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Error estimates for phase recovering from phaseless

scattering data ∗

R.G. Novikov † V.N. Sivkin ‡

November 15, 2019

Abstract

We study the simplest explicit formulas for approximate �nding the complex scattering

amplitude from modulus of the scattering wave function. We obtain detailed error estimates

for these formulas in dimensions d = 3 and d = 2.

1 Introduction

We consider the Schr�odinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1)

v ∈ L∞(Rd), supp v ⊂ D, (2)

D is an open bounded domain in Rd.

Here ∆ is the standart Laplacian in x, v is a scalar potential.
For equation (1) we consider the classical scattering solutions ψ+ speci�ed by the

following asymptotics as |x| → ∞:

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f(k, |k| x

|x|
) +O

(
1

|x|(d+1)/2

)
, (3)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4, x, k ∈ Rd, k2 = E,

where a priori unknown function f = f(k, l), k, l ∈ Rd, k2 = l2 = E, arising in
(3) is the classical scattering amplitude for (1).

In order to study ψ+ and f one can use the Lippmann-Schwinger integral equation
(4) and formula (6):
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ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)v(y)ψ+(y, k)dy, (4)

G+(x, k) := − 1

(2π)d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|), (5)

f(k, l) =
1

(2π)d

∫
Rd

e−ilxv(x)ψ+(x, k)dx, (6)

where x, k, l ∈ Rd, k2 = l2 = E, and G+
0 also depends on d. Note that:

G+(x, k) = − i
4
H1

0(|x||k|) for d = 2, G+(x, k) = −e
i|k||x|

4π|x|
for d = 3, (7)

where H1
0 is the Hankel function of the �rst type.

In the present work we also assume that

equation (4) is uniquely solvable for ψ+(·, k) ∈ L∞(Rd) for �xed E > 0, (8)

where k ∈ Rd, k2 = E. For example, for real-valued v satisfying (2) it holds true.
We recall that ψ+ describes scattering of the incident plane waves described by

eikx on the scatterer described by v. In addition, the second term on the right-hand
side of (3) describes the leading scattered spherical waves.

We also recall that in quantum mechanics the values of scatttering functions
ψ+(x, k) and f(k, l) have no direct physical sense, whereas the phaseless values
|ψ+(x, k)|2 and |f |2 have probabilistic interpretation (the Born's principle) and can
be obtained in experiments; see [B, FM].

We consider the following problems:
Problem 1. Find v on Rd from f = f(k, l) given for appropriate pairs (k, l).
Problem 2. Find f(k, l) from |ψ+(x, k)|2 at appropriate points x such that

x ∈ Rd \D and x/|x| = l/|l|.
Problem 3. Find v on Rd from |ψ+|2 appropriately given outside of D.
Problem 1 is the classical inverse scattering problem. This problem was studied

in many works; see, for example, [ChS], [E], [M], [N1] and references therein.
Problem 2 is a problem of phase recovering. Note that �nding f considered in

this problem and formula (3) also yield approximate �nding ψ+ for large |x|. In
connection with known results on Problem 2, see [N2]-[N5].

Problem 3 is a problem of inverse scattering without phase information. In
connection with known results on this problem, see [JL], [N2]-[N5], [K2].

Actually, in the present work we continue studies on Problem 2 in dimentions
d = 3 and d = 2. Problem 2 for d = 1 was solved in [N3]. In addition, results on
Problem 1 and Problem 2 admit direct applications to Problem 3.

Note that Problem 2 is one of possible problems of phase recovering and Problem
3 is one of possible problems of inverse scattering without phase information. In
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connection with results given on other inverse wave propagation problems without
phase information, see [ChS], [IK], [K1], [N2], [N4], [KR], [R], [AHN], [HN], [P] and
references therein.

