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Abstract
Population genetic methods are widely used to retrace the introduction routes of invasive species. The unsupervised Bayesian 
clustering algorithm implemented in STRUCTURE is amongst the most frequently used of these methods, but its ability to 
provide reliable information about introduction routes has never been assessed. We simulated microsatellite datasets to 
evaluate the extent to which the results provided by STRUCTURE were misleading for the inference of introduction routes. 
We focused on an invasion scenario involving one native and two independently introduced populations, because it is the sole 
scenario that can be rejected when obtaining a particular clustering with a STRUCTURE analysis at K = 2 (two clusters). 
Results were classified as “misleading” or “non-misleading”. We investigated the influence of effective size, bottleneck 
severity and number of loci on the type and frequency of misleading results. We showed that misleading STRUCTURE 
results were obtained for 10% of all simulated datasets. Our results highlighted two categories of misleading output. The first 
occurs when the native population has a low level of diversity. In this case, the two introduced populations may be very 
similar, despite their independent introduction histories. The second category results from convergence issues in 
STRUCTURE for K = 2, with strong bottleneck severity and/or large numbers of loci resulting in high levels of 
differentiation between the three populations. Overall, the risk of being misled by STRUCTURE in the context of 
introduction routes inferences is moderate, but it is important to remain cautious when low genetic diversity or genuine 
multimodality between runs are involved.

Introduction

The reconstruction of introduction routes is important for
the management of biological invasions because it facil-
itates (i) the design of strategies to prevent future invasions
by targeting the source area (Mack et al. 2000) and (ii) the
development of measures to control invasive populations
which effectiveness depends on the genetic composition
and geographical origin of introduced individuals (Roderick
and Navajas 2003). From an academic point of view,
retracing the introduction routes of invasive alien species is
a prerequisite to accurately compare ancestral and derived

populations to infer ecological and evolutionary processes
which determine the invasion success (Keller and Taylor
2008). When there are at least two invasive populations,
crucial historical and demographical characteristics of their
introductions typically include the number of independent
introductions from the native area and the number of serial
introductions involving intermediate invasive populations.
However, identification of the source of an introduced
population is a complex task, because of the highly sto-
chastic nature of the introduction process (Estoup and
Guillemaud 2010). Many population genetics methods and
tools are now widely used to retrace the introduction routes
of invasive species. This approach is somewhat risky,
because the methods involved are often dependent on
demographic and genetic equilibria, but invasions often
involve demographic disequilibrium, through strong bot-
tlenecks followed by rapid population growth, for example.
Despite this limitation and the risks of using population
genetics methods inappropriately in the specific context of
biological invasions, only a few of these methods have been
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formally evaluated (e.g., Estoup and Guillemaud 2010;
Guillemaud et al. 2010).

Among population genetics methods, unsupervised
individual Bayesian clustering methods are widely used.
The popularity of these methods is due to their ability to
infer genetic structure correctly in many situations and their
apparent simplicity (several “click-and-play” software suites
are available). STRUCTURE (Pritchard et al. 2000; Falush
et al. 2003; Hubisz et al. 2009) is the most frequently used
software for clustering, with more than 28,000 citations for
the three references indicated above in Google Scholar in
September 2017. STRUCTURE aims to sort individuals in
an unsupervised way into K clusters (K being defined by the
user), assuming Hardy–Weinberg/linkage equilibrium
within clusters (Porras-Hurtado et al. 2013). In theory, if K
is set to the true number of population, samples belonging
to the same population will be classified into the same
cluster. More broadly, because knowing or inferring the true
number of population is not always possible, samples
belonging to the same cluster are at least considered as

sharing a close evolutionary history. STRUCTURE is
known to perform well in most cases, but it can be mis-
leading in some situations, particularly in the presence of
isolation by distance (Frantz et al. 2009; Schwartz and
McKelvey 2009), clusters of very different sizes (Kali-
nowski 2011; Puechmaille 2016), family groups (Anderson
and Dunham 2008; Rodríguez-Ramilo and Wang 2012;
Rodríguez-Ramilo et al. 2014), or high proportions of
missing data (Smith and Wang 2014).

