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Abstract Both passive exposure and active learning through reinforcement enhance fine sensory

discrimination abilities. In the olfactory system, this enhancement is thought to occur partially

through the integration of adult-born inhibitory interneurons resulting in a refinement of the

representation of overlapping odorants. Here, we identify in mice a novel and unexpected

dissociation between passive and active learning at the level of adult-born granule cells.

Specifically, while both passive and active learning processes augment neurogenesis, adult-born

cells differ in their morphology, functional coupling and thus their impact on olfactory bulb output.

Morphological analysis, optogenetic stimulation of adult-born neurons and mitral cell recordings

revealed that passive learning induces increased inhibitory action by adult-born neurons, probably

resulting in more sparse and thus less overlapping odor representations. Conversely, after active

learning inhibitory action is found to be diminished due to reduced connectivity. In this case,

strengthened odor response might underlie enhanced discriminability.

DOI: https://doi.org/10.7554/eLife.34976.001

Introduction
Brain representations of the environment constantly evolve through learning mediated by different

plasticity mechanisms. Several lines of evidence suggested that adult neurogenesis is a plasticity

mechanism mediating changes in representations of sensory information (Lledo and Valley, 2016).

Experience-dependent survival of adult-born neurons has received recent attention as a mechanism

to modulate pattern separation and perceptual discrimination in the hippocampus and olfactory

bulb (OB) (Sahay et al., 2011). In the OB, current hypotheses about the mechanism underlying this

enhanced discrimination capability focus on increased inhibitory processes mediated by GABAergic

adult-born neurons (Moreno et al., 2009; Alonso et al., 2012), with more integrating cells deliver-

ing more inhibition, leading to sparser odor representations. The data presented here challenge the

current hypothesis by showing that the same rate of adult-born cell survival in the OB can enhance

fine olfactory discrimination by either increasing or decreasing OB output sparseness. In the olfac-

tory system, both passive (implicit perceptual learning in response to repeated exposure) and active

(explicit associative learning in response to reinforcement) learning can improve discrimination

between similar odorants (Mandairon et al., 2006a; Moreno et al., 2009). Both forms of learning

have been shown to modulate neural activity in the OB (Buonviso et al., 1998; Kay and Laurent,

1999; Doucette et al., 2011), and to increase survival of inhibitory adult-born interneurons
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(Moreno et al., 2009; Sultan et al., 2010; Mandairon et al., 2011; Sultan et al., 2011). However,

exactly how adult-born neurons shape the output of the OB to support enhanced discrimination in

these two paradigms is currently unknown. To address this question, we focused on how the number

of integrated adult-born cells and/or the synaptic contacts established by adult-born neurons in the

network could account for experience-induced changes in perception (Moreno et al., 2009;

Daroles et al., 2016).

The data reported here, combining morphological analysis and optogenetic stimulation of adult-

born neurons with mitral cells activity recording, indicate that both forms of learning similarly

enhanced the number of adult-born neurons formed in the OB. However, these adult-born neurons

showed higher density of dendritic spines compared to controls in implicit learning only, leading to

stronger inhibition of mitral cells. In contrast, in explicit learning, adult-born neurons formed weaker

connections to mitral cells, resulting in disinhibition of mitral cells in learning conditions compared to

control. These experiments indicate that a same number of adult-born inhibitory neurons are able to

positively or negatively modulate inhibition in the OB, depending on the synaptic integration mode

and dictated by the behavioral significance of the odorant.

Results

Implicit learning increased adult-born granule cell survival and spine
density
To induce implicit learning, animals were exposed to two odorants, which are not spontaneously

discriminated: +limonene (+lim) and - limonene (-lim). These were placed in two tea balls in the

home cage for one hour per day over 10 days as previously described (Moreno et al., 2009,

2012) (Enriched animals; Figure 1A). Controls were exposed to empty tea balls (Non-enriched ani-

mals). We used a habituation/cross habituation test to assess the effect of the enrichment on dis-

crimination between +lim and –lim (see methods) (Moreno et al., 2009, 2012). Significant

habituation was observed in both the control (n = 20; Friedman test p<0.0001) and enriched groups

(n = 25; Friedman test p<0.0001). Enriched animals discriminated +lim and -lim at the end of the

enrichment procedure as evidenced by increased investigation times between the last habituation

trial (OHab4) and the test trial (OTest) (Wilcoxon test for discrimination p=0.004) whereas the con-

trols did not (Wilcoxon test for discrimination p=0.74) (Figure 1B and Figure 1—source data 1).

We used Bromodeoxy-uridine (BrdU) incorporation to quantify adult-born neuron survival and len-

tiviral transduction to follow their morphological integration into the network (GFP encoding lentivi-

rus was injected 8 days before enrichment to allow for adult-born neurons to migrate from the

subventricular zone to the OB; Figure 1A). As expected, implicit learning increased adult-born gran-

ule cell survival (p=0.042, parametric Anova followed by Bonferroni post hoc test; Non-Enriched

n = 6 and Enriched n = 4, see methods for global statistics strategy), (Table 1; Figure 1C and Fig-

ure 1—source data 1; Figure 1—figure supplement 1A) as well as their responsiveness to the

learned odors as assessed by BrdU/Zif268 co-expression (p=0.0078, parametric Anova followed by

Bonferroni post hoc tests; Non-Enriched n = 7 and Enriched n = 6), (Table 1; Figure 1D and Fig-

ure 1—source data 1; Figure 1—figure supplement 1B) (Moreno et al., 2009). Spine density of

labeled adult-born neurons was analyzed on the apical (site of interactions with mitral/tufted (M/T)

cells) and the basal (site of input of centrifugal fibers) dendrites of adult-born granule cells

