
Appendix II : Time-inhomogeneous Feller diffusion

1 Time-inhomogeneous diffusions

Let (Xt; t ≥ 0) be a time-inhomogeneous diffusion process which is the unique solution
to the following SDE

dXt = a(t;Xt) dt+
√
b(t;Xt) dBt,

where b(t, x) > 0 for all t, x, and both functions a and b are continuous in t and Lipschitz-
continuous in x. Now let g : R → R be any twice differentiable function with bounded
derivatives and set

ps(t;x) := E(g(Xs)|Xt = x) s > t.

Let Lt denote the generator of X at time t, that is, for any twice differentiable f : R→ R
with locally bounded derivatives,

Ltf(x) := lim
ε↑0

ε−1E(f(Xt+ε)− f(Xt)|Xt = x) = a(t;x)f ′(x) +
1

2
b(t;x)f ′′(x).

Then it is well-known (Bansaye and Simatos, 2015) that ps is differentiable in t and twice
differentiable in x, and satisfies

−∂ps
∂t

(t;x) = Ltps(t, x),

where it is implicit that in the right-hand side, the generator applies to the second
variable of ps and the first one is fixed equal to t, that is,

−∂ps
∂t

(t;x) = a(t;x)
∂ps
∂x

(t;x) +
1

2
b(t;x)

∂2ps
∂x2

(t;x). (1)

2 The case of inhomogeneous Feller diffusions

Here we assume that a(t;x) = r(t)x and b(t;x) = σ(t)x, so that X is a Feller diffusion
with time-dependent growth rate r(t) and variance σ(t), both assumed continuous in t.
Note that 0 is an absorbing point, which is accessible as soon as σ is strictly positive,
which we assume. Now we apply the results of the previous section to g(x) := e−λx.
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Theorem 1. For any t < s, we have

E
(
e−λXs|Xt = x

)
= e−xϕλ,s(t) x ≥ 0,

where

ϕλ,s(t) =

(
1

λ
e−

∫ s
t r(u) du +

1

2

∫ s

t

σ(u)e−
∫ u
t r(v) dvdu

)−1
.

Proof of the Theorem. It is well-known that X satisfies the branching property, in the
sense that the sum of two independent copies of X started respectively at x and y, has
the same law as X started at x + y. This ensures that for any s > t ≥ 0 and λ > 0,
there exists a non-negative real number ϕλ,s(t) such that

ps(t;x) = e−xϕλ,s(t) x ≥ 0.

Thanks to (1), ϕλ,s is differentiable at any t < s and we have the following equalities on
[0, s)

−∂ps
∂t

(t;x) = xϕ′λ,s(t)e
−xϕλ,s(t),

∂ps
∂x

(t;x) = −ϕλ,s(t)e−xϕλ,s(t)

and
∂2ps
∂x2

(t;x) = (ϕλ,s(t))
2e−xϕλ,s(t)

Then thanks to (1) again, we get

ϕ′λ,s = −rϕλ,s +
σ

2
ϕ2
λ,s (2)

We are now going to solve (2) with the terminal condition limt↑s ps(t;x) = e−λx, that is,

lim
t↑s

ϕλ,s(t) = λ

Assume that ϕλ,s satisfies (2). Set

Rs(t) :=

∫ s

t

r(u) du t < s

and
ψλ,s(t) := ϕλ,s(t)e

−Rs(t) t < s.

Then we have R′s = −r and

ψ′λ,s = ϕ′λ,se
−Rs + rϕλ,se

−Rs =
σ

2
ϕ2
λ,se

−Rs =
σ

2
ψ2
λ,se

Rs .

Now we integrate ψ′λ,s = σ
2
ψ2
λ,se

Rs in the following way. Let us assume that there is t0 < s
such that ψλ,s(t0) = 0. Then ψ′λ,s(t0) = 0 so by uniqueness of the solution, ψλ,s is zero
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on [t0, s). But this would contradict the fact that limt↑s ψλ,s(t) = limt↑s ϕλ,s(t) = λ > 0.
So ψλ,s(t) > 0 for any t < s and we can write∫ s

t

ψ′λ,s(u)

ψλ,s(u)2
du =

1

2

∫ s

t

σ(u)eRs(u)du,

where the left-hand side can be integrated into[
− 1

ψλ,s

]s
t

= −1

λ
+

1

ψλ,s(t)
,

due to the assumption that limu↑s ψλ,s(u) = λ. So we finally get

1

ϕλ,s(t)
=
e−Rs(t)

ψλ,s(t)
=
e−Rs(t)

λ
+

1

2

∫ s

t

σ(u)eRs(u)−Rs(t)du

=
1

λ
e−

∫ s
t r(u) du +

1

2

∫ s

t

σ(u)e−
∫ u
t r(v) dvdu,

which yields the expected result.

