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Appendix | : Mathematical derivations and approximations

In the following, we use a supplementary notation to simplify the mathematical derivations: 8 =
n/2.

|. General WSSM approximation to ER.

In the present model, we approximate the stochastic dynamics of each lineage by a Feller diffusion
(Feller 1951) or continuous branching CB-process (Lambert 2008), with parameters {r;, g;} for
lineage i. We ignore any density or frequency dependence and assume that all lineages have similar
stochastic reproductive variance (g; = o). The resulting total population size N; (cumulating all lineage
that co-segregate) can then also be approximated by a CB process, which follows the stochastic
differential equation:

dNt =ft Nt dt+ﬂ0-Nt dBt ) (Al)

where B; is a Weiner process, 7y = 1/N; Z?I:tl 1; is the mean growth rate of all lineages present at
time t and o is the common stochastic reproductive variance of all lineages. In the WSSM regime (i.e.
when U >» U, = 62 1), we can ignore the evolutionary stochasticity introduced by mutation and drift
as a first approximation. Then, the mean growth rate 7; = (7}) (expectation over replicates denoted
by (.)) is approximately deterministic and given by the WSSM results in (Martin and Roques 2016) for
the FGM. The probability of such a time inhomogeneous CB process to be extinct by time t is given by
(Bansaye and Simatos 2015):

2N0> ’ (A2)

e
where Y, = afot exp(—p(v))dv and p(u) = f:(fv) dv. The probability of ER is the complementary

Pey(t) = exp (—

probability of not being extinct over infinite time, namely P = 1 — Pyy(20).For consistency with the
main text, ¢ = 1 in the following.
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Il. Explicit expression for a population initially clonal

Define 1 the decay rate of the initial clone, and 1,4, the maximal attainable growth rate (that of a
genotype optimal in the stressful environment). In this case, the mean fitness trajectory, relative to
the optimal genotype ({(M;) = (7;) — Tnax), Under the WSSM approximation, for an initially clonal
population is (eq. (12) in (Martin and Roques 2016)

(M) = my (sech(u t))* — 6 p tanh(u t) (A3)

where u =+/U 2 and 8 = n/2, sech(.) and tanh(.) are the hyperbolic secant and tangent functions
and m, is the fitness difference between the original clone and the optimal genotype. Now, we require
the absolute mean fitness trajectory (mean growth rate), which is obtained by noting that, by
definition, (M;) = (7;) — Tinax and Mg = —1p — Tpax. Denoting yp = 15 /Tmax, € = 0 U/ Tmax We
obtain:

7> = 2 (1~ (p + 1) sech(u 1)? — e tanh(u £) (n9)

The integral p; = fot(fv) dv of this growth rate over time can be expressed in compact form by using

the change of variable T = pu t, yielding

0
Pt = ;f(T) — 6log(h())
h(t) = cosh(7) ' (A5)
f(@) =7— (1 +yp)tanh()

Finally, the same change of variable (dt = u dt) can also be used to express the indefinite integral that
determines extinction probabilities, yielding the rate of ER per lineage present at the onset of stress:

(UDN — _logPeXt(oo) — 2
No Iy exp(=py) du

W™ =21/(| A exp(=C F©) d)

(A6)

Ill. Laplace approximations for small €, for a population initially clonal

Eqg.(A6) is fully analytic but yields no explicit expression, which would be useful to get a more intuitive
grasp of how each parameter affects the ER probability. When the mutation rate and effects are small
enough that the load 8 p is small relative to the maximal growth rate 7,4, (so that we are well away
from lethal mutagenesis), then € « 1. This means that 8/¢ > 1 (with 8 > 1/2) and the integral in
Eq.(A6) is amenable to the Laplace Approximation (as h(t) is monotonic overt € R*). This
approximation can be formulated as follows :

o 0 2 0
[ 1@ -2 rendr =, [ A exp(=2 f(r) "7)
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where 7, = cosh™1(/1 + yp) is the unique minimum of f(.) over T € R*. The Laplace approximation
in Eq.(A7) then yields a fully explicit expression for the rate of ER per lineage present at the onset of
stress defined in EqQ.(A6). Rewriting in terms of the original parameters (60/€ = T4, /1), We get