We recall that Problem 2 can be solved approximately by the following explicit
formulas of [N2], [N3]:

(
Re c(d, |k|)f(k, l)
Im c(d, |k|)f(k, l)

)
= M

((
a(x1, k)
a(x2, k)

)
−
(
δa(x1, k)
δa(x2, k)

))
, (9)

where (10)

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), (11)

(12)

M =
1

2 sin(φ2 − φ1)

(
sin(ϕ2) − sin(ϕ1)
− cos(ϕ1) cos(ϕ2)

)
, (13)

x1 = sl̂, x2 = (s+ τ)l̂, l̂ = l/|l|, (14)

ϕj = |k||xj| − kxj, j = 1, 2, (15)

ϕ2 − ϕ1 = τ(|k| − kl̂), (16)

δa(x1, k) = O(s−σ), δa(x2, k) = O(s−σ) as s→ +∞, (17)

uniformly in k̂ = k/|k|, l̂ = l/|l| and τ at �xed E > 0,

σ = 1/2 for d = 2, σ = 1 for d ≥ 3, (18)

where k, l ∈ Rd, k2 = l2 = E, s > 0, τ > 0, sin(ϕ1 − ϕ2) 6= 0.
In order to control error in �nding f(k, l) from |ψ+(x, k)|2 at x = x1, x2 via

formulas (9-15) it is necessary to estimate δa(x, k) = O(s−σ) in detail. However,
detailed estimates for δa(x, k) were not yet given in the literature. For the �rst time
such estimates are given in the present work, see Theorem 1 and Lemmas 1 and 2
of Section 2. These estimates are proved in Sections 3-5.

Finally, we recall that 2n-point version of formulas (9)-(16) with error term es-
timated as O(s−n), s → +∞, is given in [N5]. Detailed estimates of this O(s−n)
generalizing the estimates (20)-(23) (see Section 2) of the present work will be given
elsewhere.

2 Main results

Let
D ⊂ Br = {x ∈ Rd : |x| ≤ r} (19)

for some �xed r > 0.
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Theorem 1. (A) Under assumptions (2),(8),(19) for d = 3, the following estimate
holds, for |x| ≥ 3r:

|δa(x, k)| ≤ ρ3
‖ψ+‖∞‖v‖L1

2π|x|
+

(
1 +

2ρ3
|x|

+
ρ23
|x|2

) ‖ψ+‖2∞‖v‖2L1

16π2|x|
, (20)

ρ3 := r(4.5 + 7.65|k|r + 3.91|k|2r2), (21)

where k, x ∈ R3, k2 = E > 0.
(B) Under assumptions (2),(8),(19) for d = 2, the following estimate holds:

|δa(x, k)| ≤

(
1 +

ρ2
√

2

|x|
+

ρ22
2|x|2

)
‖ψ+‖2∞‖v‖2L1

8π|x|1/2|k|
+ ρ2
‖ψ+‖∞‖v‖L1

2
√
π|k|1/2|x|

, (22)

ρ2 := r

(
0.33

|k|r
+ 2.51 + 5.36|k|r + 2.14|k|2r2

)
, (23)

where k, x ∈ R2, k2 = E > 0.

In Theorem 1 we use the notation ‖ψ+‖∞ := ‖ψ+(·, k)‖L∞(D).

Theorem 1 is proved in Sections 3, 4.
In addition, ‖ψ+‖∞ is estimated in Lemmas 1 and 2 given below.
Let

Q = C0(d, s) sup
x∈D
|(1 + |x|2)sv(x)||k|−1, (24)

where C0 is the constant of the Agmon estimate (99) (see Section 5).

Lemma 1. (A)Under assumptions (2), (19), for Q < 1 and d = 3, the following
estimate holds:

‖ψ+(·, k)‖L∞(R3) ≤ 1 +

√
5

6

‖v‖L∞(D)(1 + r2)s/2r1/2

(1−Q)
, (25)

where s = (d+ ε)/2, ε > 0, |k| ≥ 1.
(B) Under assumptions (2), (19), for Q < 1 and d = 2, the following estimate

holds:

‖ψ+(·, k)‖L∞(R2) ≤ 1 +

√
π‖v‖L∞(D)(1 + r2)s/2r1/2√

2ε|k|(1−Q)
, (26)

where s = (d+ ε)/2, ε > 0, |k| ≥ 1.