STRUCTURE and other software suites based on similar
methods are frequently used in the context of introduction
routes inferences (Estoup and Guillemaud 2010; Lawson
Handley et al. 2011; Cristescu 2015). In some cases,
STRUCTURE is used directly to contrast models of inva-
sion history, mainly for comparisons of scenarios involving
either multiple independent introductions from a native
population, or a single introduction from the native area
followed by serial introduction(s) from this primary intro-
duced area. Being able to differentiate between the two
scenarios is of great importance especially because serial

Fig. 1 Schematic representations of the main STRUCTURE clustering
patterns that can be obtained at K 3 and K 2 according to different
invasion scenarios (either independent or serial) involving one native
and two invasive populations. Other patterns with admixture are also
possible but are not shown here because they are less informative in
the context of invasion routes. At K 3, with 3 samples, the same
pattern (i.e., each sample constitutes a cluster) is likely to be found
whatever the scenario, and thus no valuable information about the

origin of introduced populations can be deduced. On the contrary,
patterns obtained at K 2 can be informative: whereas clustering
patterns a and b can be obtained in both independent and serial sce
nario, pattern c should only be found if introductions are serial. If
obtained, this pattern c would lead a STRUCTURE user to eliminate
the independent scenario as a likely one
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introductions may be associated with a major eco-
evolutionary change in a particular invasive population
that can then act as a bridgehead for a larger scale invasion
(Lombaert et al. 2010; Guillemaud et al. 2011). In this

context, exploring clustering patterns with only two genetic
clusters (K= 2) is considered as informative. Indeed, one of
the clustering patterns that can be obtained makes it pos-
sible to reject the hypothesis of independent introductions:

Fig. 2 Simulated scenario and main observed STRUCTURE patterns
at K 2. a Graphical representation of the simulated scenario in which
two invasive populations (populations 2 and 3) are independently
derived from the native population (population 1). N is the effective
size at equilibrium and NF is the effective number of founders during
the bottlenecks. b Schematic representations of the main patterns
obtained in the STRUCTURE runs for K 2 and their associated
summarized codes. The misleading pattern, inconsistent with the

simulated scenario, is boxed. c Five examples of clusterings obtained
over ten STRUCTURE runs for K 2, and their associated classifi
cation. In this study, we focused on “misleading homogeneous clus
terings” and “misleading heterogeneous clusterings”, in which
“misleading patterns” were found in all ten runs or predominated,
respectively, for a given dataset. Runs displaying the misleading pat
tern are boxed
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if all samples from the invaded areas group together in one
cluster, and all samples from the native area group in the
other cluster, this allows rejecting the hypothesis of inde-
pendent introductions and is considered to provide fairly
conclusive evidence about a single introduction from the
native area (Fig. 1). For example, Ascunce et al. (2011)
explored the worldwide invasion history of the fire ant
Solenopsis invicta with a total of 2144 colonies sampled
from 75 geographic locations, including 39 native (South
America) and 36 invaded (USA, China, Australia) areas.
They found that all samples from invasive populations
clustered together when analyzing the data with STRUC-
TURE at K= 2 and concluded that only one introduction
from the native area occurred. They then used approximate
Bayesian computation to test whether the oldest invasive
population in the USA was the source of all other invasive
populations in distant areas. Similarly, Cordero et al. (2017)
analyzed 378 individuals of the Manila clam Ruditapes
philippinarum from 9 geographic locations, including 3
native (Asia) and 6 invaded (North America and Europe)
areas. They found that STRUCTURE analyses at K= 2
grouped all samples of invasive populations into the same
cluster. They concluded that a single native Asian intro-
duction of the species into North America was very likely,
and that North America then became the source of the
European outbreak. Such use of STRUCTURE in the
context of invasion biology is very common (e.g., Lach-
muth et al. 2010; Papura et al. 2012; Robert et al. 2012;
Bolte et al. 2013; Fontaine et al. 2013; Sanz et al. 2013;
Zhang et al. 2014; Yu et al. 2014; Zhou et al. 2015; Guil-
lemaud et al. 2015; Rewicz et al. 2015; Dieni et al. 2016;
Zhu et al. 2017). However, invasions frequently involve
major demographic events, such as strong bottlenecks fol-
lowed by genetic drift, which may significantly impair our
ability to determine introduction routes correctly from a
given STRUCTURE result. This may account for the con-
tradictory outcomes sometimes obtained with different
population genetics methods. For example, Mallez et al.
(2015) found conflicting results when trying to infer the
origin of the invasive Portuguese outbreak of the pinewood
nematode Bursaphelenchus xylophilus: while FST values
suggested a native North American origin, STRUCTURE
suggested an origin from an oldest invasive population in
Japan for these samples, because all invasive samples from
Portugal and Japan belonged to one cluster and all native
samples belonged to another cluster while analyzing K= 2
patterns.