DN Tmax K _rmax
@ 6302\’ - exp( 7 V(yD)>
_ 1\log(1+yp) 1log(yp)\’ (A8)
yp) = Vyp(1 +yp) — cosh™ (Y1 +yp) + e((l +ﬁ) > D —5— D

The accuracy of this expression is illustrated in Supplementary Figure 1.
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Supplementary Figure 1: P as a function of yy, for three values of the dimensionality (given in legend),
as computed from the ‘exact’ Eq.(A6) (solid colored lines) vs. Laplace Approximation Eq.(A8) (dashed
purple lines). Parameters are 1,4, = 1,A = 5.107%,U = 0.25, N, = 107.

In fact, unless we consider narrow range of stress variation, as in Supplementary Figure 1, it appears
that, in the limite — 0, P shows limited dependency on dimensionality, provided that it remain
limited (n varies by five-fold above). This is confirmed by further simplifying Eq.(A8) to produce a rough
but reasonably accurate approximation, in a range that is a priori of most biological relevance, say for
yp > 0.1, i.e. not-too mild a stress. In this range both log(1 + y,)/2 and log(yp)/4 are of similar or

smaller order than g(yp) = Jyp(1 +yp) — cosh‘l(,/l + yD). Therefore, as € — 0 (as we assume

here), the right hand factor in y(yp), proportional to €, becomes negligible, relative to the left hand
term, and y(yp) = g(¥p). Eq. (A8) thus simplifies to the expression given in Eq.(6) for de novo rescue:

T u T
DN ~ max __‘max
w2 / - exp( p g(yp)>

yp20.1
9p) =yp(A+yp) — COSh_l(\/ 1+ }’D)

This simpler approximation is less precise but still provides a good order of magnitude, when € is small

(A9)

enough. Supplementary Figure 2 illustrates its accuracy and the fact that the ER rate is indeed roughly
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independent of dimensionality 6 in this parameter range : Eq.(A9) captures the order of magnitude of
66  stress at which Py drop from 1 to 0.
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Supplementary Figure 2: Same as Supplementary Figure 1 (same parameters, except 1y, 4y, indicated

(A9) (black dotdashed lines).

on the graph), this time as a function of rp and compared to both Eqs.(A8) (purple dashed lines) and
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IV. Explicit expression for a population initially at mutation-selection balance

This time we assume initially mutation-selection balance, then a shift in optimum occurs without any
change in U or A: adaptation is driven by both standing variance and de novo mutations. Under the
WSSM approximation (corresponding to our assumption here), the mutation selection balance in an
asexual population under the isotropic FGM corresponds to a simple Gaussian distribution of
phenotypes, centered on the optimum (in the environment where the equilibrium sets) and a variance
U per trait: z ~ N(0, u I;). Once this optimum is shifted in the new environment, the phenotypic
distribution progressively shifts (retaining the same normality and variance) towards the new
optimum. This yields the following dynamics for the mean growth rate (based on the corresponding
WSSM approximation in eq. (13) in (Martin and Roques 2016), with the same parameterization as for
Eq.(A4)) we get

(7t) = Tmax(1 —exp(—2 ut)(1 +yp) —€), (A10)

which then yields the corresponding expression for p; (same form as Eq.(A5)):

6
pe=—_f(0) — 0log(h(r))

f@=1—A+yp) (1 —exp(-21))/2" (A11)
h(t) = exp(7)

The rate of ER takes a similar form as in the DN scenario (Eq.(A6)), but this time an explicit exact
expression is found:

wPN*SV = — log Pexe(0) /Ny =

o 9
- =2 h(t)Pexp(—= f(1))d
Jy exp(=py) du H/fo et S (A12

DN+SV — 4 exp(=¢§) ¢* )
I'(g) —T(B,$)

Where §¢ = (14+yp)0/(2€) andf=(1—¢€)6/(2€), and T(.) and I'(.,.) are respectively the
Euler’s gamma function and the incomplete gamma function.

