulbar newborn cells using bromodeoxyuridine
(BrdU) labeling and expression of the immediate early gene
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Zif268 respectively. In addition, to documenting the neural sub-
strate of the two paradigms, we investigated the engagement of
the brain’s olfactory structures in processing the learned odorant.

Materials and Methods
Experimental design
Non-operant conditioning was done following the experimental design
described by Breton-Provencher et al. (2009) and Imayoshi et al. (2008).
Operant conditioning was similar to our previously described protocol
(Sultan et al., 2010) except for the odorants used. To measure newborn
cell survival in the operant behavioral task, the DNA synthesis marker
BrdU was administered 13 d before conditioning (Fig. 1 Ai,Bi). This pro-
tocol allowed labeling of a cohort of newborn cells integrating the OB
network at the beginning of training (Petreanu and Alvarez-Buylla,
2002), and thus in their critical period for learning-dependent survival
(Mouret et al., 2008). The same timing of BrdU injections was applied in
the non-operant behavioral task.

Animals and BrdU injections
A total of 40 male C57BL/J mice, aged 8 weeks, were used. Mice were
housed under a 12 h reverse light/dark cycle in an environmentally con-
trolled room with ad libitum access to water. The animals were food-
restricted 5 d before and during the olfactory learning (�20% daily food
consummation, leading to a 15% reduction in body weight). Every effort
was made to minimize both the number of animals used and their suf-
fering during the experimental procedure in accordance with the Euro-
pean Community Council Directive of November 24, 1986 (86/609/
EEC). Thirteen days before the beginning of the behavioral training, the
mice received 3 injections of BrdU (50 mg/kg in saline; i.p., every 2 h).

Odorants
In the behavioral tasks, (�)-carvone (purity 96%, Aldrich Chemical Co.)
and (�)-carvone (purity �99%, Merck-Schuchardt) were used. Odor-
ants were diluted to a concentration of 15% in mineral oil, and 0.05 ml of
this solution was used for each presentation.

Behavioral experiments
Operant olfactory learning
Mice were tested on a computer-assisted 2-hole board apparatus (Man-
dairon et al., 2006, 2009). A polypropylene swab, impregnated when
needed with the odorant, was placed at the bottom of each hole (4.5 cm
deep) and covered with bedding (Fig. 1 Aii).

Shaping. Before conditioning, all the mice, in the absence of the odor-
ant, learned to retrieve a reward by digging through the bedding in a hole.

Conditioning. A reward was systematically associated with (�)-
carvone while (�)-carvone was nonreinforced (conditioned group, n �
10). Mice were trained during one session per day for 5 d. A daily session
consisted in 4 trials (2 min per trial, 15 min intertrial interval). For each
trial, the odorants were randomly placed in the 2 holes, to avoid spatial
learning (Fig. 1 Aii).

Pseudo-conditioning. The reward was randomly associated with either
of the 2 odorants (pseudo-conditioned group, n � 10).

Data analysis. Learning was assessed through the percentage of correct
choices on each training day. For each trial, a correct choice was recorded
if the first nose-poke was into the (�)-carvone odorized hole. The mean
percentage of correct choices was calculated for each day and averaged
within groups. In the figure, the results are given as mean � SEM.
Between-group comparison was done using ANOVA for repeated mea-

Figure 1. Experimental design. A, Operant conditioning. Ai, Two groups of animals (conditioned and pseudo-conditioned; n � 10 per group) were trained for 5 d. BrdU was administered 13 d
before training to label newborn cells arriving in the OB at the beginning of training. All mice were killed on day 5, 1 h after the last trial. Aii, Experimental apparatus used for operant conditioning.
B, Non-operant conditioning. Bi, Two groups of animals (conditioned and pseudo-conditioned; n � 10 per group) were trained for 4 d and tested for learning on day 5, 1 h before they were killed.
Again, BrdU was administered 13 d before training. Bii, Experimental apparatus used for non-operant conditioning.
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sures followed by Bonferroni post hoc tests (Systat software). Statistical
significance was set at p � 0.05.