(Figure 1E). Spine density increased after implicit learning on both the apical (p=0.0003, Kruskal-

Wallis Anova followed by FDR-corrected permutation tests; Non-Enriched: 48 segments, four mice

and Enriched: 30 segments, four mice) (Table 1; Figure 1F and Figure 1—source data 1) and basal

dendritic domains (p=0.0015, Kruskal-Wallis Anova followed by FDR-corrected permutation tests;

Non-Enriched: 59 segments, seven mice and Enriched: 48 segments, seven mice), (Table 1;

Figure 1G and Figure 1—source data 1). In addition, 5 to 6 weeks after enrichment, once the

enriched animals had forgotten the task, the density of BrdU-positive cells and the spine density on

adult-born cells had returned to control values (Figure 1—figure supplement 2).

Inhibition on mitral cells is increased after implicit learning
We then analyzed how the observed neurogenic changes affect OB output by investigating the over-

all level of inhibition of the M/T cells. Spontaneous inhibitory postsynaptic current (sIPSC) frequency
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Figure 1. Behavioral and neural effects of implicit learning. (A) Experimental design for implicit learning (S: Sacrifice; Test: Habituation/Cross

Habituation task). (B) Behavior. Habituation/cross habituation task indicated that +lim and -lim are not discriminated in control non-enriched group. In

contrast, enrichment allows discrimination as observed by the significant increase of investigation time between the last habituation trial (OHab4) and

the presentation of the second odorant of the pair (Otest). (C) Adult-born cell (BrdU-positive cell) density is increased after implicit learning. (D) The

percentage of odor-responsive adult-born cells (expressing Zif268) is increased after implicit learning. (E) Spine density of adult-born neuron transduced

by Lenti hSyn ChR2EYFP is analyzed in the apical and basal domains. (F) Spine density in the apical domain is increased after implicit learning. (G) Spine

density in the basal domain is increased after implicit learning. (H) Representative traces of sIPSC recorded on mitral cells for Enr and Non-Enr animals

(up). sIPSC frequency is increased after implicit learning while no modification is observed for sIPSC amplitude (down). (I) Left, experimental design for

studying the connectivity of adult-born neurons on M/T cells. Middle, example of the effect of optogenic stimulation of adult-born neurons on M/T cells

IPSC (top connected M/T cell, bottom unconnected M/T cell, superposition of 10 traces). Right, percentage of M/T cells exhibiting a significant

response to light stimulation of adult-born neurons. (J) The percentage of M/T cells (Tbx21positive) expressing Zif268 is decreased after implicit

learning. *:p<0.05; #p=0.07.

DOI: https://doi.org/10.7554/eLife.34976.003

The following source data and figure supplements are available for figure 1:

Source data 1. Raw Data Figure 1

DOI: https://doi.org/10.7554/eLife.34976.009

Figure supplement 1. Adult-born neuron survival and responsiveness to learned odorant.

DOI: https://doi.org/10.7554/eLife.34976.004

Figure supplement 2. Long-term delay after implicit learning.

DOI: https://doi.org/10.7554/eLife.34976.005

Figure supplement 3. Effect of light stimulation of adult-born neuron on mitral cell activity.

Figure 1 continued on next page
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recorded on M/T cells showed a trend toward increase after implicit learning (p=0.06, Kruskal-Wallis

Anova followed by FDR-corrected permutation test, Enriched, n = 50 and Non-Enriched, n = 48) (for

detailed statistics see Table 1), (Figure 1H and Figure 1—source data 1) with no change in ampli-

tude (Table 1, Enriched n = 48 and Non-Enriched, n = 46). To isolate the specific role of adult-born

granule cells in the inhibition of M/T cells among the global granule cell population, we then opto-

genically activated channelrhodopsin expressing adult-born granule cells in OB slices (adult-born

granule cells were transduced with Lenti-hSyn-ChR2EYFP 25- 30 days before testing) and recorded

the evoked inhibitory post-synaptic current (eIPSC) in M/T cells (Enriched n = 27 cells from three

mice; Non-Enriched n = 25 cells from three mice) (Figure 1I, left). Data analysis indicated an overall

effect of light stimulation of granule cells on M/T cells eIPSC frequency (light effect, parametric

Anova, F(1,198)=4.37, p=0.037, paired t-tests for light versus pre light: p=0.0025 in the enriched

group, p=0.2 in the non-enriched group) (Figure 1—figure supplement 3A). Besides, eIPSC fre-

quency was higher in enriched compared to Non-enriched animals (learning effect, parametric

ANOVA, F(1,198)=4.47, p=0.03, t-test for difference between Enriched and non-enriched under light

stimulation, p=0.04) (Figure 1—figure supplement 3A). No change in eIPSC amplitude was

observed (parametric ANOVA, light effect F(1,160)=2.66, p=0.1, learning effect F(1,160)=1.72,

p=0.19) (Figure 1—figure supplement 3B). To identify the individual M/T cells actually responding

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.34976.006

Figure supplement 4. The biophysical properties of adult-born neurons.

DOI: https://doi.org/10.7554/eLife.34976.007

Figure supplement 5. Example of Tbx21/Zif268-positive mitral cell.

DOI: https://doi.org/10.7554/eLife.34976.008

Table 1. Summary of statistical comparisons described in the text.