Lemma 2. (A) Under assumptions (2), (19), for ‖v‖L∞(D)r
2 ≤ 2, d = 3 the

following estimate holds:

‖ψ+‖L∞(R3) ≤
1

1− ‖v‖L∞(D)r2/2
. (27)
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(B)Under assumptions (2), (19), for
√

2π
|k|
‖v‖L∞(D)r5/2

5 < 1, d = 2 the following

estimate holds:

‖ψ+‖L∞(R2) ≤
1

1−
√

2π
|k|
‖v‖L∞(D)r3/2

3

. (28)

Lemmas 1 and 2 are proved in Section 5.

3 Proof of Theorem 1 (A)

We have that (see [N2]):

|δa(x, k)| = |x|−
d−1
2 |c|2|f |2 + 2|x|

d−1
2 Re(δψ+(x, k)ψ+

1 (x, k)) + |x|
d−1
2 |δψ+(x, k)|2,

(29)

where f = f(k, |k|x|x| ),

ψ+
1 (x, k) := eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f(k, |k| x

|x|
), (30)

δψ+(x, k) := ψ+(x, k)− ψ+
1 (x, k). (31)

Note that

|f | = 1

(2π)d
|
∫
Rd

e−ilxv(x)ψ+(x, k)dx| ≤ 1

(2π)d
‖ψ+‖∞‖v‖L1

. (32)

Further in this section we always assume that d = 3.
The following estimate holds:

|δa(x, k)| ≤ |x|−1(2π2)2|f |2 + 2|x||δψ+(x, k)||1 +
2π2|f |
|x|
|+ |x||δψ+(x, k)|2. (33)

In addition, |δψ+(x, k)| is estimated in the following lemma:

Lemma 3. assumptions of Theorem 1A, the following estimate holds, for |x| ≥ 3r :

|δψ+(x, k)| ≤ ‖ψ
+‖∞‖v‖L1

4π|x|2
ρ3(r, k). (34)

Using estimates (29), (32), (34) we have that:

|δa(x, k)| ≤ |x|−1(2π2)2 1

((2π)3)2
‖ψ+‖2∞‖v‖2L1

+

+2|x| 1

4π
‖ψ+‖∞‖v‖L1

ρ3
|x|2

(1 +
2π2 1

(2π)3‖ψ
+‖∞‖v‖L1

|x|
) + |x|( 1

4π
‖ψ+‖∞‖v‖L1

ρ3
|x|2

)2 ≤
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≤
‖ψ+‖2∞‖v‖2L1

16π2|x|
+ ‖ψ+‖∞‖v‖L1

ρ3
2π|x|

(1 +
‖ψ+‖∞‖v‖L1

4π|x|
)+

+‖ψ+‖2∞‖v‖2L1

ρ23
16π2|x|3

, |x| ≥ 3r. (35)

Estimate (20) of Theorem 1A follows from (35). Therefore, in order to prove
Theorem 1A it remains to prove Lemma 3.

Proof of Lemma 3. Using the Lippmann-Schwinger integral equation (4) and
formulas (6), (31) we obtain

δψ+(x, k) = −
∫
R3

ei|k||x−y|

4π|x− y|
v(y)ψ+(y, k)dy+

+2π2
ei|k||x|

|x|
1

(2π)3

∫
R3

e−i|k|
xy
|x|v(y)ψ+(y, k)dy =

=
1

4π

∫
R3

(
ei|k||x|−i|k|

xy
|x|

|x|
− ei|k||x−y|

|x− y|

)
v(y)ψ+(y, k)dy. (36)