Non-operant olfactory learning
The protocol used has previously been described by Schellinck et al.
(2001; Imayoshi et al., 2008; Breton-Provencher et al., 2009). An odor-
ized filter paper was placed at the bottom of a Petri dish; this was kept in
place by the Petri dish cover in which 9 holes (1 mm in diameter) had
been drilled to allow diffusion of the odor. Bedding was placed on top of
this odor pot (1 cm high) and the reward (sugar pearls, EuroSugar, Paris,
France) was mixed in with it (Fig. 1 Bii).

Conditioning. Mice were trained for 1 session per day over 4 d. For all
mice, a daily session consisted in 4 randomized trials (10 min per trial, 15
min intertrial interval): (�)-carvone was presented in 2 of the trials and
(�)-carvone in the other two (Fig. 1 Bii). The reward was systematically
associated with (�)-carvone and (�)-carvone was nonreinforced (con-
ditioned group, n � 10).

Pseudo-conditioning. The same sequence of trials was used except that
the reward was randomly associated with (�)-carvone or (�)-carvone
during a session (pseudo-conditioned group, n � 10).

Learning test. Twenty-four hours after the last conditioning session
(day 5), the 2 odors were presented simultaneously in two odor pots
without any reward. The mice were allowed to dig in the bedding for 2
min (Fig. 1 Bii).

Data analysis. On test day, the time spent digging in each odor pot was
recorded as an index of learning. Mean digging time was calculated and
averaged within groups. In the figures, all results are given as mean �
SEM. Between-group comparisons were done using the unilateral t test.
Statistical significance was set at p � 0.05.

Brain preparation
All the mice were killed on day 5 (1 h after the last behavioral test, Fig. 1).
They were deeply anesthetized (Pentobarbital, 0.2 ml/30 g) and killed by
intracardiac perfusion of 50 ml of fixative (4% paraformaldehyde in
phosphate buffer, pH 7.4). Their brains were removed, postfixed, cryo-
protected in sucrose (20%), frozen rapidly and then stored at �20°C
before sectioning with a cryostat (Jung).

Newborn cell survival assessment
BrdU immunohistochemistry
As previously described (Sultan et al., 2010), 14-�m-thick sections of the
OB were incubated overnight at 4°C in a mouse anti-BrdU primary an-
tibody (1:100, Millipore Bioscience Research Reagents). BrdU was re-
vealed using a horse biotinylated anti-mouse secondary antibody (1:200,
Vector Laboratories) and an avidin-biotin-peroxidase complex (ABC
Elite Kit, Vector Laboratories).

Quantification and mapping in the OB
BrdU-positive cells were counted using mapping software (Mercator
Pro, Explora Nova) coupled to a Zeiss microscope. Cells were counted in
the granule cell layer of the OB, which is the main target of neurogenesis
and modulation by learning. All counts and mapping were done on five
mice per group, without knowledge of the mouse’s status. For each ani-
mal, cells were counted on 32 sections distributed along the rostrocaudal
axis of the OB (intersection interval 70 �m). BrdU mean density was then
calculated by dividing the number of positive cells by the surface of this
region.

Newborn cell survival assessment in the dentate gyrus
Using the same method, BrdU-positive cells were counted on 7–10 sec-
tions (14 �m thick) of the dentate gyrus of the hippocampus distributed
along the anteroposterior axis. Densities were compared using unilateral
Student’s t tests.

BrdU/zif 268 and BrdU/NeuN double labeling
Double labeling was performed using rabbit anti-Zif268 (1:500, Santa
Cruz Biotechnology), mouse anti-NeuN (1:500, Millipore Bioscience
Research Reagents) and rat anti-BrdU (1:100, Harlan Sera Laboratory)
primary antibodies. The appropriate secondary antibodies were Alexa
Fluor 546 for BrdU, Alexa Fluor 633 for NeuN, and streptavidin-Alexa

Fluor 488 for Zif268. The labeled cells (mean 35 cells counted per animal,
n � 5) were observed and analyzed by pseudo-confocal scanning micros-
copy using a Zeiss microscope equipped with an Apotome. For the op-
erant and non-operant groups, conditioned and pseudo-conditioned
animals were compared using a unilateral t test.