w



90 Although this is already explicit, a Laplace approximation can be used to get a simpler result, again
91  away from the lethal mutagenesis regime (€ < 1). The function f(.) has a unique minimum at 7, =
92 log(,/l + yD) and the resulting Laplace approximation for the rate of ER is of the same form as
93  Eq.(A8):
’r 1
wDN+SV ~ 2 max.uexp <_ max y(yD)>
€-0 4 u
) Al3
¥p = (1= €)log(1 + yp) (A13)
y(¥p) = 5
94  From which, as € < 1, arises the same expression as Eq.(A9) with a different function g(.):
i T
wDN+SV fo 2 max Mexp <_ max g(yD)>
€ n K . (A14)
9Wp) = (yp —log(1 +yp))/2
95  The accuracy of this approximation is illustrated in Supplementary Figure 3 below. Note also how the
96 drop in ER probability occurs at higher stress levels here than with purely de novo mutation (in
97 Supplementary Figure 2).
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99 Supplementary Figure 3: Same as Supplementary Figure 2 (same parameters) with standing variance
100  plus de novo mutation computed from the ‘exact’ Eq.(A12) (solid colored lines), and the
101  corresponding approximation Eq.(A14) (black dashed line).
102
103  The accuracy shown in the main text between Eq.[5] (Eq.A(12)) and the simulations decrease when the
104  growth rates of the individuals in the population increase (in absolute value). Indeed, when growth
105 rates are too low or high (|r] = 1), the continuous time approximation used in our model fails to
106 predict accurately the discrete time dynamic of the population size and therefore the probability of
107 rescue given by our simulations. This is illustrated in Supplementary Figure 4 where we can see that
108  increasing 1,4, leads to an underestimation of the rescue probability predicted by the simulations.
109
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V. Laplace approximations for small €, for a population initially at mutation-selection balance

Moreover, at higher U the ER probability drop from highly likely to highly unlikely at larger 1, of order
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1 or more, for which the discrepancies between continuous time and discrete time dynamics
mentioned above increase, as shown in Supplementary Figure 4.
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Supplementary figure 4: Accuracy of the predictions of ER probabilities for DN+SV scenario (blue:
Eq.[5]) for two values of 1,4, and two values of U against simulations (see legend). Note that
the green line and the corresponding simulations are the same as in Figure 3a. Other parameters
are Ng = 10°,n=4,1=5.10"3,
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VI. Width of the mutation window of ER

We now wish to evaluate the mutation rate at which ER switches from very likely to very unlikely. We
know that the rate of ER drops sharply at some upper threshold mutation rate, due to lethal
mutagenesis effects (i.e. when the mutation load @ 8 = 13,4,). This implies a maximal mutation rate
Unmax = Taax/(0%1), above which lethal mutagenesis leads to certain extinction of the population.

Here, we are interested in the parameter range, far below lethal mutagenesis, where the ER probability
increases (sharply too) with the mutation rate. We first seek the value u, at which ER occurs 50% of
the time. This critical u,, is the one above which ER becomes likely, so that the rescue probability is
Pr(u,) = 1/2 and the ERrate is w, = —log(1 — Pgr(u,))/Ny = log(2)/N,. In this range of parameter
(€<« 1), we can use the approximate expressions in Egs.(A9) and (A14) : w(u,) =

2 \/Tmax Us/ T €Xp(—Tmax 9(Vp) /1. Solving for this equation yields a unique solution:

2 g(YD) Tmax

JTRES
8 9(¥p) (No hnax 2 ’ (A15)
W( o (13g(2)>>

where W(.) is Lambert’s function. This rate can be approximated to a simpler form if we note that NZ

is typically very large compared to g(yp) and 13,4, Which are of order 1. Therefore the denominator
in Eq.(A15) is driven by the asymptotic limit of W(.) (W (v) = log(v/log(v)), for large v) and by the
terms in N,. Overall, to a reasonably good approximation:

2 9(¥p) Tmax

He = .
No = o0 N_o> : (A16)
8 (rog0hy

Recalling that u = VU A, the critical mutation rate where the ER probability is 50% is

2

1 2 9(¥p) Tomax _ 4 90p)* riax | (A17)
A 8 9g(¥p) (Nor 2 No = e N2
w max) ( 0 )
< T log(2) Alog log(NZ)

This means that ER is only likely within a window of mutation rate U, < U < Up,q4- This window
narrows down as stress increases (increased decay rate and hence g(yp), see Supplementary Figure
6) or as N, gets smaller, and its lower bound is roughly independent of dimensionality. The accuracy
of this approximation is illustrated in Figure 4 for the DN scenario (g(yp) = gon(¥p) =

Vyo(A+yp) — cosh‘1(1/1 + yD)) and in Supplementary Figure 5 below for the SV+DN scenario in
the presence of standing variance (g(vp) = gpn+sv V) = (vp — log(1 + yp))/2).
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Supplementary Figure 5: same as Figure 4 with standing variance plus de novo mutation.