In this study, we evaluated the risk of incorrect intro-
duction route inferences based on STRUCTURE analyses,
for the simple case of an invasion scenario involving one
native population and two independently introduced popu-
lations. We chose to simulate this scenario because it is the
sole one that can be rejected when obtaining a particular

clustering with a STRUCTURE analysis at K= 2 (Fig. 1).
We simulated a large number of microsatellite datasets
drawn from populations of various effective sizes and bot-
tleneck severities. STRUCTURE analyses were performed
on these simulated datasets and the resulting clustering
patterns at K= 2 were classified as “misleading” or “non-
misleading”. We then explored the effect of demographic
parameters on the likelihood of misleading patterns being
obtained, to identify and predict the situations in which the
use of STRUCTURE in a context of introduction routes
inference may be risky.

Methods

Scenario description and data simulation

We chose to simulate a scenario with two independent
introductions because it is the only one that can be rejected
from a STRUCTURE analysis when considering two
introduced populations and a native one (Fig. 1). We thus
defined a simple historical scenario in which two invasive
populations (populations 2 and 3) were independently
founded 50 generations ago from the same native popula-
tion (population 1). Both invasive populations were sub-
jected to a demographic bottleneck lasting 20 generations
(Fig. 2a). The effective sizes of all three populations at
equilibrium (N) and the effective number of founders of the
two invasive populations during the bottlenecks (NF) could
take different values: 10000, 1000, 100, 10, and 2 indivi-
duals, with N ≥NF. Log10(N/NF) was considered to quan-
tify bottleneck severity.

We used DIYABC version 2.0.4 software (Cornuet et al.
2014) to generate microsatellite multilocus genotype data-
sets through a coalescent process. We evaluated the effect
of the number of loci on the analyses, by performing
simulations with 10, 20, or 100 unlinked microsatellite
markers. For each combination of N, NF, and number of
loci, a total of 500 replicate datasets were generated. For all
datasets, a sample of 30 diploid individuals per population
was simulated. We used a generalized stepwise mutation
model, with realistic values for all three parameters (Jarne
and Lagoda 1996; Estoup et al. 2002): the mean mutation
rate (set to 5× 10 4), the mean parameter of the geometric
distribution defining the number of microsatellite repeats
gained or lost during mutation events (set to 0.22) and the
mean mutation rate for single-nucleotide insertion/deletion
(set to 10 8). In total, we simulated 22,500 datasets (15 sets
of parameters× 3 numbers of loci× 500 replicate datasets).
We developed a pipeline with PERL scripts, available at
https://doi.org/10.5281/zenodo.1002658, to automate the
processing of the datasets (simulations and subsequent
STRUCTURE and post-STRUCTURE analyses).
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STRUCTURE analyses and misleading clustering

For each of the 22,500 simulated datasets, a Bayesian
clustering analysis was performed in parallel, on a 120-
cores computer cluster, with STRUCTURE software
version 2.3.4 (Pritchard et al. 2000). We chose the admix-
ture model with correlated allele frequencies and no linkage
between loci. We used default values for all the other
parameters. Each run consisted of a burn-in period of 105

Markov chain Monte Carlo (MCMC) iterations, followed
by 5× 105 MCMC iterations. This run length is considered
to be long enough to obtain precise estimates of parameters
(Pritchard et al. 2010), but we also tried runs of double this
length for some combinations of parameters with 100 loci.
The results obtained were the same (data not shown).
We carried out ten replicate runs for each dataset and each
value of K, the number of genetic clusters, with K taking
values of 1, 2, 3 and 4. Although K= 2 constituted the focal
analysis of our study, we tested multiple values of K in
order to infer its most likely value as follow: for each
dataset, if the mean natural logarithm of the likelihood of
the data ln(P(X|K)) was maximal for K= 1, then the inferred
number of clusters was 1; otherwise, we determined the best
value of K (either K= 2 or K= 3) by the ΔK method
(Evanno et al. 2005).