Zif268 expression analysis in the OB
In the sections of the OB treated for BrdU/Zif268 double labeling,
Zif268-labeled cells were counted on a series of photographs randomly
taken in the granule cell layer (�20 per animal, n � 5). The Zif268-
positive cell density was calculated and averaged within each experimen-
tal group. Between-group comparisons were performed by ANOVA
followed by a post hoc Fisher test. The level of significance was set to 0.05.

Zif268 expression in orbital, infralimbic and
prelimbic cortices
To assess the expression of Zif268 in response to the learned odorant,
mice were killed on day 5 (1 h after the last behavioral test).

Immunohistochemistry
Brain sections were transferred to 10% normal goat serum (Sigma) with
2% BSA and 0.1% Triton X-100 for 1 h to block nonspecific binding and
were then incubated overnight in a rabbit anti-Zif268 antibody (1:1000,
Santa Cruz Biotechnology) at 25°C. Sections were then incubated in a
biotinylated anti-rabbit secondary antibody (1:200, Vector Laboratories)
for 2 h. The remaining treatments were similar to those for the BrdU
labeling.

Quantification
Zif268 expression was assessed in the orbital, infralimbic and prelimbic
cortices (n � 3 for each group). In the orbital cortex, 3– 4 sections were
counted (Mercator Pro, Explora Nova) between bregma 2.80 mm and
bregma 2.10 mm (Franklin and Paxinos, 2008). A counting frame (200 �
300 �m) was positioned in the orbital cortex and the labeled cell density
was calculated. Zif268-positive cells were also counted on a series of 4 –5
sections between bregma 1.98 mm and 1.54 mm in the area of the pre-
limbic (counting frame 200 � 600 �m) or infralimbic (200 � 500 �m)
cortex determined with regards to the shape of the adjacent corpus cal-
losum (Franklin and Paxinos, 2008; Fig. 2C). For all structures, cell den-
sity was averaged within each experimental group. Between-group
comparisons were performed by unilateral t test. The level of significance
was set to 0.05.

Results
To understand why neurogenesis blockade has different effects
on operant versus non-operant olfactory learning, we investi-
gated the impact of these two behavioral paradigms on newborn
neuron survival.

The mice trained using operant conditioning learned the
odor-reward association (Fig. 2Ai), as shown by the increase over
time of the percentage of correct choices until it reaches 80% for
the conditioned mice (day effect; F(4,70) � 21.108; p � 0.026),
whereas it remained at chance level in the pseudo-conditioned
animals (day effect; F(4,60) � 0.383; p � 0.820). This result was
confirmed by a significant difference between the performance of
the conditioned and pseudo-conditioned animals (group effect;
F(1,26) � 14.787; p � 0.001).

With the operant learning, we found that BrdU-positive cell
density was significantly higher in the conditioned compared
with the pseudo-conditioned mice (p � 0.03; Fig. 2Aii). This
finding confirmed results from previous studies (Alonso et al.,
2006; Mouret et al., 2008; Sultan et al., 2010), and indicated an
increased survival of adult-born cells within the granule cell
layer mediated by operant learning. No difference in neural
differentiation was found between the conditioned and pseudo-
conditioned mice (p � 0.82); �92% of BrdU-positive cells were
NeuN-positive in both groups. To analyze the functional implica-
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tion of newborn neurons in response to the learned odorants, we
looked at the BrdU/Zif268 colabeled cells in the granule cell layer.
We found that the functional recruitment of newborn cells was
greater in the operant conditioned group compared with the
pseudo-conditioned animals (p � 0.003, Fig. 2Aiii). This significant
difference between groups represents a true increase in the func-
tional involvement of these newborn neurons since the total density
of Zif268-positive cells was similar between the conditioned and
pseudo-conditioned groups (p � 0.80; Fig. 2Aiv).

Together, these results show that operant learning increases
the density of newborn cells in the granule cell layer, and increases
the involvement of these cells in processing the learned odorants.

