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Abstract

Background: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by
learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following
learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by
investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis.

Methodology/Principal Findings: Initially, we used a behavioral ecological approach using adult mice to assess the impact
of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a
spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and
allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the
olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning
and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained
unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on
consolidation processes taking place in the olfactory bulb.

Conclusion/Significance: We can thus propose a model in which consolidation processes in the olfactory bulb determine
both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during
olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born
neurons in supporting olfactory memory.
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Introduction

In mammals, olfactory information is memorized through

activation of a combination of cerebral structures, including the

olfactory bulb (OB), piriform cortex and, depending on the

required task, the hippocampus and amygdala [1–6]. Among these

brain structures, the OB is known to be the locus of a high level of

plasticity linked to memory [7–10]. The responses of mitral cells,

the relay cells of the OB are modulated by associative learning

[11–13] as well as by prolonged passive exposure to odors [14].

The oscillatory behavior of the OB is also modulated by learning

[15] as is the immediate early gene responsiveness of bulbar

interneurons [16–19]. The main effectors of plasticity of the bulbar

network are thought to be the inhibitory granule cells which

regulate output of the olfactory message through reciprocal

synapses with the mitral cells [20]. Taken together, these data

suggest that the OB has a central role in processing the olfactory

signal in relation to its context and significance and so to

memorizing it. This is further supported by the fact that

inactivation of the OB following associative learning impairs

memory retention, suggesting that the OB is involved in

consolidation of the memory trace [21]. The cellular mechanisms

in the OB involved in memory formation are largely unknown. An

NMDA and calcium-dependent synaptic plasticity of the mitral

cell response has been reported [22]. Recently, long-term

potentiation at the mitral to granule cell synapse has been

documented and shown to be supported by adult-born granule

cells of the OB [23]. Indeed, the OB contains newborn inhibitory

interneurons originating from progenitor cells located in the walls

of the lateral ventricles and migrating to the OB where they

differentiate mainly into granule cells and to a lesser extent into

periglomerular interneurons [24]. The number of newborn

granule cells is modulated by olfactory learning through

enhancement of their survival rate in the OB [25–28]. Further-

more, recent studies have reported long-term memory impairment

following reduction of neurogenesis [28,29], suggesting that adult-

born neurons are involved in long-term olfactory memory. This

finding is controversial since two other recent studies in which

neurogenesis was reduced could not provide any evidence of long-

term olfactory memory impairment [30,31].
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Available data thus suggest that through their peculiar

physiological properties and increased survival after learning

adult-born neurons could play a role in odor long-term

memorization. Because the transition from short to long-term

memory relies on consolidation processes [32] and because bulbar

adult-born neurons may support olfactory long-term memory

[28,29], we propose to investigate the role of consolidation of

associative olfactory learning on adult-born neuron survival and

long-term memory. To address this issue, we first investigated how

a massed learning program occurring over a few hours and

allowing no inter-trial consolidation could differentially affect the

rate of adult-born neuron survival and memory when compared to

a spaced learning program allowing consolidation from one day to

the next. Then, to better understand the role of consolidation, we

blocked it in the OB using a local infusion of the protein synthesis

blocker anisomycin during the spaced training paradigm.

Results

Only spaced olfactory learning increased adult-born
neuron survival and allowed long-term memory

In order to assess the effect of consolidation on adult-born

neuron survival and long-term retention, we compared two

associative learning paradigms in which the inter-trial interval

(ITI) was varied in order to facilitate or hamper the consolidation

process. We submitted two groups of young adult mice to an

associative olfactory learning program using +limonene reinforced

by a food reward (see Methods). The first group underwent spaced

learning consisting in sessions of 4 trials per day (ITI = 15 min)

over five days (total of 20 trials) (Figure 1Ai). A second group

underwent massed learning consisting in trials (ITI = 15 min)

performed over the same day (Figure 1Aii). Both groups were

assessed for long-term memory of the task by a retention test 5

days post-training. Control groups were pseudo-conditioned

(reward randomly associated with the odorant, see Methods) for

each learning paradigm. In the spaced group, conditioned animals

performed differently from pseudo-conditioned animals (group

effect; F(1,17) = 33.9, p,0.001) and learning was effective as

shown by the significant decrease of latency to find the reward (day

effect, F(4,40) = 21.96, p,0.001) (Figure 1Bi) observed in the

conditioned animals. In contrast, in the pseudo-conditioned

animals, latency remained stable throughout the training period

indicative of no learning (day effect, F(4,45) = 1.929, p.0.05)

(Figure 1Bi).