VII. Height of the mutation window of ER
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Supplementary Figure 6: Decrease of the width and height of the mutation window with stress.
Colored plain lines show Eq.[6] for ER from de novo mutations (a) or from pre-existing standing genetic
variance and de novo mutations (b). Black lines give max(Pg) from Eq.(A18) (for rp, = 2.2 in (a) and
rp = 4 in (b)). The colors and the parameters are the same as in Figure 4 for increasing .

Supplementary Figure 6 shows that, for sufficiently high stress 1, or low inoculum size N, the ER
probability cannot reach above some limited maximump = maRg&(PR). Figure 5 also shows that
uE

max(Pg) drops sharply (from max(Pg) = 1tomax(Pg) < 1)as rp increases or N, decreases. The goal
of this section is to compute the values of 1, where this transition occurs, namely the stress levels
beyond which the population cannot avoid extinction, even if its mutation rate was to changed (e.g.
by hyper-mutators).

The transition observed in Figure 5 occurs at some pairs of parameters {r;(p), Ny(p)} for
which max(Pr) = p for some threshold value p. The shape of the transition in Figure 5 suggests that
the values of rp(p) and log(Ny(p)) are linearly related: so thatlogNy(p) = a+ b rp(p) for
some (a,b) > 0. We also know that P, =1 —exp(—Ny w) where w depends on 1y, ey 11
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(Eq.(5)). At {rp,log Nj} we thus have p = max(Pg) = 1 — exp(—Nj(p) w*(p)), where w*(p) is the
161  corresponding ER rate along the transition of height p. This implies that log Ny (p) = log(|log(1 —
162 p)|) —logw.(p) = a+ brj(p), so that w.(p) = w(r;(p)) = A exp(— B r;(p)) for some (4, B).
163 Since w, is independent of N and is a maximum over y (so independent of ), it must only depend on
164  theremaining parameters {rp, inqax, n}. The coefficients A4, B, which determine its relationship with ry,
165 must thus only depend on n and r;,,,,. Therefore, we look for approximations of the form w, =
166  Aexp(— Brp), for some functions A = A(n, Tpay) and B = B(n, 1y,4,) for both DN and DN + SV
167 scenarios. A simple fitting procedure, across a range of values of {n, 13,4}, carried out with Matlab©
168  Optimization Toolbox (the Matlab© code is available in supplementary file 2) suggests that A =
169  Typax/nand B = § n/T,ay, leading to:
max(Pg) = 1 — exp(—Ng (p)w*(p))
Tmax ( n % )
W, = exp|—6 T
(p) =——exp — »(P) _ (A18)
DN:§6 =0.6
with
DN + SV : 6§ =0.31
170  From Eq.(A18) we can see that the height max(Pg) of the mutation window increases with an increase
171  in the maximal growth rate 1,4, oOr the population size N, and decreases with an increase in the
172 dimensionality n or the harshness of stress 1, (the accuracy of this fitting for different values of 13,4,
173 and n is illustrated in Supplementary figures 7). The figure below provides a comparison between the
174 numerical value of max(Pg) from Eq.[5] and the result of Eq.(A18).
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178  Supplementary Figure 7: max(Pg) as a function of rp for different values of the dimensionality and
179 the maximal growth rate (given in legend), as computed from the ‘exact’ Eq.[5] vs. fitted approximation
180  Eq.A(18). (a) Population adapting from de novo mutation only. (b) Population adapting from both de
181  novo mutation standing genetic variance. In both cases Ny = 10°.
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Solving max(Pg) = p = 1 — exp(—N,y w,(p)) in terms of 15 (p) using Eq. A(18) yields the threshold
stress at which max(Pg) =p:
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TD* (P) — Tmax ( NO Tmax )

no 8\ Tog( = p)| (A19)

where § is given in Eq. (A 18) depending on the scenario.