From (36) we obtain (37):

|δψ+(x, k)| ≤ 1

4π
‖ψ+(·, k)‖∞

∫
R3

∣∣∣∣∣ei|k||x|−i|k|
xy
|x|

|x|
− ei|k||x−y|

|x− y|

∣∣∣∣∣ |v(y)|dy. (37)

Lemma 4. Let x, y ∈ R3, |y| ≤ r, |x| ≥ 3r. Then:∣∣∣∣∣ei|k||x|−i|k|
xy
|x|

|x|
− ei|k||x−y|

|x− y|

∣∣∣∣∣ ≤ r

|x|2
(4.5 + 7.65|k|r + 3.91|k|2r2). (38)

Estimate (34) of Lemma 3 follows from estimates (37), (38). Thus, in order to
prove Lemma 3, it remains to prove Lemma 4.

Proof of Lemma 4. To prove Lemma 4 we use in particular Lemma 5.

Lemma 5. Let x, y ∈ R3, |y| ≤ r, |x| ≥ 3r. Then the following estimates hold:

|x− y| = |x|
(

1− xy

|x|2
+
|y|2

2|x|2
− (xy)2

2|x|4
+ L3(x, y)

)
, |L3(x, y)| ≤ 4.13r3

|x|3
; (39)

|x− y| = |x|
(

1− xy

|x|2
+ L2(x, y)

)
, |L2(x, y)| ≤ 2.38r2

|x|2
. (40)
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Proof of Lemma 5. Recall that

(1 + ε)1/2 =
∞∑
n=0

(−1)n(2n)!

(1− 2n)n!24n
εn =

∞∑
n=0

anε
n,∀|ε| < 1. (41)

Note that

kn+1 :=
an+1

an
=

(−1)(2n+ 1)(2n+ 2)(1− 2n)

(n+ 1)(n+ 1)4(1− 2n− 2)
= −2(2n+ 1)(2n− 1)

4(2n+ 1)(n+ 1)
= −

(
1− 3

2n+ 2

)
,

(42)

|kn+1| < 1, for n ∈ N ∪ {0}.
Therefore,

|
∞∑
n=3

anε
n| ≤ |a3|

∞∑
n=3

|εn| ≤ |a3|
|ε|3

1− |ε|
, |ε| < 1, (43)

|a3| =
6!

5 ∗ 3!3!43
=

6 ∗ 5 ∗ 4 ∗ 6

5 ∗ 6 ∗ 6 ∗ 43
=

1

16
.

In the present work we use formulas (41), (43) for

ε = −2xy

|x|2
+
|y|2

|x|2
, x, y ∈ Rd, |y| ≤ r, |x| ≥ 3r. (44)

From (44) it follows that:

|ε| ≤ 7

9
, |ε| ≤ 7

3

r

|x|
. (45)

Using (41),(44) we have that

|x− y| = |x|
∣∣∣∣ x|x| − y

|x|

∣∣∣∣ = |x|
(

1− 2xy

|x|2
+
|y|2

|x|2

) 1
2

= (46)

= |x|

(
1− xy

|x|2
+
|y|2

2|x|2
− 1

8

(
|y|2

|x|2
− 2xy

|x|2

)2

+R3(x, y)

)
,

where

|R3(x, y)| = |
∞∑
n=3

anε
n| ≤ |a3|

|ε|3

1− |ε|
≤ 1

16

73r3

33|x|3
1

2/9
≤ 3.58

r3

|x|3
. (47)

Using (46), (47) and gathering the terms with equal degrees in |x|, we obtain:

|x− y| = |x|
(

1− xy

|x|2
+
|y|2

2|x|2
− (xy)2

2|x|4
+ L3(x, y)

)
, (48)

7



|L3(x, y)| ≤ 1

8

|y|4

|x|4
+

1

2

xy|y|2

|x|4
+R3(x, y) ≤ r3

24|x|3
+

r3

2|x|3
+ 3.58

r3

|x|3
≤ 4.13r3

|x|3
.