In the massed group, latency was calculated for blocks of four

trials for easier comparison with the spaced training (blocks 1 to 5

on Figure 1Aii). After 20 trials, the animals showed a reduction in

latency (block effect, F(4,45) = 10.62, p,0.01) (Figure 1Bii) and

performed differently from the pseudo-conditioned animals (group

effect, F(1,23) = 5.57, p,0.05) in which latency did not decrease

with blocks (block effect, F(6,98) = 1.94, p.0.05). However,

latency was higher than in the spaced group (p = 0.006 for

difference between block 5 in the massed group and day 5 in the

spaced group), indicating a difference in performance between the

groups after 20 trials (Figure 1B). The conditioned animals in the

massed group had not learnt the task as well as had the spaced

group.

In an attempt to obtain the same level of performance in the

massed group as in the spaced group, the mice in this massed

group performed a further 10 trials (represented as two blocks of

five trials, blocks 6 and 7 on Figures 1Aii and Bii). After a total of

30 trials, their latency to find the reward was similar to that

observed in the spaced group after only 20 trials (p.0.05 for

difference between block 7 in the massed group and day 5 in the

spaced group) (Figure 1Bii). Using the success rate as another

index of learning, we also found that both spaced and massed

conditioned groups performed differently from their control

groups (group effect; pseudo conditioned versus conditioned

groups; spaced group F(1,17) = 24.49, p,0.001; massed group

F(1,23) = 7.0, p,0.05), learned the task (day effect; F(4,40) = 7.5,

p,0.001 for spaced conditioned group; block effect; F(6,63) = 3.6,

p,0.01 for massed conditioned group) and reached similar levels

of performance (spaced conditioned versus massed conditioned

group at the end of training: bilateral t-test, p.0.05).

Taken together, these results indicate that at the end of the

complete training period, the mice in both conditioned groups had

learnt the association between odor and reward and, even if the

massed group needed more trials, it was able to attain similar

performance levels at the end of training as the spaced group.

Subsequently, long-term retention of learning was assessed 5

days (D+5) after the training period for both the spaced and

massed groups (Figure 1Ai, Aii, Bi and Bii). The spaced-trained

animals clearly remembered the odor-reward association; their

mean latency values were lower than the pre-training levels

(p,0.001) (Figure 1Bi), and they performed better than the

pseudo-conditioned group (p,0.001). In contrast, we found that

the massed-trained mice did not remember the odor-reward

association 5 days after conditioning; the mean latency values

returned to pre-training levels (p.0.05) and were similar to those

of the pseudo-conditioned group (p.0.05) (Figure 1Bii). In both

pseudo-conditioned groups which did not learn the task, latency

on D+5 was similar to that of pre-training level (p.0.05 in massed

and spaced pseudo-conditioned groups). The same results were

obtained using the success rate as an index of performance. In

conclusion, spaced-trained animals remembered the association 5

days after the end of acquisition whereas massed-trained animals

did not. Since performance levels at the end of training were

similar in both groups, this finding indicates that consolidation of

the acquired memory trace during the 24-hour interval separating

the training sessions in the spaced paradigm was necessary for

long-term retention of the task.