For normal data, Anova followed by parametric Bonferroni post hoc test were used. For data that did not reach normality, Kruskall-

Wallis Anova followed by FDR-corrected permutation tests were used. *p<0.05; **p<0.001; ***p<0.0001 and =: not different

Cond vs Enr PC vs Non-Enr PC vs Enr PC vs Cond Cond vs Non-Enr Enr vs Non-Enr

BrdU
Anova F(3,18)=6.63,
p=0.003

Cond = Enr

(p=0.99)

PC = Non-Enr

(p=0.99)

PC < Enr
*
(p=0.024)

PC < Cond
*
(p=0.025)

Cond > Non-Enr
*
(p=0.048)

Enr > Non-Enr
*
(p=0.042)

BrdU/Zif268
Anova
F(3,23)=9.25, p=0.0003

Cond = Enr

(p=0.99)

PC = Non-Enr

(p=0.99)

PC < Enr
*
(p=0.006)

PC < Cond
*
(p=0.005)

Cond > Non-Enr
*
(p=0.0073)

Enr > Non-Enr
*
(p=0.0078)

Tbx21/Zif268
Anova
F(3,15)=7.33, p=0.002

Cond > Enr
*
(p=0.015)

PC = Non-Enr

(p=0.053)

PC = Enr

(p=0.99)

PC < Cond
*
(p=0.044)

Cond = Non-Enr

(p=0.99)

Enr < Non-Enr
*
(p=0.02)

Spine density Apical
Kruskal-Wallis
H(3, N = 240)=44.55
p<0.0001

Cond < Enr
***
(p=0.0003)

PC = Non-Enr

(p=0.59)

PC < Enr
*
(p=0.001)

PC > Cond
*
(p=0.00255)

Cond < Non-Enr
*
(p=0.0132)

Enr > Non-Enr
**
(p=0.0003)

Spine density Basal
Kruskal-Wallis
H(3, N = 187)=20.15
p<0.0001

Cond = Enr
(p=0.36)

PC > Non-Enr **
(p=0.0006)

PC = Enr

(p=0.36)

PC = Cond

(p=0.09)

Cond > Non-Enr
*
(p=0.042)

Enr > Non-Enr
*
(p=0.0015)

sIPSCs
(Frequency)
Kruskal-Wallis
H(3, N = 177)=10.68
p=0.013

Cond = Enr

(p=0.55)

PC > Non-Enr
**
(p=0.0006)

PC = Enr

(p=0.13)

PC > Cond

(p=0.06)

Cond = Non-Enr

(p=0.13)

Enr > Non-Enr

(p=0.06)

sIPSCs
(Amplitude)
Kruskal-Wallis
H(3, N = 175)=21.30
p<0.0001

Cond < Enr
*
(p=0.0048)

PC = Non-Enr

(p=0.48)

PC = Enr

(p=0.7)

PC > Cond
*
(p=0.015)

Cond < Non-Enr
*
(p=0.018)

Enr = Non-Enr

(p=0.48)

DOI: https://doi.org/10.7554/eLife.34976.002
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to adult-born granule cell stimulation, we performed a statistical comparison of the pre- and post-

light IPSC occurrence across repeated stimulations (see Materials and methods). Results indicated

that the percentage of light-responding M/T cells is marginally increased in enriched compared to

non-enriched animals (unilateral Chi squared, p=0.07; Figure 1I right and Figure 1—source data 1).

Additionally, we showed that the biophysical properties of adult-born granule cells (resting potential,

membrane resistance, membrane capacitance and input/output curves) were unaffected by learning

(Figure 1—figure supplement 4). Thus, the results from these experiments suggest that increased

structural and/or functional connectivity is responsible for increased granule-to-M/T cell inhibition in

enriched versus non-enriched groups, rather than any modification of the intrinsic properties of

adult-born granule cells. To assess the functional outcome of this increased inhibition, we investi-

gated in vivo M/T cell responsiveness to the learned odorant (+lim). Enriched and non-enriched ani-

mals were exposed to +lim 7 days after learning, and the percentage of odor-activated M/T cells

(co-expressing the specific M/T cell marker Tbx1 (Imamura et al., 2011; Mitsui et al., 2011) and

immediate early gene Zif268) was quantified (Figure 1—figure supplement 5). We found that

implicit learning decreased the number of odor-activated M/T cells compared to non-enriched con-

trols (587 ± 29 M/T cells counted per animal; Enr, n = 5 and Non-Enr, n = 4; Bonferroni-corrected

test p=0.02; Table 1, Figure 1J and Figure 1—source data 1), resulting in a sparser representation

of learned odorants at the OB output. This finding is highly consistent with the increased inhibition

of M/T cells observed in slice recordings. Altogether, in the context of implicit learning, adult-born

granule cells provide more inhibitory contacts on M/T cells, leading to increased sparseness of M/T

odor responses. As a consequence, these findings strongly support the hypothesis that a decreased

overlap between learned odor representations mediates the observed increase in odor discrimina-

tion (Chu et al., 2016).

Explicit learning increased adult-born granule cell survival but reduced
spine density
Theoretically, discrimination could also be achieved through increasing the resolution of the odor

representations (Aimone et al., 2011), in other words through increasing the response to the

learned odorant (Doucette and Restrepo, 2008). Indeed, adding information to the representation

of the stimulus could ultimately help discrimination, and we hypothesized that such a mechanism

could be involved in associative learning where the odor is reinforced by a positive reward. We thus

trained mice on a two odorized hole-board apparatus to associate +lim with a food reward while -

lim was not reinforced (Conditioned group, Cond) (Mandairon et al., 2006a). Control animals were

exposed to the same odorants randomly associated with the reward (pseudo-conditioned group)