Mice conditioned using the non-operant task learned the
odor-reward association as measured by their digging time dur-
ing the test. The conditioned mice actually spent significantly
more time digging in the pot with the reinforced odor (�)-
carvone than in the nonreinforced odor (�)-carvone (p �
0.001). Moreover, mice from the pseudo-conditioned group

Figure 2. Only operant conditioning modulates newborn cell survival. A, Operant conditioning. Ai, Behavioral performances. Aii, BrdU-positive cell density in the granule cell layer is increased
in the conditioned compared with the pseudo-conditioned group. Aiii, Counts of BrdU�/Zif268� cells indicate that newborn cells are functionally more solicited in the conditioned than the
pseudo-conditioned group. Aiv, The overall expression of Zif268 in the granule cell layer is similar between the conditioned and pseudo-conditioned groups. *p � 0.05, ***p � 0.005 for difference
between conditioned and pseudo-conditioned. B, Non-operant conditioning. Bi, Behavioral performances. Bii, BrdU-positive cell density in the granule cell layer is not modulated by conditioning.
Biii, The percentage of BrdU�/Zif268� cells is similar between the conditioned and pseudo-conditioned groups. Biv, The overall expression of Zif268 in the granule cell layer is similar between the
conditioned and pseudo-conditioned groups (***p � 0.005). C, Conditioned group; PC, pseudo-conditioned group. All cell densities are cell/�m 2. Zif268-positive cell density in orbital cortex (Ci),
infralimbic cortex (Cii), and prelimbic cortex (Ciii). *p � 0.05.
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spent an equal time digging in each odor pot (p � 0.42) (Fig.
2Bi). To assess whether non-operant learning affects newborn
cell survival, BrdU-positive cell density was measured in the gran-
ule cell layer of the conditioned and pseudo-conditioned mice.
No difference was found between the two groups (p � 0.19; Fig.
2Bii). Interestingly, this result indicates that non-operant learn-
ing does not affect BrdU-positive cell survival. Moreover, the
proportion of BrdU-positive cells expressing Zif268 was found to
be similar in both the conditioned and pseudo-conditioned
groups (p � 0.19), suggesting no specific involvement of new-
born cells in the task (Fig. 2Biii). In addition, no difference was
found in the rate of neuronal cell differentiation (i.e., BrdU/NeuN
colabeling) between the conditioned and pseudo-conditioned mice
(p � 0.53), or total Zif268 expression (p � 0.79; Fig. 2Biv). Finally,
we observed that the density of newborn cells in the non-operant
task was higher than in the operant task for both the conditioned and
pseudo-conditioned groups (p � 0.05). This result is in accordance
with the longer exposure time to the odor in the non-operant group
(40 min per day) versus the operant group (8 min per day) and
suggests an effect of odor exposure on newborn cell survival, inde-
pendent of associative learning.

It is worth noting that neurogenesis was not modified in any of
the two behavioral tasks in the hippocampus (operant p � 0.45;
non-operant p � 0.15 for conditioned versus pseudo-condi-
tioned groups).

To summarize, while operant learning increased newborn
neuron survival, non-operant learning apparently had no such
effect.

To further document the potential difference of the nature of
the operant versus non-operant task, we analyzed brain activa-
tion after the last behavioral session. We specifically focused on
three structures: the orbital, prelimbic and infralimbic cortices
which have been shown to be involved in olfactory learning and
memory (Tronel and Sara, 2002; Roullet et al., 2004; Dardou et
al., 2006, 2007; Chapuis et al., 2009). Using Zif268 expression as
an indicator of activity, we found more positive cells in the orbital
cortex after the operant compared with the non-operant task
(unilateral t test, p � 0.05) (Fig. 2Ci). In contrast, fewer positive
cells were observed in the infralimbic cortex after the operant
compared with the non-operant task (unilateral t test, p � 0.05)
(Fig. 2Cii) while no difference was found in the prelimbic cortex
(Fig. 2Ciii).

Together, these results indicated that the two learning para-
digms (non-operant versus operant) differentially modulated
newborn neuron survival and that the learned odorants were
differentially processed in olfactory brain structures depending
on the behavioral paradigm used.

Discussion
We found that operant conditioning increased the number of
newborn neurons in the OB, whereas non-operant conditioning
did not.