We then looked at the effect of these two different learning

paradigms on the rate of neurogenesis in the OB, known to be

affected by learning [26,28]. Due to the Bromodeoxyurine (BrdU)

injection protocol, changes in the rate of neurogenesis will reflect

modulation of the adult-born cell survival. The density of newborn

cells (Figure 1Ci) was then assessed in the granule cell layer of both

groups (see Methods). Following spaced conditioning, the density

of newborn cells was increased compared to that of the pseudo-

conditioned animals (p,0.05) (Figure 1Cii). Interestingly, the

massed conditioning did not modulate neurogenesis; the level of

newborn cells was similar in the conditioned and pseudo-

conditioned animals (p.0.05) (Figure 1Ciii). The difference in

BrdU-positive cell density in the massed versus spaced groups is

due to the difference in the number of BrdU injections (see

Methods). The percentage of BrdU-positive cells expressing the

neuronal marker NeuN (<85%) was similar in all groups

(Figure 2A, Bi). These data indicate that the 24-hour time interval

was necessary to allow a learning-induced increase in neurogenesis

and thus that newborn neuron survival may be related to memory

consolidation processes.

Protein synthesis-dependent mechanisms occur in the
OB and are required for increased survival of newborn
cells and long-term olfactory memory

Because the OB network is known to be modulated by learning

and involved in post-learning mechanisms, we further tested the

dual hypothesis that consolidation may occur in the OB and so

Consolidation and Neurogenesis
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Figure 1. Only spaced (but not massed) learning allowed long-term retention of an associative olfactory task and increased
neurogenesis. A. Experimental design. For the spaced conditioning (Ai) BrdU was injected 14 days prior to training which occurred over 5 days (4 trials
per day). For the massed conditioning (Aii) BrdU was injected from day 17 to 14 prior to training which occurred during a single day (30 successive trials).
In both the spaced and massed training, the mice had to learn to use an olfactory cue to find their reward. 5 days post training, retention of the task was
assessed during 4 trials performed under the same conditions as during the learning phase. B. Behavioral performance was assessed by measuring the
latency to find the reward in groups of conditioned (C) and pseudo-conditioned animals (PC) where the odor was pseudo-randomly associated with the
reward. In the spaced training paradigm, latency decreased in the conditioned but not the pseudo-conditioned mice indicating that the conditioned
animals had learned the task. 5 days post-training, the conditioned mice remembered the task (C versus PC, bilateral t-test, p,0.001) (Bi). In the massed
training paradigm, the performance of the conditioned animals decreased from block 1 to block 7 (4 trials per block for B1 to B5 and 5 trials per block for
B6 and B7) and differed from that of pseudo-conditioned animals. Massed conditioned animals did not remember the task 5 days post training (Bii).
C. Adult-born cell counts. The density of BrdU-positive cells (Ci) in the granule cell layer of the OB was increased in the conditioned animals of the spaced
group (Cii) but not the massed trained animals (Ciii) compared to their respective pseudo-conditioned groups. *:p,0.05; ***:p,0.001; ns: non-
significant (p.0.05).
doi:10.1371/journal.pone.0012118.g001
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support the long-term retention and that consolidation is required

for the neurogenic effect of learning. To do this we used intra

bulbar anisomycin to block consolidation [33,34] in the OB and

looked first at memory performance and then at the level of

neurogenesis.

Animals were trained using the spaced paradigm, as for the first

experiment. Immediately after the first training session, the mice

were divided into two groups; one was infused in the OB with

anisomycin (2 mL per OB, 100 mg/mL) and the other with saline.

Intra-bulbar infusions were performed 10 min after the end of

each training session (Figure 3A). Performances in the anisomycin-

and saline-treated groups were different (group effect,

F(1,17) = 4.592, p,0.05). We found that the behavioral task was

rapidly acquired in the saline-injected animals as evidenced by the

decrease in latency with time (day effect, F(4,45) = 12.842,

p,0.001) (Figure 3B) and the increase in their success rate (day

effect, F(4,45) = 11.69, p,0.001). However in the anisomycin-

infused animals, no change in latency (day effect, F(4,40) = 0.532,

p.0.05) (Figure 3B) or in success rate (day effect, F(4,40) = 2.38,

p.0.05) was observed indicating that the protein synthesis blocker

altered learning of the associative olfactory task.