(Mandairon et al., 2006a; Sultan et al., 2010) (Figure 2A). Training took place over 5 days (four tri-

als/day) and was evidenced by an increase of correct choices in the conditioned (n = 20; Friedman

test day effect p=0.03) but not in the pseudo-conditioned group (PC) (n = 20; Friedman test day

effect p=0.57; Figure 2B and Figure 2—source data 1). Using the habituation/cross habituation

test, we confirmed that conditioned but not pseudo-conditioned animals discriminated +lim from –

lim as they did with implicit learning (Figure 2—figure supplement 1). As with implicit learning,

explicit learning induced an increase in the survival of adult-born granule cells (n = 6/group; Bonfer-

roni-corrected test p=0.025; Table 1; Figure 2C and Figure 2—source data 1) as well as an increase

in their responsiveness to the learned odor (+lim), as assessed by BrdU/Zif268 co-expression (n = 7/

group; Bonferroni-corrected test p=0.005; Figure 2D and Figure 2—source data 1). However, in

contrast to implicit learning, analysis of the fine morphology of adult-born neuron dendrites showed

a decrease in spine density on the apical dendrites after conditioning compared to pseudo-condi-

tioning (Cond 106 segments, four mice and PC 56 segments, five mice; non-parametric corrected

test p=0.0025; Figure 2E and Figure 2—source data 1), while no such change was observed in the

basal domain (Cond: 37 segments, four mice and PC: 43 segments, four mice; non-parametric cor-

rected test p=0.09; Figure 2F and Figure 2—source data 1). 42 days after conditioning, when dis-

crimination had returned to control levels (Figure 2—figure supplement 2A), the spine density had

also returned to control values (Figure 2—figure supplement 2B). This indicated that the morpho-

logical changes of adult-born neurons paralleled discrimination performance.
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Figure 2. Behavioral and neural effects of explicit learning. (A) Experimental design for explicit learning (S: Sacrifice, Test:Habituation/Cross Habituation

Task). (B) From D1 to D5 of training, the percentage of correct choices increased in conditioned (Cond) but not pseudo-conditioned animals (PC)

indicating that learning occurred only in the conditioned animals (C) Adult-born cell (BrdU-positive cell) density is increased after explicit learning (D)

The percentage of odor-responsive adult-born cells (expressing Zif268) is increased after explicit learning. (E). Spine density of the apical domain

decreased after explicit learning. (F) Spine density of the basal domain is unchanged after explicit learning. (G) Representative traces of sIPSC for Cond

and PC (up). sIPSC frequency and amplitude are decreased after explicit learning (down). (H) Percentage of mitral cells exhibiting a significant response

to light stimulation of adult-born granule cells. (I) The percentage of mitral cells (Tbx21) expressing Zif268 is higher in Cond versus PC animals. *p<0.05;

the data are expressed as mean values ± SEM.

DOI: https://doi.org/10.7554/eLife.34976.010

The following source data and figure supplements are available for figure 2:

Source data 1. Raw Data Figure 2.

DOI: https://doi.org/10.7554/eLife.34976.015

Figure supplement 1. Improvement in discrimination after explicit learning.

DOI: https://doi.org/10.7554/eLife.34976.011

Figure supplement 2. Long-term delay after explicit learning A.

DOI: https://doi.org/10.7554/eLife.34976.012

Figure supplement 3. Effect of light stimulation of adult-born neuron on mitral cell activity.

DOI: https://doi.org/10.7554/eLife.34976.013

Figure supplement 4. The biophysical properties of adult-born neurons.

DOI: https://doi.org/10.7554/eLife.34976.014
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Inhibition on mitral cells is decreased after explicit learning
We further analyzed the impact of adult-born neurons on M/T cell activity by recording sIPSCs from

M/T cells in OB slices. sIPSCs amplitude was decreased (p=0.015, Kruskal-Wallis Anova followed by

FDR-corrected permutation test; Table 1) while their frequency was marginally affected (p=0.06,

Kruskal-Wallis Anova followed by FDR-corrected permutation test; Table 1) (Figure 2G and Fig-

ure 2—source data 1) suggesting a global reduction of M/T cell inhibition in the OB in conditioned

versus pseudo-conditioned animals. To analyze specifically the impact of adult-born granule cells on

M/T cells, we recorded IPSCs on M/T cells in response to light stimulation of channelrhodopsin-

expressing adult-born granule cells. The light stimulation of adult-born granule cells induced an

increase in M/T cell eIPSC frequency in both conditioned and pseudo-conditioned animals compared

to pre-light (light effect, parametric Anova, F(1,198)=4.37, p=0.037, paired t-tests for light versus

pre light, p=0.015 in the pseudo-conditioned group, n = 46 cells from five mice; p=0.001 in the con-

ditioned group, n = 34 cells from three mice) (Figure 2—figure supplement 3A) with no change in

amplitude (Figure 2—figure supplement 3B). Besides, eIPSC frequency was lower in conditioned

compared to pseudo-conditioned animals (learning effect, parametric Anova, F(1,198)=4.47, p=0.03,

t-test for difference between conditioned and pseudo-conditioned groups under light stimulation,

p=0.0015; Pseudo-conditioned n = 22 cells from two mice; Conditioned n = 28 cells from two mice)

(Figure 2—figure supplement 3A). Analysis of individual cell responses showed the percentage of

M/T cells responding to light stimulation of adult-born granule cells by an increased eIPSC frequency

was lower in conditioning compared to pseudo-conditioning (Unilateral Chi squared test, p=0.007),

(Figure 2H and Figure 2—source data 1). The biophysical properties of adult-born granule cells

(resting potential, membrane resistance, membrane capacitance and input/output curves) were not

affected by explicit learning (Figure 2—figure supplement 4). As a consequence, we concluded

that inhibitory inputs to M/T cells were decreased after explicit learning. The functional outcome of

this decreased inhibition was assessed using Tbx21/Zif268 co-expression in mitral cells (540 ± 20

mitral cells counted per animal; n = 5 animals/group), and showed a significant increase in mitral cell

responsiveness to the learned odor, (Bonferroni-corrected test p=0.04; Figure 2I and Figure 2—

source data 1) suggesting that in this case, odor representations at the OB output were not ren-

dered sparser by learning.