(49)

Thus, estimate (39) is proved.
In addition to (46), (47) we also need the following formulas:

|x− y| = |x|
(

1− xy

|x|2
+
|y|2

2|x|2
+R2(x, y)

)
, (50)

|R2(x, y)| = |
∞∑
n=2

anε
n| ≤ |a2ε2|+R3(x, y) ≤ 72/32

8

r2

|x|2
+ 3.58

r3

|x|3
≤ 1.88

r2

|x|2
.

(51)

In a similar way with (48), (49) we have

|x− y| = |x|
(

1− xy

|x|2
+ L2(x, y)

)
, (52)

|L2(x, y)| ≤ r2

2|x|2
+ 1.88

r2

|x|2
≤ 2.38r2

|x|2
. (53)

Thus, estimate (40) is proved. This completes the prove of Lemma 5. �
Now we are ready to prove estimate (38). We have∣∣∣∣∣ei|k||x|−i|k|

xy
|x|

|x|
− ei|k||x−y|

|x− y|

∣∣∣∣∣ =

=

∣∣∣∣∣∣e
i|k||x|−i|k| xy|x|

|x|
− e

i|k||x|
(
1− xy

|x|2+
|y|2

2|x|2−
(xy)2

2|x|4 +L3(x,y)
)

|x|
(

1− xy
|x|2 + L2(x, y)

)
∣∣∣∣∣∣ =

=
1

|x|

∣∣∣∣∣∣1− e
i|k||x|

(
|y|2

2|x|2−
(xy)2

2|x|4 +L3(x,y)
)

1− xy
|x|2 + L2(x, y)

∣∣∣∣∣∣ =:
1

|x|

∣∣∣∣1− eiL

1− t

∣∣∣∣ . (54)

Note that

|eiL − 1− iL| ≤ L2

2
, for L ∈ R, and | 1

1− t
− 1− t| ≤ t2

1

1− |t|
, |t| < 1, (55)

and further

|1− eiL

1− t
| ≤ |1− (1 + L+ L2/2)(1 + t+ t2/(1− |t|))| ≤

≤ L+ L2/2 + t+
t2

1− |t|
+ (L+ L2/2)(t+ t2/(1− |t|)). (56)
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In our case:

|L| = |k||x|
∣∣∣∣ |y|22|x|2

− (xy)2

2|x|4
+ L3(x, y)

∣∣∣∣ ≤ |k||x|
(
r2

2
+
r2

2
+

4.13r3

|x|

)
≤ 2.38|k|r2

|x|
;

(57)

L2/2 ≤ 2.382|k|2r4

2|x|2
;

|t| = | xy
|x|2
− L2(x, y)| ≤ r

|x|
+

2.38r2

|x|2
≤ r

|x|
+

0.8r

|x|
≤ 1.8r

|x|
;

t2

1− t
≤

1.82r2

|x|2

1− 1.8/3
=

1.82r2

|x|2
1

0.4
= 8.1

r2

|x|2
.

Finally,

|1− eiL

1− t
| ≤ 2.38|k|r2

|x|
+

2.382|k|2r4

2|x|2
+

1.8r

|x|
+

8.1r2

|x|2
+

+(
2.38|k|r2

|x|
+

2.382|k|2r4

2|x|2
)(

1.8r

|x|
+

8.1r2

|x|2
) ≤

≤ 3.06|k|r2

|x|
+

3.062|k|2r4

2|x|2
+

1.8r

|x|
+

8.1r2

|x|2
+ 1.5(

3.06|k|r2

|x|
+

3.062|k|2r4

2|x|2
) ≤

≤ r

|x|
(4.5 + 7.65|k|r + 3.91|k|2r2). (58)

Estimate (38) follows from (54), (58), that proves Lemma 4. �.
This also completes the proof of Theorem 1A. �.