To analyze the learning process in anisomycin versus saline-treated

mice in more detail we looked at the evolution of latency across trials

during one conditioning session (4 successive trials per day of training;

Figure 3C). In the saline-infused mice, latency on the first trial of each

session decreased each day (day effect for the first trial of each session,

F(4,45) = 12.262, p,0.0001) whereas in the anisomycin-treated mice

the latency of the first trial each day was identical to the pre-training

level (day effect for the first trial of each session, F(4,40) = 0.071,

p.0.05) showing that they forgot the task from one day to the next.

Finally, as in the first experiment, the saline-infused animals still

remembered the task 5 days later as shown by latency values that

remained lower than the pre-training levels (p,0.001), while the

latency values of anisomycin-treated mice stayed at the same level as

during training (p.0.05) (Figure 3C).

Importantly, daily anisomycin injections did not affect basic

olfactory sensory and mnesic processes since the animals showed

within-session improvements in performance, indicating that their

Figure 2. Neuronal differentiation in conditioned (C), pseudo-conditioned (PC) and naive animals. A. Representative BrdU/NeuN
double-labeled cell with orthogonal views. B. No difference in percentage of double-labeled cells was found between spaced and massed trained
animals (group effect, F(3,8) = 0.231, p = 0.87) (Bi), nor between saline and anisomycin injected animals (group effect, F(3,5) = 0.512, p = 0.69) (Bii).
doi:10.1371/journal.pone.0012118.g002

Consolidation and Neurogenesis
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Figure 3. Anisomycin infusion in the olfactory bulb during the spaced learning blocked improvements in performance and increase
in neurogenesis. A. Experimental design. BrdU was injected 14 days before training. Animals underwent spaced olfactory associative learning and
were infused after each training session with either anisomycin or saline. Naive untrained animals were similarly infused with anisomycin or saline. A
retention test was performed 5 days post-training. B. Behavioral performance. Conditioned saline-infused (saline C) animals learned the task as shown
by the decrease in latency and remembered it after 5 days. In contrast, conditioned anisomycin-infused (aniso C) animals did not show any change in
latency. C. Trial by trial analysis of the learning curve further showed that anisomycin-infused animals returned to pre-training performance between
each training session in contrast to saline-infused animals. However, they showed within-session learning. Black arrows symbolize post-training
bulbar infusions. D. Adult-born cell counts. Conditioning increased BrdU-positive cell density in saline-infused animals. The infusion of anisomycin
prevented this effect without affecting the basal rate of neurogenesis. *: p,0.05; **: p,0.01; ns: non-significant (p.0.05).
doi:10.1371/journal.pone.0012118.g003

Consolidation and Neurogenesis
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ability to learn the task across successive trials was intact (within-

session trial effect on Day 2 to Day 5, F(3,128) = 5.959, p = 0.001,

Figure 3C). Furthermore, differences in learning observed between

anisomycin- and saline-treated mice could not be attributed to

differences in locomotor’s activity which was recorded on Day 5 (see

Materials and Methods) and showed no difference between groups

(p.0.05) (Figure 4A). Moreover, the effect of treatment on olfactory

detection was assessed on Day 5 in naive animals treated with saline

or anisomycin. The proportion of time spent investigating an

odorized versus a non-odorized hole on the board was similar in

both groups (one sample t-test for difference from 50%; saline naive:

p,0.05, anisomycin naive p,0.05) (Figure 4Bi) showing no

impairment in odor detection in the anisomycin-treated mice.

The total time spent investigating the holes was also similar in both

groups (p.0.05) (Figure 4Bii) indicating that the anisomycin

infusion did not alter exploratory behavior.

In summary, local bulbar anisomycin treatment prevented

consolidation of olfactory memory from one day to the next but

did not alter either basic odor processing or within-session

learning. These results demonstrate that the OB is central for

consolidation processing of an associative olfactory memory trace.

The density of newborn cells was then assessed in the granule

cell layer of anisomycin and saline-infused animals. As expected, in

the saline-infused animals, olfactory conditioning increased the

density of adult-born cells compared to that in non-conditioned

animals (p.0.05) (Figure 3D). However, animals daily infused

with anisomycin were not able to learn the task and presented a

level of neurogenesis lower than did the saline-infused conditioned

animals (p,0.05) (Figure 3D).