Comparison between implicit and explicit learning
Using a two-factor Anova, we found that explicit and implicit learnings similarly increased adult-born

survival (learning versus controls F(1,18)=19.72, p=0.0003), regardless of the type of learning

(implicit versus explicit F(1, 18)=0.21, p=0.64 and no interaction F(1,18)=0.006, p 0.9) (Figure 1C

and Figure 2C). The same was true for adult-born cells responsiveness to the learned odor (learning

effect F(1,23)=27.70, p<0.0001, no effect of the type of learning F(1, 23)=0.23, p=0.87, no interac-

tion F(1,23)=0.0001, p=0.98) (Figure 1D and Figure 2D). However, implicit learning resulted in

stronger inhibition on M/T cells than did explicit learning as shown by lower sIPSC amplitude in con-

ditioned versus enriched groups (p=0.0048, FDR-corrected permutation test, Table 1). In addition,

adult-born granule cells bear more spines in enriched compared to conditioned groups in their api-

cal domain which interacts with mitral cells (p=0.0003, FDR-corrected permutation test, Table 1,

Figure 1F,G; Figure 2E,F). In line with this, M/T cells displayed lower responsiveness to the learned

odorant in enriched compared to conditioned animals (p=0.015, Bonferroni post hoc test, Tbx21/

Zif268, Table 1, Figure 1J and Figure 2I).

Interestingly, when comparing the controls for each learning group (pseudo-conditioned versus

non-enriched) (Table 1), they appeared to differ. More precisely, sIPSC frequencies were higher in

the pseudo-conditioned compared to the non-enriched animals (p=0.0006, FDR-corrected permuta-

tion test). Consistent with this, the number of odor-activated M/T cells tended to be smaller in the

pseudo-conditioned than the non-enriched animals (p=0.053 Bonferroni post hoc test, Table 1).

These differences could be explained by the fact that the pseudo-conditioned animals, in contrast to

the non-enriched animals were exposed to the odorants throughout the pseudo-conditioning

procedure.

Finally, we observed that the pseudo-conditioned animals shared cellular similarities with enriched

animals (similar sIPSC frequency, percentage of odor-activated M/T cells and basal spine density)

(Table 1) despite the fact that they do not show behavioral discrimination.
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Discussion
The findings reported here reveal that enhanced odor discrimination following implicit and explicit

learning is achieved through different mechanisms. While the number of integrated adult-born gran-

ule cells was similar in both forms of learning, they differed in the synaptic integration mode of

adult-born neurons and their effect on M/T cell responses to odor. Implicit learning increased spine

density on adult-born granule cells (apical and basal dendritic domains), in agreement with previous

studies (Daroles et al., 2016; Zhang et al., 2016) and increased inhibition of mitral cells, consistent

with reduced number of mitral cells responding to the learned odorant. Increased number of spine

in the basal domain is suggestive of an enhanced connectivity between inputs from centrifugal pro-

jections and adult-born granule cells, possibly leading to more global excitation of adult-born gran-

ule cells (Moreno et al., 2012; Lepousez et al., 2014). More apical spines increase feedback

inhibition between M/T and granule cells increasing local inhibition. These data suggest that in

response to implicit learning, structural plasticity of adult-born cells mediates an increased feedback

and central inhibition on mitral cells to support perceptual discrimination of odorants. This view is

strongly supported by our previous report of enhanced paired-pulse inhibition in the OB after

implicit learning (Moreno et al., 2009), and of the loss of learning upon blockade of neurogenesis

(Moreno et al., 2009). In addition to increased spine density, the increase in the number of adult-

born cells after implicit learning is also likely contributing to the enhancement of inhibition on mitral

cells.

In contrast to the effects of implicit learning, a decrease in spine density in the apical domain of

adult-born neurons is accompanied by a decrease in sIPCS amplitude in mitral cells after explicit

learning. In addition, an overall increase rather than a decrease of mitral cells activation was

observed in response to the learned odorant compared to pseudo-conditioned animals. Reduced

synaptic contacts on the apical dendrites of adult born neurons reduce local feedback inhibition

leading to an enhanced response of M/T cells to the learned odorants.

To summarize, the effects of implicit and explicit learning on M/T odor responses are opposite:

an overall sparser response to the learned odor after implicit learning and an overall increased

response to the conditioned odor after explicit learning, while similar numbers of adult-born neurons

are present. Because new adult-born granule cells replace older ones (Imayoshi et al., 2008), replac-

ing pre-existing granule cells by new ones with fewer synaptic contacts with mitral cells (in condi-

tioned animals) would result in a global pool of granule cells delivering less local inhibition in

response to the conditioned odor. In contrast, replacing granule cells by new cells making more local

and global synaptic contacts with mitral cells (enriched animals) would result in a shift toward more

inhibition in the network. This is consistent with the experimental observations. Computational

modeling suggested that reinforced inhibition reduces the overlap between similar odor representa-

tions at the level of mitral cells (Mandairon et al., 2006b). As an alternative mechanism leading to

behavioral discrimination, decreased inhibition could lead to enhanced representations of a condi-

tioned odor only, improving the resolution of the representation of behaviorally significant stimuli

(Aimone et al., 2011). This proposed mechanism that could be at play in explicit learning is consis-

tent with the associative coding features of the OB (Doucette et al., 2011; Fletcher, 2012). While

these evidences favor a prominent role of adult born neurons in shaping mitral cell activity in learn-

ing, the role of pre-existing interneurons in mitral cell response plasticity remains to be investigated.