We investigated the ability of STRUCTURE to clarify
introduction routes by focusing on K= 2 analyses. With K
= 2, the two samples from an introduced population may
or may not cluster together. With the scenario simulated
here, in which the two invasive populations result from
two independent introductions, the two samples of the
introduced populations would not be expected to cluster
together (Fig. 1). Indeed, the two independent drift pulses at
work during these two introductions (i.e., the bottleneck
events) should make the introduced populations more
genetically different from each other than from the native
population, from which they are separated by a single
drift pulse. Consequently, STRUCTURE would yield a
misleading pattern if the native population sample belonged
to one cluster and the two invasive population samples
both belonged to the other at K= 2. Indeed, this could be
considered evidence for a lack of independence of the
two populations, with one invasive population being
the source of the other (Figs. 1 and 2b). Such a clustering
pattern, hereafter referred to as “misleading clustering”,
would lead most STRUCTURE users to an incorrect
interpretation, according to which a “serial introductions”
scenario would be more likely than the “independent
introductions” scenario. Note that STRUCTURE analyses
carried out on three population samples with K= 3
are, theoretically, unsuitable for comparisons of indepen-
dent and serial introductions scenarios, because each

population sample would probably form its own cluster
(Fig. 1).

For analysis of the 225,000 STRUCTURE runs with K
= 2 and estimation of the frequency of misleading cluster-
ings, the STRUCTURE output was characterized as fol-
lows. From the output file of each run, we extracted the
proportion of membership QiA and QiB of population sam-
ple i for clusters A and B, respectively (with QiB= 1–QiA).
The QiA and QiB values were coded as 0, 25, 50, 75, or 100
when belonging to the [0;0.2],]0.2;0.4[, [0.4;0.6],]0.6;0.8
[or [0.8;1] intervals, respectively. For each STRUCTURE
run, we summarized the clustering pattern by a code C1A/
C2A/C3A, where CiA is the membership code of population
sample i for cluster A. For example, the clustering code
would be 0/0/100 for a STRUCTURE run output in which
Q1A= 0.12, Q2A= 0.05, and Q3A= 0.96. Note that
belonging to cluster A or B has no specific meaning, and the
subscripts A and B can thus be permuted. For example,
clustering codes 0/0/100 and 100/100/0 summarize the
same pattern and are pooled together as 0/0/100. Given the
simulated scenario of independent introductions of the two
invasive populations, 0/100/100 was the code considered to
correspond to misleading clustering (Fig. 2b). All other
clustering codes were considered non-misleading in the
context of introduction routes inference. Focusing on the
codes instead of the proportions of membership made it
possible to pool together slightly different clustering pat-
terns in the same category.

Given the stochastic processes involved in the MCMC
analysis, the ten replicated STRUCTURE runs performed
on a single dataset could conceivably generate different
results, a phenomenon called genuine multimodality
(Jakobsson and Rosenberg 2007; Porras-Hurtado et al.
2013). Clustering results for a given dataset were con-
sidered to be homogeneous if the same clustering code (as
defined above) was obtained in all ten runs. They were
otherwise considered to be heterogeneous. We evaluated the
global occurrence of misleading clustering in the analyses
of the simulated datasets, and focused on two critical
categories of misleading clusterings (Fig. 2c):

(i) “Misleading homogeneous clusterings”: for one data-
set, all ten runs homogeneously provide the mislead-
ing clustering pattern 0/100/100.

(ii) “Misleading heterogeneous clusterings”: for one
dataset, the ten runs are not homogeneous (i.e.,
genuine multimodality is observed) and the mislead-
ing clustering pattern 0/100/100 predominates.

In addition, we quantified the proportion of datasets
for which the most frequent clustering pattern was also
represented by the run with the highest log-likelihood of the
data.

Clustering analysis of introduction routes



Effect of demographic parameter values on
misleading clustering

For each number of simulated microsatellite loci (10, 20, or
100), the variables “proportion of analyses yielding mis-
leading homogeneous clusterings” and “proportion of ana-
lyses yielding misleading heterogeneous clusterings” were
analyzed independently with a generalized linear model,
using a binomial probability distribution of the residual
error and a logit link function. The following factors were
included as fixed effects: effective population size N and
bottleneck severity log10(N/NF). We used the Akaike
information criterion (AIC) to select the best model from
the various models of different complexity. Analyses were
performed with R software V3.2.2 (R Development Core
Team 2015).

Link between summary statistics of genetic diversity
and STRUCTURE patterns

We summarized each simulated dataset, by using ARL-
SUMSTAT version 3.5 software (Excoffier and Lischer
2010) to compute the mean number of alleles and the mean
expected heterozygosity in each population sample, and the
pairwise FST values between each pair of populations. We
also used in-house PERL scripts to compute (i) the mean

individual assignment likelihood (Rannala and Mountain
1997) (Li→j) of each invading population (samples 2 and 3)
to each possible source population (i.e., either the native
population or the other invasive population), and (ii) the
number of alleles shared by the invasive population
samples.