It is important to note that the density of newborn cells was similar

between the naive (non-conditioned) animals infused with either

saline or anisomycin (Figure 3D), indicating that anisomycin by itself

was not altering the survival of newborn neurons in the OB. This

finding indicated that anisomycin alone, in the absence of memory

consolidation demands did not affect adult-born neuron survival. The

percentage of BrdU-positive cells which expressed the neuronal

marker NeuN (<85%) was similar in all groups (Figure 2A, Bii).

Taken together, the results show that consolidation in the OB is

required to increase learning-induced neurogenesis and long-term

retention of a task.

Discussion

The present results show that neurogenesis was increased in the

OB of the group which underwent the spaced training, when there

was sufficient time for consolidation to occur. The consolidation

occurring during the massed training was not sufficient to allow

increased survival of adult-born neurons. Two approaches led us

to this conclusion. First, behavioral manipulation of the ITI

showed that when more time was allowed for consolidation

(spaced learning) then better long-term retention of the task was

observed together with an increased survival rate of adult-born

neurons in the OB. These two effects were not observed in the

massed learning protocol. Consistent with performances observed

in spatial learning during spaced or massed training [35], we found

that less trials were required for learning acquisition during a

spaced versus a massed paradigm. Secondly, when the consolida-

tion processes in the OB were pharmacologically blocked using the

protein synthesis inhibitor anisomycin [36], then the spaced

learning failed to promote long-term retention of the task and

enhanced neurogenesis. Locally infusing anisomycin into the OB

caused no observable side effects in that the treated animals were

able to perform basic processing of an olfactory cue and showed

no alteration in their locomotive or exploratory behavior. The

results of these two experiments thus indicate first that the

consolidation of olfactory learning in the OB is required for long-

term retention and second, that it also determines survival of

adult-born neurons. Although consolidation processes may occur

in several other structures of the olfactory memory network [37–

39], our findings clearly show that consolidation in the OB is

essential to long-term memory formation. Regarding neurogene-

sis, this finding has several important implications. It is known that

many newborn neurons die upon their arrival in the OB [40,41]

and that they can be saved by learning [25–28]. Since a blockade

Figure 4. Anisomycin infusion did not alter locomotion, odor detection or exploratory behavior. A. The videotracking assessment of
locomotion on Day 5 of conditioning showed no difference between the saline- and anisomycin-infused animals. B. Spontaneous exploratory
behavior of an odorized (+limonene: Lim) versus a non- odorized hole (mineral oil: MO) was measured during a non-reinforced trial in naive untrained
animals. Animals differentially explored the two holes, indicating that they detected the odor. In this case, they spontaneously avoided the odorized
hole. C. The total time spent by the animals exploring the two holes was also recorded as an index of their exploratory behavior and showed no
difference between groups. *: p,0.05; ns: non-significant (p.0.05).
doi:10.1371/journal.pone.0012118.g004

Consolidation and Neurogenesis

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12118



of consolidation in the OB prevented learning-induced enhance-

ment of neurogenesis, our data provide evidence that the

mechanism determining adult-born neuron survival is linked to

consolidation. Given the wide spectrum of the cellular mechanisms

potentially affected by anisomycin, it is important to note that this

drug showed no observable toxic effect on newborn cells. Indeed,

naı̈ve anisomycin-infused animals showed the same level of

neurogenesis as did saline-infused animals. The lack of enhance-

ment of neurogenesis in the anisomycin-infused animals can thus

be ascribed to a consolidation blockade. We found that the

blockade of consolidation affected neurogenesis and memory,

raising the issue of a link between neurogenesis and memory. It

cannot be excluded that anisomycin affects memory-related

processes other than neurogenesis. However, our results also

showed that the enhancement of adult-born neuron survival was

closely correlated to retention of the task. This confirmed recent

findings showing that adult-born neurons surviving after learning

are functionally integrated into the bulbar network responding to

the learned odor and are essential to long-term retention of an

associative olfactory task [28,29].