In conclusion, the data presented here challenge current hypotheses by showing that the same

rate of adult-born cell survival in the OB can enhance fine discrimination by either increasing or

decreasing OB output, thus revealing a new facet of the adaptability of the network provided by

adult neurogenesis.

Materials and methods

Animals
Adult male C56Bl6/J mice (Charles River, L’arbresles, France) aged 8 weeks at the beginning of the

experiments were used in this experiment. They were housed in groups of five in standard laboratory

cages with water and food ad libitum (except during the explicit learning) and were kept on a 12-hr

light/dark cycle (at constant temperature of 22˚C). All behavioral training was conducted in the after-

noon (14:00-17:00). Experiments were done following procedures in accordance with the European
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Community Council Directive of 22nd September 2010 (2010/63/UE) and the National Ethics Com-

mittee (Agreement DR2013-48 (vM)). Every effort was made to minimize suffering.

Implicit (perceptual) learning
Experimental design
After a 10-day enrichment period, the mice were tested for their ability to discriminate

between +limonene (+lim) and – limonene (- lim) using an olfactory cross-habituation test (see

below). This group was compared to a non-enriched control group. To label the adult-born cells, the

mice were injected with BrdU or GFP expressing lentivirus 8 days before the beginning of the enrich-

ment period. They were sacrificed 25 (Figures 1 and 2) or 60 (Figure 1—figure supplement

2 and Figure 2—figure supplement 2) days after these injections.

Odor enrichment and control
Odor enrichment consisted of exposure to + and - limonene (purity >97%; Sigma-Aldrich Corp., Sr.

Louis, MO, USA) for 1 hr per day over 10 consecutive days. The odors were presented simulta-

neously on two separate swabs containing 100 ml of pure odor placed in two separate tea balls

hanging from the cover of the animal’s cage. The non-enriched control mice were housed under the

same conditions except that the two tea balls were left empty.

Olfactory habituation/cross habituation test
We used a cross-habituation test to assess discrimination. Briefly, the task assesses the degree to

which mice are able to discriminate between odorants by habituating them to an odorant (OHab)

and measuring their cross-habituation to a second odorant (OTest). If the test odorant is not discrim-

inated from the habituation one, it will not elicit an increased investigation time by the mouse. We

presented each odor in a tea ball hanging on the cover of the cage containing 60 ml of the diluted

odor (1 Pa) on filter paper (Whatman #1) for 50 s. There was a 5 min pause between presentations.

Odors are renewed between each test. For each animal, each odorant of the pair was used alterna-

tively as the habituation or test odorant. The amount of time that the mice investigated the odorant

was recorded during all trials as previously described (Moreno et al., 2009, 2012). We determined

(1) if the investigation time decreased from OHab1 to OHab4 (habituation); and (2) if the investiga-

tion time during OTest was significantly higher than for OHab4 (discrimination). These behavioural

experiments were conducted blind with regard to experimental group.

Explicit (associative) learning
Experimental design
The mice learned to discriminate +lim and - lim by training them to associate +lim with a food

reward (see below). This group of mice were compared to a pseudo-conditioned control group.

After a 5-day period of conditioning, the mice were tested for their ability to discriminate

between +limonene (+lim) and – limonene (- lim) using an olfactory cross-habituation test (see

above). They were injected with BrdU or with GFP lentivirus 13 days before training and sacrificed

25 (Figure 1 and Figure 2) or 60 days after injection. During the olfactory learning experiments,

water was continuously available, but the mice were deprived of food (~20% reduction of daily con-

summation, leading to a 10% reduction in body weight) for 5 days before the shaping session.

Shaping
The mice were first trained to retrieve a reward (a small bit of sweetened cereal; Kellogg’s, Battle

Creek, MI, USA) by digging through the bedding. The mouse was put in the start area of the two

hole-board apparatus and allowed to dig for 2 min. During the first few trials, the reward was placed

on top of the bedding in one of the holes. After the mice successfully retrieved the reward several

times, it was successively buried deeper and deeper in the bedding. Shaping was considered to be

complete when a mouse could successfully retrieve a reward buried deep in the bedding.
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Conditioning
Conditioning consisted of 5 sessions (1/day) of 4 trials (2 min/trial, inter trial interval 15 min). For

each trial, the mouse was placed in the start area and had to retrieve a reward now systematically

associated with the +lim (20 ml of pure odorant). To avoid spatial learning, the rewarded dish was

randomly placed in one of the two holes; the other hole contained – lim (20 ml of pure odorant) and

no reward. In the pseudo-conditioned group, the reinforcement was randomly associated with either

the +lim or the - lim. For each trial, correct choices (first nose poke in the odorized hole) were

recorded as indicative of learning.

Lentivirus injections
The mice were anesthetized by injecting a mixture of 50 mg/kg ketamine and 7.5 mg/kg xylazine

(intraperitoneal) and then secured in a stereotactic instrument (Narishige Scientific Instruments,

Tokyo, Japan). For the optogenetic experiments, they were injected bilaterally in the subventricular

zone (AP +1 mm, ML ±1 mm, DV �2.3 mm) with a AAV5-hSyn-ChR2EYFP viral vector (150 nl per

side; Addgene 26973P). This construct was a kindly donated by the Deisseroth laboratory and pro-

duced by the Penn Vector Core facility (titer 1,3 1013 UI/ml). For the neuronal morphology experi-

ments, a Lenti-PGK-GFP (Addgene #12252; titer 2 109 UI/ml) viral vector was injected at the same

coordinates (200 nl per site). All injections were performed at a rate of 100 nl/min using a program-

mable syringe controller (KD Scientific Inc. Holliston, USA).