VIII. Analytical and simulation models from Anciaux et al. (2018)

Explicit expression for a population initially clonal under the SSWM approximation from Anciaux et al.
(2018):

Here we provide the equations from Anciaux et al. (2018) for the rate of rescue per individual for a
population initially clonal wpy in the SSWM regime (U < U.). In this model, the distribution of
fitness effects of mutations is also based on the FGM. Hence, from Eq.(2) of Anciaux et al. (2018), for
a clonal population with a growth rate —13, in the new environment, the scaled growth rates of
single-step mutants y = r/7;,4,, have the following probability density function:

) =

oﬂ@(%ﬂﬁrumu—w) (A20)
r'(n/2) ’

24y - n/2
exp (_ Trnax( AyD 30) (Tmlax) (1- y)n/Z—l

y €] —oo,1]
with yp = 15 /Tmax € [0, +0] and 75,4, N, A defined in table 1. Where ,F;(.,.) is the
confluent hypergeometric function and I'(z) is the gamma function.

Following Eq.(5) from Anciaux et al. (2018), the rate of rescue for a population initially clonal is:

U 1
wm=gLﬂ@m0M% (A21)

with(y) = 1 —exp(—2 y huqax/0) the probability of establishment of a resistant genotype with
scaled growth rate y > 0 in the new environment (in figures 1 and 2 from the main text o =
1).
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Simulation algorithm from Anciaux et al. (2018):

The following algorithm is described in the Methods section of Anciaux et al. (2018) and the
explanations are directly extracted from the same section. The Mathematica code is provided in
supplementary file I.

while COND
1. Mutation:
=  Draw the number of mutations for each individual from a Poisson distribution with

rate U
= add mutation effects (when relevant) to the current parent phenotype, by
draowing these into a multivariate normal distribution N(0,1 1,,)

2. Selection and drift:
= Genotypes forming the new generation are sampled with replacement from the

previous one with weight W; = et for the genotype i.

3. Demographic stochasticity:
= The size Ny, of population at generationt + 1 is drawn as a Poisson number

N,4q ~ Poisson(N, W), with W = exp(r) the mean Darwinian fitness (W =
exp(r)) and N, the population size, in the previous generation.

end while

With COND = if (7, > 0, exp(—2 N, 7) < 10712) & N, > 0. A population is considered rescued when
it reaches a population size N; and mean growth rate 7; such that its ultimate extinction probability, if
it were monomorphic and stable over time (probability exp(—2 N, 7;)), would lie bellow 10712, This
is a conservative criterion: once 7; has become positive, we expect it to remain so, yielding further
increases in population size and thus further decreasing the probability of future extinction.

Points 2 and 3 from the algorithm correspond to reproduction and have been separated into 2 separate
phases to increase the speed of the algorithm. However, this is exactly equivalent to drawing
independent Poisson reproductive outputs from each individual.

In the algorithm in supplementary file 1, the effects of mutations are not drawn every generations as
in point 1. Instead a large number (10°) of mutation effects are drawn before the simulations and
mutations effects are drawn in this “pre-set” every generations to increase the speed of the algorithm.

For rescue from populations at mutation-selection balance, 10 replicate initial equilibrium populations
were generated, each by starting from an optimal clone and running the same algorithm with fixed
population size (N, = 10°) until the mean growth rate had visually stabilized to a fixed value (close to
its theoretical equilibrium value 7q = % — U (for U < U) for more than 1000 generations. Then

the optimum was shifted by /2(rp + %4x) Phenotypic units, and 1000 replicate ER simulations were

performed (same algorithm as for de novo rescue), from each of the 8 replicate equilibrium
populations.

Supplementary figure 8 shows the dynamic of the mean fitness and the population size of 4 replicates
(2 rescues and 2 extinctions) of a simulated population using the above algorithm for a population
with high mutation rate (U > U,).
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Supplementary Figure 8: Dynamics of the mean fitness 1, (A) and the population size N; (B) of
replicate populations starting from a clone at -1, = —1.5 at size N, = 10°. The blue lines represents
rescues and the yellow lines extinctions. Parameters for the simulations are 1,4, = 1, U = 100 U,
n=4andA=5x1073.
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