At the cellular level, long-term potentiation has been reported in

newborn neurons [23] and could initiate molecular events [42]

preventing the cell death of those newborn neurons involved in

processing the learned odor. Adult-born neurons would thus be

tagged during learning and specifically selected by post-learning

processes as suggested in the dentate gyrus of the hippocampus

[43]. Based on these data, we suggest that protein synthesis enables

newborn neuron survival during learning and these newborn

neurons allow long-term memory. A consolidated long-term

olfactory memory would thus require this two-step process. This

conclusion is in line with our previous finding that newborn

neurons support long-term memory [28].

While there is abundant literature using anisomycin on

consolidation processes occurring in many brain regions involved

in different forms of learning [33,34,44,45], little data are available

for the olfactory system [37,46–49] and what there is do not deal

with the role of the OB. Our data indicate that the OB plays an

essential role in consolidation of the memory trace, thus delivering

a consolidated representation of the learned odor to the higher

olfactory structures [38,50]. This is in agreement with previous

work showing that post-learning local bulbar anesthesia altered the

long-term memory of an associative olfactory task [21] and that

systemic injection of anisomycin prevented consolidation of a

learned odorant in newborn rabbit [51].

In conclusion, memory consolidation processes in the OB

determine adult-born neuron survival suggesting that neurogenesis

modulation is a key effector of olfactory memory.

Materials and Methods

Animals
73 adult male C57Bl/6J mice (Charles River, L’Arbresles,

France) aged 8 weeks at the beginning of the experiment were

used. Every effort was made to minimize the number of animals

used and their suffering during the experimental procedure. In

accordance with the policy of Lyon1 university and the french

legislation, experiments were done in compliance with the

European Community Council Directive of November 24,1986

(86/609/EEC), and those of the French Ethical Committee.

44 mice were involved in the spaced versus massed experiment

(spaced conditioning n = 9; massed conditioning n = 10; spaced

pseudo-conditioning n = 15; massed pseudo-conditioning n = 10).

A second cohort of 29 mice was used in the second experiment:

19 mice underwent the spaced olfactory conditioning (n = 9

infused with anisomycin and n = 10 infused with saline) and 10

mice were used as controls and were not conditioned (n = 5 infused

with anisomycin and n = 5 infused with saline).

All behavioral training was conducted in the afternoon. In the

massed training, the duration of the behavioral experiment was

longer than in the spaced training (more trials per day) and the

behavioral learning session thus began 2 hours earlier. Mice had

free access to water and food except during the olfactory learning

period when they were maintained on a food-deprivation schedule

designed to keep them between 85–95% of their body weight over

the behavioral testing period.

Behavioral experiment
Experimental set-up. The mice were tested using an

automated computer-assisted 2-hole board apparatus (40 cm6
40 cm) [52]. The trial started by placing the mouse on the board

facing the holes (3 cm diameter, 4.5 cm deep), and latency (time to

find the reward) was recorded. The holes contained a polypropylene

swab impregnated with +limonene (purity.97%, Sigma-Aldrich,

Saint Louis, MO, USA) or mineral oil.

Shaping. During the shaping (3 days, 4 trials per day, inter-

trial interval, ITI = 15 min) the mice were allowed to dig through

the bedding for 90 sec to retrieve a reward (a small piece of

sweetened cereal, Kelloggs, Battle Creek, MI). During the first few

trials, the reward was placed on the top of the bedding of one of the

two holes. After several successful retrievals, the reward was buried

deeper into the bedding. Shaping was considered to be complete

when a mouse could successfully retrieve a reward that was deeply

buried in the bedding. No odorant was used for this task.

Spaced learning. This was performed over 5 days (4

consecutive trials/day, ITI = 15 min, 90 sec per trial). One of

the two holes was odorized with +limonene (20 mL of pure

odorant). The reward was systematically buried in the odorized

hole, whereas the non-odorized hole contained no reward. Once

the mice found the reward, they were allowed to eat it and

returned to their home cage until the next trial. The position of the

reinforced hole was randomized to prevent any spatial learning.

Additional mice were used for the pseudo-conditioned group, in

which the reward was pseudo-randomly buried either in the

odorized hole or in the non-odorized hole. The randomization was

controlled in order to avoid 3 trials in a row with the reward in the

same hole.