For the comparison of datasets leading to “misleading
homogeneous clusterings”, “misleading heterogeneous
clusterings” and “non-misleading clusterings”, we specifi-
cally explored a few genetic diversity summary statistics: (i)
expected heterozygosity of the native population sample,
(ii) mean expected heterozygosity of both invasive popu-
lation samples and (iii) the ratio of alleles shared by the two
invasive population samples to the total number of alleles in
the two samples. For each summary statistic and each
number of loci, pairwise Mann–Whitney tests with Holmes
correction for multiple comparisons were performed.

We also compared STRUCTURE results with those
obtained by two other methods traditionally used to identify
source populations: (i) the “FST-based method” and (ii) the
“assignment likelihood-based method” (Genton et al. 2005;
Pascual et al. 2007; Ciosi et al. 2008; Tepolt et al. 2009;
Thibault et al. 2009; Papura et al. 2012; Mallez et al. 2015;
Dieni et al. 2016). For an “independent introductions” sce-
nario, we would expect the FST between the two invasive
population samples to be larger than the FST values between

Fig. 3 Distribution of the best
number of clusters K inferred by
Evanno’s method for each
number of loci, and the
proportion for which there was
an absence (homogeneous
clustering) or presence
(heterogeneous clustering) of
genuine multimodality in the ten
STRUCTURE runs carried out
at K 2
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the native population and each of the invasive population
samples (i.e., FST 2–3> FST 1–2 and FST 2–3> FST 1–3).
We would also expect both invasive population samples to
be best assigned to the native population sample (i.e., L2→1
> L2→3 and L3→1> L3→2).

For each dataset, a global exact test for population gen-
otypic differentiation (Raymond and Rousset 1995a) was
carried out with GENEPOP software version 4.3 (Raymond
and Rousset 1995b). If a dataset displayed no population
differentiation, we made the prudent and standard decision
of not trying to infer any evolutionary relationship between
the population samples. Consequently, such datasets were

considered to generate non-misleading results for all
methods.

Results

Effect of demographic parameter values on
simulated datasets

The 500 simulated datasets for each parameter set are
summarized with some common statistics in Table S1.
Decreasing effective population sizes (N) generate lower

Fig. 4 a Proportion of datasets
with and without misleading
patterns (Fig. 2b) for the ten
STRUCTURE runs at K 2. b
Best inferred number of clusters
K obtained by Evanno’s method
for each number of loci within
the datasets displaying
misleading homogeneous (left)
and misleading heterogeneous
clusterings (right)
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intra-population and higher inter-population genetic diver-
sities. Increasing bottleneck severity (log10(N/NF)) gen-
erates lower intra-population genetic diversities for both
invasive samples, and overall higher inter-population
genetic diversity. The main impact of a larger number of
loci is a decrease in the variance of all summary statistics.
Overall, the chosen parameter values (for N and NF) yield a
large number of different combinations of genetic diversity
for evaluation of the ability of STRUCTURE software to
explore introduction routes in different situations.

Overall STRUCTURE results

The best value of K inferred was most frequently three (Fig.
3 and Fig. S1). The proportion of datasets for which the best
number of clusters was K= 3 increased strongly with
increasing numbers of loci (41.9, 50.6, and 74.9% for 10,
20, and 100 loci, respectively). More than 80% of the
simulated datasets for which K= 3 was inferred by the ΔK
method had heterogeneous clustering codes (i.e., genuine
multimodality) at K= 2 (Fig. 3). By contrast, when the
number of inferred clusters was one or two, multimodality
at K= 2 was found in less than 10% of all datasets.

Occurrence of misleading STRUCTURE patterns

Three categories of clustering codes at K= 2 accounted for
more than 95% of all runs (see Table S2 for details): (i)

clusterings in which all populations were fully admixed and
undistinguishable with STRUCTURE (i.e., the 50/50/50
code), (ii) clusterings in which the two invasive samples
belonged to different clusters (i.e., the C1A/100/0 and C1A/0/
100 codes) and (iii) the misleading clusterings defined
earlier (see Methods), in which the two invasive samples
belonged to the same cluster, whereas the native sample
belonged to the other cluster (i.e., the 0/100/100 code, Fig.
2b).

Overall, the proportion of datasets with at least one
misleading clustering pattern over the ten STRUCTURE
runs (“misleading homogeneous clusterings”, “misleading
heterogeneous clusterings” and non-misleading clusterings
with at least one run yielding a misleading pattern) was
15.31, 22.07, and 47.01% for 10, 20, and 100 simulated
loci, respectively (Fig. 4a and Fig. S2), and very similar
proportions were obtained with more (0.1 and 0.9) and less
(0.3 and 0.7) stringent QiA cutoff values (instead of 0.2 and
0.8 for QiA) for the encoding of pattern results (Table S3).