The cohorts of newborn neurons labeled and tracked in both
behavioral paradigms (operant versus non-operant) were aged
between 13 and 18 d at the time of learning. At this age, newborn
neurons are at their most critical period for integration into the
bulbar network (Carleton et al., 2003; Kelsch et al., 2009) and
during this period learning has been shown to increase their sur-
vival rate by a few days (Mouret et al., 2008). Our findings clearly
show that non-operant learning had no influence on newborn
neurons of this age. This is consistent with the absence of any
effect of the neurogenesis blockade observed in the Breton-
Provencher et al. study. Indeed, in their study, the timing of the

antimitotic infusion prevented the arrival of newborn neurons of
the same age as the ones tracked in the present study. Non-
operant learning could theoretically influence the fate of older
newborn neurons. However, this possibility is unlikely since the
genetic long-term ablation of neurogenesis depriving the OB of
neurons aged from a few days to several weeks did not affect
non-operant learning or memory (Imayoshi et al., 2008). To-
gether, these data suggest that non-operant learning is indepen-
dent of neurogenesis regardless of the age of the newborn
neurons.

The fact that non-operant learning did not affect neurogenesis
could explain why a neurogenesis blockade did not induce long-
term memory impairment in the studies using non-operant
learning (Imayoshi et al., 2008; Breton-Provencher et al., 2009).
Conversely the mice that learned the task through operant con-
ditioning and showed an increase of neurogenesis could not re-
member the task when neurogenesis was blocked (Lazarini et al.,
2009; Sultan et al., 2010). This conclusion is further supported by
our own (Kermen et al., 2010; Sultan et al., 2010; Sultan et al.,
2011) and others findings (Lazarini et al., 2009) showing that
operant conditioning selects newborn neurons for survival and
that these newborn neurons are used for long-term memory.

To further document the potential differences in the neuronal
substrate underlying the two forms of learning, we looked at the
activation of cerebral structures known to be involved in olfac-
tory memory (Tronel and Sara, 2002; Roullet et al., 2004; Dardou
et al., 2006, 2007; Chapuis et al., 2009). We found a differential
activation between the two types of learning in the orbital cortex
with a more pronounced engagement in the operant group. This
finding is consistent with altered behavioral performance when
lesions were made in the orbital cortex a very similar learning
paradigm using auditory cues (Ostlund and Balleine, 2007). Both
prelimbic and infralimbic areas are closely synaptically connected
with the piriform cortex but their functional role essentially re-
mains unknown. Interestingly, their connections with the piri-
form cortex and many other brain areas are quite distinct (Vertes,
2004) suggesting different functions. Our data further suggest
that they are differentially engaged in processing the learned
odorant, depending on the operant component of the learning
paradigm. These data suggest that the olfactory information is
differently processed depending on the form of learning. Thus,
these two forms of learning although both associative, solicited
different substrates including modulation of neurogenesis and
activation of olfactory brain structures.

In the present study, the non-operant groups exhibited higher
BrdU-positive cell density than did the operant groups. This in-
crease in newborn cell survival was unrelated to learning since it
was observed in both the conditioned and pseudo-conditioned
animals. However, this suggests that the odor exposure time in
the non-operant paradigm (40 min per day versus 8 min in the
operant groups) may have been sufficient to improve the survival
of newly formed cells within the OB similarly to that observed
with odor enrichment (Rochefort et al., 2002; Moreno et al.,
2009; Veyrac et al., 2009).

Our findings, beyond allowing the reconciliation of current
literature on the role of newborn neurons in olfactory associative
learning, points to the importance of the behavioral demands
made on the animals. It seems that newborn neurons subserve
specific roles in particular forms of learning and memory and
that modulation of neurogenesis is therefore not a general re-
quirement for olfactory learning. Operant versus non-operant
learning could be an example of this task-dependent involvement
of newborn neurons. Even more subtle differences should be
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taken into consideration. Fear conditioning is one such example,
a particular form of associative learning consisting of an aversive
association and involving a specific neural circuit (LeDoux, 2000)
has been shown to be partially dependent on newborn cell sur-
vival (Valley et al., 2009). Thus, depending on the task performed
by the animal, different plasticity mechanisms are solicited, lead-
ing to specific changes in the neural representation of the odor
which may or may not depend on newborn neurons. Among
these mechanisms the role of centrifugal inputs deserve particu-
lar attention since they are likely to be differentially involved
depending on the behavioral task (Mandairon and Linster, 2009).
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