Histology
Tissue preparation
Mice randomly taken from the behavioral groups were placed in a clean cage for 1 hr. To investigate

immediate early gene expression in response to the learned odorant (+lim), the mice were pre-

sented with a tea ball containing 100 ml of pure odorant for 1 hr. One hour after the end of the odor

stimulation, they were deeply anesthetized (pentobarbital, 0.2 ml/30 g) and killed by intracardiac

perfusion of 50 ml of fixative (4% paraformaldehyde in phosphate buffer, pH 7.4). Their brains were

removed, postfixed, cryoprotected in sucrose (20%), frozen rapidly, and then stored at �20˚C before

sectioning (40 mm for neuronal morphology and 14 mm for BrdU analysis) with a cryostat (Reichert-

Jung, NuBlock, Germany).

Image analysis and quantification
Morphological analysis of adult-born cells was performed after GFP immunohistochemisty (chicken

GFP antibody, 1:1000, Anaspec TEBU, ref: 55423). Images were acquired on a Zeiss pseudo-confocal

system. For analysis of spine density, images were taken blind to the identity of the experimental

group with a 100x objective (lateral and z-axis resolutions were 60 and 200 nm, respectively). Den-

dritic processes and spines were then analyzed using NeuronStudio software (Mandairon et al.,

2006a; Rodriguez et al., 2008). This software allows for automated detection of three-dimensional

(3D) neuronal morphology (dendrites and spines) from confocal z-series stacks on a spatial scale.

Because spine density assessment was challenging for the automated detection in our model, we

counted them manually with the help of the 3D reconstruction. All morphology analyses were done

blind with regard to the experimental group.

Assessment of neurogenesis
5-Bromo-2-deoxyuridine (BrdU) administration
BrdU (Sigma-Aldrich) (50 mg/kg in saline, 3 times at 2 hr intervals) was injected 13 days before the

behavioral training began.

BrdU immunohistochemistry
The protocol has been previously described (Mandairon et al., 2006a). Brain sections were first

incubated in Target Retrieval Solution (Dako, Trappes, France) for 20 min at 98˚C. After cooling for

20 min, they were treated with 0.5% Triton X-100 (Sigma-Aldrich) in PBS for 30 min, then for 3 min

with pepsin (0.43 U/ml in 0.1 N HCl, Sigma-Aldrich). Endogenous peroxidases were blocked with a

solution of 3% H2O2 in 0.1 M PBS. Sections were then incubated for 90 min in 5% normal horse

serum (Vector Laboratories, Burlingame, CA, USA), in 5% BSA (Sigma-Aldrich) and 0.125% Triton
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X-100 to block nonspecific binding and were incubated overnight at 4˚C in a mouse anti-BrdU pri-

mary antibody (1:100; Millipore; ref: MAB4072). Sections were then incubated in a horse biotinylated

anti-mouse secondary antibody (1:200; Vector Laboratories) for 2 hr and processed with avidin-bio-

tin-peroxidase complex (ABC Elite Kit, Vector Laboratories) for 30 min. Finally, sections were reacted

in 0.05% 3,3-diaminobenzidine-tetra-hydrochloride (Sigma-Aldrich), 0.03% NiCl2, and 0.03% H2O2 in

Tris-HCl buffer (0.05 M, pH 7.6), dehydrated in graded ethanols, and cover-slipped in DPX.

BrdU-positive cell quantification
All cell counts were conducted blind with regard to experimental group. Data were collected with

the help of mapping software (Mercator Pro; Explora Nova, La Rochelle, France), coupled to a Zeiss

microscope (Carl Zeiss, Oberkochen, Germany). BrdU-positive cells were counted in the granule cell

layer of the OB on six sections distributed along the olfactory bulb (14 mm thick, 70 mm intervals).

The number of positive cells was divided by the surface of the region of interest to yield the total

densities of labeled cells (labeled profiles/mm2). All BrdU-positive cell counts were done blind with

regard to the experimental group.

Double-labeling analysis
To determine the phenotype of BrdU-positive cells of the OB, BrdU/neuronal nuclei (NeuN) double-

labeling was performed using a rat anti-BrdU (1:100; Abcys ref: Abc117-7513) and a mouse anti-

NeuN (1:500, Millipore MAB337). For functional involvement of newborn neurons, Zif268/BrdU dou-

ble-labeling was performed using a rabbit anti-Zif268 antibody (1:1000, Santa Cruz Biotechnology,

Egr-1 SC:189). The appropriate secondary antibodies, coupled to Alexa 633 (Molecular Probes,

Eugene, OR, USA) to reveal BrdU and Alexa 488 (Molecular Probes) to reveal other markers, were

used. BrdU-positive cells were examined for co-labeling with NeuN and Zif268 (80–100 cells/animal,

n = 5 animals/group). The double-labeled cells were observed and analyzed by pseudo-confocal

scanning microscopy using a Zeiss microscope equipped with an Apotome. All double-labeled cell

counts were done blind with regard to the experimental group.

Zif268-Tbx21 double labeling
The activation of mitral cell in response to the learned odorant (+lim) was assessed using co-labeling

with Zif268 and Tbx21 (1:20,000; provided by Y. Yoshihara, RIKEN). The appropriate secondary anti-

bodies (Molecular Probes, Eugene, OR, USA) were used. All Zif268-Tbx21 cell counts were done

blind with regard to the experimental group.