4 Proof of the Theorem 1(B)

Proceeding from (29)-(31), for d = 2, we have:

|δa(x, k)| ≤ |x|−1/2|c|2|f |2 + 2|x|1/2|δψ+(x, k)|
(

1 +
|c||f |
|x|1/2

)
+ |x|1/2|δψ+(x, k)|2,

(59)

where

c = c(2, |k|) = −πi(−2πi)
2−1
2 |k|

2−3
2 = −(1 + i)π3/2|k|−1/2. (60)

Now |f | is estimated in (32) for d = 2 and |δψ+(x, k)| is estimated in the following
lemma:
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Lemma 6. Under the assumptions of Theorem 1B, the following estimate holds for
|x| ≥ 3r:

|δψ+(x, k)| ≤ ‖v‖L1
‖ψ+‖∞ρ2(|k|, r)

4(π|k|)1/2|x|3/2
. (61)

Using estimates (59), (32), (61) we have that

|δa(x, k)| ≤ |x|−1/2|k|−1
‖ψ+‖2∞‖v‖2L1

8π
+ (62)

+ |x|1/2 ‖v‖L1
‖ψ+‖∞ρ2

2
√
π|k|1/2|x|3/2

(
1 +

‖ψ+‖∞‖v‖L1

2|x|1/2(2π)1/2|k|1/2

)
+ |x|1/2

‖v‖2L1
‖ψ+‖2∞ρ22

16π|k||x|3
(63)

Estimate (22) of Theorem 1B follows from (62). Therefore, in order to prove
Theorem 1B it remains to prove Lemma 6.

Proof of Lemma 6. Using the Lippmann-Schwinger integral equation (4) and
formulas (6), (31), (7) we obtain

δψ+(x, k) =

∫
R2

−iH
(1)
0 (|k||x− y|)

4
v(y)ψ+(y, k)dy+

+(1 + i)
π3/2

|k|1/2
ei|k||x|

|x|1/2
1

(2π)2

∫
R2

e−i|k|
xy
|x|v(y)ψ+(y, k)dy =

=

∫
R2

(
−iH

(1)
0 (|k||x− y|)

4
+

(1 + i)ei|k||x|−i|k|
xy
|x|

4(π|k||x|)1/2

)
v(y)ψ+(y, k)dy. (64)

From (64) we obtain (65):

|δψ+(x, k)| ≤ ‖ψ+(·, k)‖∞
∫
R2

∣∣∣∣∣−iH(1)
0 (|k||x− y|)

4
+

(1 + i)ei|k||x|−i|k|
xy
|x|

4(π|k||x|)1/2

∣∣∣∣∣ |v(y)|dy.

(65)

Lemma 7. Let x, y ∈ R2, |y| ≤ r, |x| ≥ 3r. Then∣∣∣∣∣−iH(1)
0 (|k||x− y|)

4
+

(1 + i)ei|k||x|−i|k|
xy
|x|

4(π|k||x|)1/2

∣∣∣∣∣ = M1 +M2, where (66)

M1 ≤
√

2

4(πk)1/2|x|3/2
(
1.77 + 3.79|k|r + 1.51|k|2r2

)
; (67)

M2 ≤
3
√

3

64(π|k||x|)1/2|k||x|
. (68)

10



Note that

M1 +M2 ≤
√

2r

4(π|k|)1/2|x|3/2

(
3
√

3

16
√

2|k|r
+ 1.77 + 3.79|k|r + 1.51|k|2r2

)
. (69)

Estimate (61) of Lemma 6 follows from (65)-(69). Thus, in order to prove Lemma
6 it remains to prove Lemma 7.

Proof of Lemma 7. To prove Lemma 7 we use, in particular, estimate (39) of
Lemma 5, which remains the same for d = 2. Besides, we use, in particular, Lemma
8.