The frequency of “misleading homogeneous clusterings”
was similar for different numbers of loci, and was rather
low overall (between 4.24 and 5.59% of the datasets, Fig.
4a). “Misleading heterogeneous clusterings” were also
infrequent, but their frequency increased with the number of
loci: 2.71, 3.96, and 8.41% for 10, 20, and 100 loci,
respectively (Fig. 4a). Overall, 7.45, 9.55, and 12.65% of
datasets for 10, 20, and 100 loci, respectively, yielded
misleading results. For some combinations of parameters,

Table 1 Results obtained with the best model selected from the various statistical models run for the response variables “proportion of analyses
yielding homogeneous misleading clusterings” and “proportion of analyses yielding heterogeneous misleading clusterings”

Response
variable

Number of
loci

Factors of selected
model

Estimate Std error z value (df
7499)

P

Proportion of analyses yielding homogeneous misleading clusterings

10 N 0.004 0.0005 7.931 <0.0001

log10(N/NF) 0.399 0.084 4.746 <0.0001

N x log10(N/NF) 0.001 0.0002 5.185 <0.0001

20 N 0.005 0.0005 9.658 <0.0001

100 N 0.0003 0.00006 5.757 <0.0001

log10(N/NF) 0.194 0.259 0.749 0.4540

N × log10(N/NF) 0.028 0.005 5.190 <0.0001

Proportion of analyses yielding heterogeneous misleading clusterings

10 N 0.0002 0.00007 3.496 0.0005

log10(N/NF) 1.107 0.114 9.672 <0.0001

N × log10(N/NF) 0.00004 0.00002 1.827 0.0677

20 N 0.0004 0.00006 5.977 <0.0001

log10(N/NF) 0.574 0.079 7.178 <0.0001

N × log10(N/NF) 0.00009 0.00002 4.854 <0.0001

100 N 0.0009 0.0001 9.666 <0.0001

log10(N/NF) 0.801 0.068 11.715 <0.0001

N × log10(N/NF) 0.0003 0.00003 11.245 <0.0001

Note: Significant P values, for a 5% threshold of significance, are shown in bold
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Fig. 5 Proportion of simulated datasets yielding (a) misleading
homogeneous clusterings and (b) misleading heterogeneous cluster
ings as a function of the parameters “effective population size at

equilibrium” (N) and “bottleneck severity” (log10(N/NF)). Each pro
portion was calculated for 500 datasets

Clustering analysis of introduction routes



Fig. 6 Tukey boxplots representing population genetics summary
statistics for simulated datasets yielding non misleading clusterings,
misleading homogeneous clusterings or misleading heterogeneous

clusterings. Within each frame, plots labeled with different letters are
significantly different at the 5% level of significance (Mann Whitney
tests)
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this proportion reached 36.8% of datasets (Fig. S2). K= 2
was most often (70%) inferred for datasets yielding “mis-
leading homogeneous clusterings”, and K= 3 was most
often (91%) inferred for datasets leading to “misleading
heterogeneous clusterings” (Fig. 4b).

For 85.8% of all datasets, the code of the run with the
highest log-likelihood of the data was the code that pre-
dominates over the 10 runs. However, this proportion
dropped to only 40.5% when considering specifically the
datasets displaying “Misleading heterogeneous clusterings”.

Effect of demographic parameter values on
STRUCTURE results

For the response variable “proportion of analyses yielding
misleading homogeneous clusterings”, the best model
according to the AIC always included the effective popu-
lation size at equilibrium N, which was highly significant
whatever the number of simulated loci (Table 1). Lower N
values resulted in a higher proportion of misleading
homogeneous clusterings (Fig. 5a). The best model also
included bottleneck severity, log10(N/NF), and the interac-
tion between the two main factors for 10 and 100 loci.
Bottleneck severity was significant only for 10 loci, and had

a positive effect: the stronger the bottleneck, the higher the
proportion of misleading homogeneous clusterings. The
interaction between the two factors was significant in both
models (Table 1 and Fig. 5a).