Brain slice electrophysiological experiments
For brain slice experiments, 20 additional mice were injected with lentivirus expressing GFP as

described previously and submitted to implicit or explicit learning. Electrophysiological recording

and data analysis were done blind with respect to experimental group.

The animals were anesthetized with intraperitoneal injection of 50 ml of ketamine (50 mg/ml)

between 25 and 30 days after the lentivirus injections and killed by decapitation. The head was

quickly immersed in ice-cold (2–4˚C) carbogenized artificial cerebrospinal fluid (cACSF; composition:

125 mM NaCl, 4 mM KCl, 25 mM NaHCO3, 0.5 mM CaCl2, 1.25 mM NaH2PO4, 7 mM MgCl2 and 5.5

mM glucose; pH = 7.4) oxygenated with 95% O2/5% CO2. The osmolarity was adjusted to 320

mOsm with sucrose. OBs were removed and cut into horizontal slices (400 mm thick) using a Leica

VT1000s vibratome (Leica Biosystems, France). These were then incubated in a Gibb’s chamber at

30 ± 1˚C using an ACSF solution with a composition similar to the cACSF, except that the CaCl2 and

MgCl2 concentrations were 2 mM and 1 mM, respectively. Slices were transferred to a recording

chamber mounted on an upright microscope (Axioskop FS, Zeiss) and were continuously perfused

with oxygenated ACSF (4 ml/min) at 30 ± 1˚C. Neurons were visualized using a 40X objective (Zeiss

Plan-APOCHROMAT) and a Hamamatsu ‘Orca Flash 4.0’ camera. Measurements were performed

with an RK 400 amplifier (BioLogic, France). The data were acquired with a sampling frequency of 25

kHz on a PC-Pentium D computer using a 12-bit A/D-D/A converter (Digidata 1440A, Axon Instru-

ments) and PClamp10 software (Axon Instruments). The junction potential was corrected offline.

Patch-clamp configurations were achieved with borosilicate pipettes (o.d.: 1.5 mm; i.d.: 1.17 mm;

Clark Electromedical Instruments). Membrane properties and firing input/output curves of adult
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born neurons were recorded with the following intracellular solution: in mM (131 K-gluconate; 10

HEPES; 1 EGTA; 4 ATP-Na2+; 0.3 GTP-Na3; 1 MgCl2; 10 phosphocreatine). To record the spontane-

ous IPSCs (sIPSC) on mitral cells and those evoked by optogenetic stimulation of adult-born granule

cells (see below) the recording pipette was filled with the following intracellular solution (in mM; 135

caesium gluconate, 10 KCl, 10 Hepes, 1 EGTA, 0.1 CaCl2, 2 MgATP and 0.4 GTP-Na3) adjusted with

1 M CsOH to pH 7.3. The ECl was �85 mV and both sIPSC and light evoked IPSCs were recorded as

outward currents at holding potential of 0 mV.

Optogenetic experiment
EYFP expression in adult-born granule cells was detected with excitation (470/40 nm) and emission

(dichroic mirror: 495; 525/50 nm) band pass filters (Zeiss filter set 38 HE) 25–30 days after their birth.

Optogenetic stimulation of adult-born cells was produced by 10 ms illumination by a blue LED (Dual

Port OptoLED CAIRN, UK) with the excitation spectrum centered at 470 nm at an inter-stimulus

interval of 10 s. For each recorded mitral cell the connectivity with adult-born granule cells was eval-

uated by statistically comparing the occurrence of IPSCs in the 50 ms preceding the light stimulation

with the IPSC occurrence in the first 50 ms following the beginning of light stimulation, across

repeated light stimulations (mean = 16 stimulations per cell, range 8–52). Pre-light and post-light

IPSC frequency was calculated as follows: the total number of IPSC in the 50 ms preceding and fol-

lowing the beginning of light stimulation was divided by the number of repetitions and multiplied by

0.05 s.

Statistics
All analyses were performed using Statistics. A Kolmogorov-Smirnov test was used to assess normal-

ity of measured parameters. For all parametric tests, homogeneity of variance was tested using Lev-

ene’s test.

For each habituation/cross habituation task, a non-parametric Friedman Anova was performed to

determine whether mice exhibited habituation, and a paired Wilcoxon test (comparing Ohab4 and

Otest) to test the discrimination abilities. Discrimination was indicated by a significant increase in

investigation time during the test trial. For conditioning task, a non-parametric Friedman Anova was

used to assess the effect of training days on the percentage of correct choice.

Non-parametric Kruskal-Wallis Anova including the four experimental groups (Enr, Non-Enr, PC

and Cond) followed by FDR-corrected non-parametric permutation tests based on 1000000 artificial

groups, were used for sets of data that did not reach normality (Table 1).

For normally distributed data sets, parametric Anovas followed by Bonferroni-corrected post hoc

tests were used (Table 1).

In addition, for eIPSC data, in order to take into account the factors ‘light’ (pre and post light),

‘group of learning’ (implicit versus explicit) and ‘learning’ (Cond or Enr versus PC or Non-Enr), we

normalized the data (ln(x + 1)) and performed a 3-factor Anova followed by an unilateral paired

t-test for comparison between light and no light condition or an unpaired t-test for the comparison

between learning and control condition. In addition, individual cell analysis of the effect of light was

performed by comparing the occurrence of pre and post light eIPSC across repetitions of light stim-

ulation by unilateral Chi squared tests.

No statistical methods were used to predetermine sample sizes, but our sample sizes were similar

to those reported in previous publications. Data collection and animal assignation to the various

experimental groups were randomized.
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