Lemma 8. For Hankel funtion the following representation holds:

H
(1)
0 (|k||x|) =

(
2

π|k||x|

)1/2

ei|k||x|−iπ/4(1 + h(|k||x|)), |h(|k||x|)| ≤ 1

8|k||x|
. (70)

Lemma 8 is proved at the end of this Section.
Using formula (70) we have∣∣∣∣∣−iH(1)

0 (|k||x− y|)
4

+
(1 + i)ei|k||x|−i|k|

xy
|x|

4(π|k||x|)1/2

∣∣∣∣∣ ≤∣∣∣∣∣− i4
(

2

π|k||x− y|

)1/2

ei|k||x−y|−iπ/4(1 + h(|k|(x− y))) +
(1 + i)ei|k||x|−i|k|

xy
|x|

4(π|k||x|)1/2

∣∣∣∣∣ ≤
≤ 1

4(π|k|)1/2

∣∣∣∣∣−i√2(

√
2

2
− i
√

2

2
)
ei|k||x−y|

|x− y|1/2
+ (1 + i)

ei|k||x|−i|k|
xy
|x|

|x|1/2

∣∣∣∣∣+
+

1

4

(
2

π|k||x− y|

)1/2
1

8|k||x− y|
=: M1 +M2. (71)

The term M2 can be estimated easily:

M2 ≤
3
√

3

64(π|k||x|)1/2|k||x|
, |y| ≤ r, |x| ≥ 3r. (72)

Lemma 9. The term M1 can be estimated as follows:

M1 ≤
√

2

4(π|k|)1/2|x|3/2
(
1.77 + 3.79|k|r + 1.51|k|2r2

)
, |y| ≤ r, |x| ≥ 3r. (73)

Proof of Lemma 9. One can see that

M1 =

√
2

4(π|k|)1/2

∣∣∣∣∣ei|k||x|−i|k|
xy
|x|

|x|1/2
− ei|k||x−y|

|x− y|1/2

∣∣∣∣∣ . (74)

Further, we obtain

11



M1 ≤
√

2

4(π|k|)1/2

∣∣∣∣∣∣e
i|k||x|−i|k| xy|x|

|x|1/2
− e

i|k||x|(1− xy

|x|2+
|y|2

2|x|2−
(xy)2

2|x|4 +L3(x,y))

|x|1/2(1− xy
2|x|2 + L̃2(x, y))

∣∣∣∣∣∣ =

=

√
2

4(π|k||x|)1/2

∣∣∣∣∣∣1− e
i|k||x|( |y|

2

2|x|2−
(xy)2

2|x|4 +L3(x,y))

(1− xy
2|x|2 + L̃2(x, y))

∣∣∣∣∣∣ . (75)

Here we use the same expantion as in (39) and the following additional expantion:

|x− y|1/2 = |x|1/2
(

1− 2xy

|x|2
+
|y|2

|x|2

)1/4

= |x|1/2
(

1− xy

2|x|2
+ L̃2(x, y)

)
. (76)

To complete the proof of Lemma 9 we use, in particular, the estimate for L3 in
(39) and the estimate for L̃2 given in the following Lemma.

Lemma 10. Let x, y ∈ R2, |y| ≤ r, |x| ≥ 3r. Then:

|L̃2(x, y)| ≤ 1.81
r2

|x|2
. (77)

Proof of Lemma 10. Recall that

(1 + ε)1/4 =
∞∑
n=0

bnε
n, |ε| < 1, where bn =

n∏
k=1

1/4− k + 1

k
. (78)

Note that

ln+1 =
bn+1

bn
=

1/4− n− 1 + 1

n+ 1
= (−1)(1− 5

4(n+ 1)
),

|ln+1| < 1, for n ∈ N ∪ {0}.
Therefore,

|
∞∑
n=2

bnε
n| ≤ |b2|ε2 + |b3|

|ε|3

1− |ε|
, (79)

|b2| = 3/32, |b3| = 7/128.