For the response variable “proportion of analyses yield-
ing misleading heterogeneous clusterings”, the full model
was selected for all numbers of simulated loci (Table 1).
The effective population size at equilibrium N was sig-
nificant in all cases, and had a negative effect (Fig. 5b).
Bottleneck severity log10(N/NF) was also strongly sig-
nificant for all numbers of loci, but its effect was positive
for 10 and 20 loci and negative for 100 loci. The interaction
between the two factors was significant for 20 and 100 loci,
with a positive effect (Table 1).

Links between summary statistics for genetic
diversity and STRUCTURE patterns

The diversity of the native population, as assessed by its
expected heterozygosity in the datasets with “misleading
homogeneous clusterings”, was significantly lower than that
for “non-misleading” datasets, with median values ranging
from 0.025 to 0.126 depending on the number of loci
considered (Fig. 6). On the contrary, no clear trend could be

Fig. 7 Venn diagrams
illustrating the distribution of
misleading results for three
methods: the FST based
method, the assignment
likelihood based method, and
STRUCTURE. Each diagram
was produced with 7,500
datasets. The Venn diagrams on
the left correspond to
homogeneous misleading
clustering with STRUCTURE,
whereas those on the right
correspond to heterogeneous
misleading clustering with
STRUCTURE
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observed for datasets with “misleading heterogeneous
clusterings”. For these datasets, the mean expected hetero-
zygosity was relatively high with 10 loci, intermediate with
20 loci and low with 100 loci, but, in each case, extreme
low and high values were observed. The diversity of inva-
sive populations, which was affected by both the diversity
of the native population and bottleneck severity, was low
for both kinds of misleading clusterings (Fig. 6). In com-
parisons with the “non-misleading” datasets, the proportion
of alleles shared by the two invasive populations was higher
for the datasets with “misleading homogeneous clusterings”
regardless of the number of loci, and lower for “misleading
heterogeneous clusterings”, except for 100 loci for which it
was higher (Fig. 6).

Outcomes for comparisons of STRUCTURE clusterings
with results from FST-based and assignment likelihood-
based methods were very mixed, depending on the type of
“misleading clusterings” considered. 86.5, 93.6, and 99.1%
of datasets with “misleading homogeneous clusterings” in
STRUCTURE provided misleading results with at least one
of the methods based on FST or assignment likelihood,
when considering 10, 20, and 100 loci, respectively (Fig. 7).
By contrast, datasets with “misleading heterogeneous clus-
terings” in STRUCTURE analysis were rarely (for 10 and
20 loci), or at least not as strongly (for 100 loci), associated
with misleading results with the other methods: this was the
case for 15.2, 24.9, and 67.5% of these datasets for 10, 20,
and 100 loci, respectively (Fig. 7). Note that, overall,
STRUCTURE generates less misleading results than the
other two methods, while the assignment likelihood-based
method generates the worse results.

Discussion

We used simulated microsatellite datasets for a particular
invasion scenario to determine whether the method imple-
mented in the widely used STRUCTURE software
(Pritchard et al. 2000) could mislead users trying to infer
introduction routes. We focused on a scenario with two
independent introductions from a native population because
this scenario can be rejected when obtaining some particular
clustering results, which is not true for serial introductions
scenarios when the chronology of introductions is not
known. We found that, for a true scenario of two inde-
pendent invasions from a single source, STRUCTURE runs
could give misleading clustering patterns (i.e., the two
invasive populations clustered together at K= 2). In about
10% of all simulated datasets, the results led to incorrect
interpretation, with all (“homogeneous misleading cluster-
ings”) or most (“heterogeneous misleading clusterings”) of
the runs for a given dataset yielding the misleading pattern.
Some combinations of demographic parameters resulted in

higher frequencies of misleading results with STRUC-
TURE, and increasing the number of loci also led to an
overall increase in the frequency of misleading results. Our
results suggested that the two types of misleading clustering
hazard, homogeneous and heterogeneous misleading clus-
terings, were very different. We suggest that (i) “homo-
geneous misleading clusterings” probably arise from a large
probability of independently drawing the same alleles twice
from a native population with low genetic diversity and that
(ii) “heterogeneous misleading clusterings” probably ran-
domly arise from convergence problems in STRUCTURE.