Massed learning. In this group, the mice underwent the

same conditioning procedure as for the spaced learning except that

all the trials were carried out on the same day (30 consecutive

trials, ITI = 15 min, 90 sec per trial). Additional mice were used

for the pseudo-conditioned group.

Retention test. Five days after the final conditioning session,

the animals had to perform 4 trials on the board in exactly the

same conditions as during their learning period.

Data analysis. For each trial, latency to find the reward was

recorded as an index of learning [25,28]. Success rate was also

calculated for each session, a successful trial being recorded when

the animal first visited (nose poking) the odorized hole. For each

behavioral session, mean latencies and success rates were

calculated and averaged within groups. The figures show the

results as mean 6 sem. Between-groups comparisons were done

using ANOVA for repeated measures (Systat software, SSI,

Richmond, CA, USA) and by unpaired or when applicable by

paired bilateral t-tests. Statistical significance was set at p,0.05.

Drug administration in the OB
Surgery. Prior to surgery, the mice were anesthetized with a

cocktail injection of 50 mg/kg ketamine and 7.5 mg/kg xylazine
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(i.p.) and secured in a stereotaxic instrument (Narishige Scientific

Instruments, Tokyo, Japan). All the animals were implanted with

double guide cannulae (26-gauge; Plastics One Roanoke, VA,

USA) located just above both OBs at the following coordinates

with respect to the bregma: AP, +5 mm; ML, 61.5 mm; DV,

21 mm. The tips of the guide cannulae were positioned 1 mm

dorsal to the target infusion site; consequently, the infusion

cannulae extended 1 mm from the end of the guide cannulae and

were positioned to be in the middle of the OBs. Four screws were

drilled into the skull, and dental cement was used to secure the

guide cannulae and cover the incision area. Dummy infusion

cannulae were then placed into the guide cannulae to prevent

blockage or infection. The mice were allowed 12 days to recover

from the surgery in individual cages with food and water ad libitum

prior to BrdU administration.
Infusion procedure. The protein synthesis inhibitor anisomy-

cin (Sigma, France) was used to block consolidation in the OB

(100 mg/mL in 0.9% NaCl, pH = 7.4) [37,53]. 10 mL Hamilton

syringes containing either anisomycin or saline were attached to the

cannulae with a polyethylene tube and driven by an infusion pump

(Harvard Pump). Drugs were delivered bilaterally into awake or

anesthetized mice when needed (isoflurane, 2 min induction at

4.5%; 2 min at 2.5%) at a rate of 0.4 mL/min for 5 min (2 mL total

volume delivered per side). The position of the cannulae and the

infusion volume had been checked previously using 2% pontamine

sky blue dye solution in saline; this proved that a 2 mL infusion was

distributed adequately throughout the OB without appreciable

invasion of other neural structures [54]. The infusion cannulae were

left in place for one minute after the infusion ended in order to

minimize backflow. A drug or saline solution was infused each day,

5 min after the end of the last trial. To assess the effect of the

anisomycin or saline injections on bulbar neurogenesis, additional

control mice were injected under exactly the same conditions except

that the animals had not been conditioned in any way.
Locomotor activity. In order to assess the potential side

effects of these intra-cerebral drug injections, each mouse’s

movement on the hole-board was recorded at Day 5 using a

video camera (ViewPoint, Champagne au Mont d’Or, France).

Each mouse’s average locomotion speed was then calculated and

compared between groups using bilateral t-tests.
Odor detection test. To determine whether the injected

drug would affect olfactory detection, the mice were placed on the

two-hole board apparatus for 2 min. One of the two holes was

odorized with +limonene (20 mL of pure odorant), and the other

contained mineral oil. The time spent exploring the holes was

recorded. Time spent investigating the odorized hole differed from

chance level (one-sample t-test for difference from 50%) indicating

odor detection. In addition, to ensure that the exploratory

behavior was not affected by the intra-cerebral drug infusions,

the total time spent visiting the two holes was also measured.