From now on, we fix t = 0 and write ϕλ(s) := ϕλ,s(0) and ϕ(s) := ϕ∞,s(0), that is

ϕλ(s) =

(
1

λ
e−

∫ s
0 r(u) du +

1

2

∫ s

0

σ(u)e−
∫ u
0 r(v) dvdu

)−1
and

ϕ(s) =

(
1

2

∫ s

0

σ(u)e−
∫ u
0 r(v) dvdu

)−1
.

Corollary 2. Starting at X0 = x, the state Xs of the inhomogeneous Feller diffusion
can be written as

Xs =
Ns∑
i=1

Yi(s),

where Ns is a Poisson random variable with parameter xϕ(s) and the Yi(s) are i.i.d.
exponential random variables independent of Ns, with common parameter ρ(s), where

ρ(s) :=

(
1

2

∫ s

0

σ(u)e
∫ s
u r(v) dvdu

)−1
.

In particular, if T denotes the hitting time of 0, also called extinction time, then

P(T < s|X0 = x) = e−xϕ(s).
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Proof. The last part of the corollary just stems from the following argument

P(T < s|X0 = x) = P(Xs = 0|X0 = x) = lim
λ→∞

E
(
e−λXs |X0 = x

)
= e−xϕ(s).

Now set

Zs :=
Ns∑
i=1

Yi(s)

Let us prove that Zs has the same Laplace transform as Xs, that is

E
(
e−λZs

)
= e−xϕλ(s) = E

(
e−λXs

)
,

which will prove the first part of the corollary. It is elementary that

E
(
e−λZs

)
= E

[
E
(
e−λY1

)Ns]
= exp

(
−xϕ(s)

[
1− E

(
e−λY1

)])
= exp

(
−xϕ(s)

[
1− ρ(s)

λ+ ρ(s)

])
Now it is easy to see that

ϕ(s)

[
1− ρ(s)

λ+ ρ(s)

]
=

λϕ(s)

λ+ ρ(s)
=
ϕ(s)/ρ(s)

1
ρ(s)

+ 1
λ

=
e
∫ s
0 r(u) du

1
2

∫ s
0
σ(u)e

∫ s
u r(v) dvdu+ 1

λ

= ϕλ(s),

which ends the proof.

3 Large time convergence

Now we assume that ∫ ∞
0

σ(u) e−
∫ u
0 r(v) dvdu <∞,

so that ϕ(∞) > 0. Recall that Y1(s) is exponential with expectation 1/ρ(s), so that

Y1(s) e
−

∫ s
0 r(u) du

is exponential with expectation

e−
∫ s
0 r(u) du/ρ(s) =

1

2

∫ s

0

σ(u) e−
∫ u
0 r(v) dvdu,

which by assumption converges to 1/ϕ(∞) <∞. This can be recorded in the following
statement, where we define a := ϕ(∞).
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Proposition 3. Set

a :=

(
1

2

∫ ∞
0

σ(u) e−
∫ u
0 r(v) dvdu

)−1
> 0.

Then conditional on X0 = x, Xs e
−

∫ s
0 r(u) du converges in distribution to the terminal

random variable

W :=
N∑
i=1

Yi,

where N is a Poisson random variable with parameter ax and the Yi are i.i.d. exponential
random variables independent of N , with common parameter a.

Notice that the terminal random variable W is 0 iff N = 0, which occurs with
probability e−ax. Since this is also the probability that T < ∞ and that {T < ∞} ⊂
{N = 0}, these two events actually coincide with probability 1.

Also note that actually the convergence in the previous proposition holds pathwise
(i.e. with probability 1, or ‘for almost all realizations’). This is due to the fact that
(Xs e

−
∫ s
0 r(u) du; s ≥ 0) is actually a martingale.
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