For “homogeneous misleading clustering”, the effective
size of the native population has the strongest effect: the
smaller this effective population size, the higher the risk of
obtaining misleading clustering patterns over all STRUC-
TURE runs. Such “homogeneous misleading clusterings”
occurred principally when the two invasive populations
were very alike: they shared a large proportion of alleles,
and the FST-based and likelihood assignment-based meth-
ods frequently yielded the same clustering pattern.
Accordingly, the number of clusters inferred by the Evan-
no’s method was most frequently K= 2, which was not
expected given the three-population simulated scenario.
Invasive populations encounter founder effects and genetic
drift (Simberloff 2009; Lawson Handley et al. 2011), which
are random processes. In this context, the probability of
independently drawing the same allele twice from a given
native population is directly dependent on its frequency.
This probability is equal to the expected homozygosity of
the considered allele, and is therefore rather low when the
number of allele is high, but can actually get large when the
diversity is limited. As a matter of fact, “homogeneous
misleading clusterings” were observed with datasets in
which the native population displayed a very low expected
heterozygosity, implying that there were only one or a few
highly frequent alleles at each locus (Allendorf 1986).

The interpretation of “heterogeneous misleading cluster-
ings” is less clear-cut, but several lines of evidence suggest
the involvement of convergence issues in STRUCTURE
runs. Indeed, “heterogeneous misleading clusterings” at K=
2 most often occurred when the best K value was
undoubtedly 3, which corresponds to the true number of
population. More generally, this category of misleading
clusterings was associated with a better ability to differ-
entiate the three populations. This may explain why the
proportion of “heterogeneous misleading clusterings” was
higher for a larger number of loci, for which more infor-
mation is available to properly differentiate populations
(Evanno et al. 2005; Waples and Gaggiotti 2006; Hubisz
et al. 2009). This is indeed entirely consistent with what is
observed in the context of genome-scale phylogenies in
which a larger amount of data is known to exacerbate the
potential for bias to be misleading when the model used to
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describe the data is not properly chosen (Phillips et al. 2004;
Rodríguez-Ezpeleta et al. 2007; Kumar et al. 2012).
Besides, for 10 and 20 simulated loci, the proportion
of “heterogeneous misleading clusterings” was positively
related to bottleneck severity, which accentuates differences
between populations. Overall, we suggest that “hetero-
geneous misleading clustering” probably results from
a convergence problem in the MCMC procedure
of STRUCTURE: when an inappropriate number of clusters
is imposed—here K= 2 whereas the data are more
consistent with K= 3—multimodalities are often observed
(Pritchard et al. 2000; Jakobsson and Rosenberg 2007),
and sometimes, by chance, a large proportion of misleading
clustering events occur in the various runs, resulting
in “heterogeneous misleading clusterings”. The important
role of randomness is further supported by the weak asso-
ciation between such clusterings and the log-likelihood of
the data.

Conclusion and general recommendations

This study was based on a single simple invasion scenario
with only three populations. More complex scenarios
should be studied in the future, for example by increasing
the number of native populations, including admixture or
isolation by distance, or manipulating divergence times, but
this study constitutes a crucial first step, providing impor-
tant information about the use of clustering methods in the
context of biological invasions.

We found that STRUCTURE yielded misleading results,
but at a low frequency. However, our results suggest that
some situations should be analyzed with care. First, inva-
sion biologists should be very cautious if the diversity of the
native population is low: independent introductions from a
single source population with low genetic diversity are
likely to produce genetic signals similar to that expected for
serial introductions. Such misleading results are difficult to
spot, as they are consistent with the results of other meth-
ods, such as FST- or assignment likelihood-based methods.
In this context, quantitative methods may be very useful.
Approximate Bayesian calculation, for example, has proven
to be very powerful in a very similar context (Guillemaud
et al. 2010). Second, multimodal STRUCTURE results
should be interpreted very cautiously, particularly if large
numbers of loci are used. This is sobering news, because
many published studies interpret STRUCTURE results at
different K values, including those displaying genuine
multimodality. This problem is not specific to the explora-
tion of introduction routes and has much wider implications
(Meirmans 2015). Multimodality is often a sign of poor
convergence of STRUCTURE runs, and is therefore likely
to lead to results of limited biological meaning. In such
situations, other methods (e.g., FST-based, assignment

likelihood-based or principal component analysis) may
make it possible to determine whether the STRUCTURE
results are misleading or not. Also, the log-likelihood of the
data estimated by the software may help to reject a mean-
ingless clustering, but this statistic should be interpreted
with great care (Jakobsson and Rosenberg 2007). More
generally, it is important to keep in mind that STRUCTURE
results have to be interpreted cautiously (Pritchard et al.
2010) and, in the context of invasion routes inferences, it
should rather be used as a tool to clarify the scenery and
decrease the number of genetic units from a large number of
population samples to a few main clusters before quantita-
tive analyses, such as approximate Bayesian computation,
are performed (Lombaert et al. 2014).

Data accessibility
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