Assessment of neurogenesis
5-Bromo-29-deoxyuridine (BrdU) administration. Previous

studies have shown that adult-born neurons are particularly sensitive

to olfactory activity during a critical period starting 2 weeks after their

birth [55,56]. This interval corresponds to the time required for these

newborn cells to migrate from the sub ventricular zone to the OB

[41]. To have a cohort of 2-week old labeled cells in the OB of mice

in the spaced group at start of learning, we injected the

Bromodeoxyurine 14 days before the first day of conditioning

(3 injections, 2 h interval, 50 mg/kg (Figure 1Ai). Using this protocol,

BrdU-labeled cells present in the OB during learning were aged 14 to

18 days. To obtain labeled cells of similar age in the massed group,

these mice were first injected with BrdU 17 days before conditioning

began and then for the following 4 days (2 injections per day, 50

mg/kg) (Figure 1Aii). In this manner, in massed-trained animals,

BrdU labeled cells present in the OB during the day of training would

also be aged between 14 and 17 days.

All animals were sacrificed 5 days post training, one hour after

the end of the retention test.

BrdU immunocytochemistry. Mice randomly taken from

each experimental group (n = 3–5 per group) were deeply anesthetized

(Pentobarbital, 0.2 mL/30 g) and killed by intracardiac perfusion of

50 ml of fixative (4% paraformaldehyde in phosphate saline buffer,

pH 7.4). Their brains were removed, post-fixed, cryoprotected in

sucrose (20%), frozen rapidly and then stored at 220uC before

sectioning with a cryostat (Microtech). Brain sections were first

incubated in Target Retrieval Solution (Dako, Trappes, France) for

20 min at 98uC. After cooling for 20 min, they were treated with

Triton 0.5% (SigmaX100) in phosphate buffered saline (PBS) for

30 min then for 3 min with pepsin (0.43 U/ml in 0.1N HCl, Sigma).

Endogenous peroxidases were blocked with a solution of 3% H2O2 in

0.1 M PBS. Sections were then incubated for 90 min in 5% normal

horse serum (Vector Laboratories,Burlingame, CA, USA) in 5%

bovine serum albumin (BSA, Sigma) and 0.125%Triton X-100 to

block non-specific binding, and then incubated overnight at 4uC in a

mouse anti-BrdU primary antibody (1/100, Chemicon, Temecula,

CA). They were then incubated in a horse biotinylated antimouse

secondary antibody (1/200, Vector) for 2 h and processed with avidin-

biotin-peroxydase complex (ABC Elite Kit, Vector) for 30 min. Finally

the sections were reacted in 0.05% 3,39-diaminobenzidine-tetra-

hydrochloride (DAB,Sigma), 0.03% NiCl2 and 0.03% H2O2 in

Tris–HCl buffer (0.05 M, pH 7.6), dehydrated in graded ethanols, and

coverslipped in DPX.

BrdU-positive cell quantification. All cell counts were

conducted blind with regards to mouse status. Data were

collected using mapping software (Mercator Pro, Explora Nova,

La Rochelle, France), coupled with a Zeiss microscope. For each

mouse, BrdU-positive cells were counted on 20 consecutive sections

(14 mm thick, 70 mm intervals) from the granule cell layer of the

right OB. Cell density (number of labeled profiles/mm2) was

calculated for each section and averaged for each animal and then

averaged across animals within each group. Between-groups

comparisons were performed using bilateral Student’s t-tests.

Double-labeling analysis. To determine the phenotype of

the BrdU-positive cells in the OB, BrdU/NeuN double-labeling was

performed using rat anti-BrdU (1:100, Harlan Sera lab,

Loughborough, UK) and mouse anti-NeuN (1:500, Chemicon).

The appropriate secondary antibodies coupled to Alexa 546

(Molecular Probes) to reveal BrdU and Alexa 488 (Molecular

Probes) to reveal NeuN were used. BrdU-positive cells were

examined for co-labeling with NeuN (10–20 cells per animal,

n = 2–3 animals per group). The double-labeled cells were observed

and analyzed by pseudo-confocal scanning microscopy using a Zeiss

microscope equipped with the ApoTome system. The percentage of

double-labeled cells was calculated for each group and compared

using ANOVA followed by Bonferroni post hoc tests.
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