In the present work we use formulas (78),(79) for

ε = −2xy

|x|2
+
|y|2

|x|2
, x, y ∈ R2, |y| ≤ r, |x| ≥ 3r, (80)
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|ε| ≤ 7

9
, |ε| ≤ 7

3

r

|x|
. (81)

Using (78), (80) we have that

|x− y|1/2 = |x|1/2
(

1− 2xy

|x|2
+
|y|2

|x|2

)1/4

= |x|1/2(1− xy

2|x|2
+
|y|2

4|x|2
+ R̃2(x, y)),

(82)

where

|R̃2(x, y)| = |
∞∑
n=2

bnε
n| ≤ |b2|ε2 + |b3|

ε3

1− |ε|
≤ 3

32

72

32
r2

|x|2
+

7

128

73

33
r3

|x|3
9

2
≤

≤
(

72

32 ∗ 3
+

7 ∗ 73 ∗ 9

128 ∗ 33 ∗ 3 ∗ 2

)
r2

|x|2
≤ 1.56

r2

|x|2
(83)

Using (82), (83) and gathering the terms with equal degrees in |x|, we obtain:

|L̃2(x, y)| =
∣∣∣∣ |y|24|x|2

+ R̃2(x, y)

∣∣∣∣ ≤ r2

4|x|2
+ 1.56

r2

|x|2
≤ 1.81

r2

|x|2
. (84)

Lemma 10 is proved.
Returning to the proof of Lemma 9, we rewrite (75) as:

M1 ≤
√

2

4(π|k|x)1/2
|1− eiL

1− t
|. (85)

We have

|1− eiL

1− t
| ≤ |1− (1 + L+ L2/2)(1 + t+ t2/(1− t))| ≤

≤ L+ L2/2 + t+
t2

1− t
+ (L+ L2/2)(t+ t2/(1− t)). (86)

In addition:

L ≤ |k||x|( r2

2|x|2
+

r2

2|x|2
+

4.13r3

|x|3
) ≤ |k|r

2

|x|
(1 +

4.13

3
) ≤ 2.38|k|r2

|x|
; (87)

L2/2 ≤ 2.84
|k|2r4

|x|2
; (88)

t ≤ r

2|x|
+ 1.81

r2

|x|2
≤ 1.11

r

|x|
; (89)

t2

1− t
≤

(1.11 r
|x|)

2

1− 1.11/3
≤ 1.9558

r2

|x|2
; (90)
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(L+ L2/2)(t+ t2/(1− t)) ≤ (
2.38|k|r2

|x|
+

2.84|k|2r4

|x|2
)(1.11

r

|x|
+ 1.9558

r2

|x|2
) ≤

≤ 0.59(
2.38|k|r2

|x|
+

2.84|k|2r4

|x|2
). (91)

Using (86)-(91), we obtain:∣∣∣∣1− eiL

1− t

∣∣∣∣ ≤ 2.38 ∗ 1.59|k|r2

|x|
+

2.84 ∗ 1.59|k|2r4

|x|2
+ 1.77

r

|x|
≤

≤ r

|x|
(
1.77 + 3.79|k|r + 1.51|k|2r2

)
. (92)

The estimate (73) follows from (85) and (92). This completes the proof of Lemma
9. �

Proof of Lemma 8. For H1
0 the following equality holds, for s > 0, see in [S]

formula (43) for ν = 0, β = 0:

H
(1)
0 (s) =

(
2

πs

)1/2
eis−iπ/4

Γ(1/2)

∫ ∞
0

e−uu−1/2
(

1 +
iu

2s

)−1/2
du. (93)

Then we apply the Teylor's expantion with one term and the integral reminder
to the function g(t) = (1 + iut

2s )1/2, t = 0, 1, u, s ∈ R. We obtain:(
1 +

iu

2s

)−1/2
= 1 +

1/2

0!

u

2is

∫ 1

0

(
1− ut

2is

)−3/2
dt. (94)

So, ∣∣∣∣∣
(

1 +
iu

2s

)−1/2∣∣∣∣∣ ≤ 1 +
u

4s

∫ 1

0

∣∣∣∣1− ut

2is

∣∣∣∣−3/2 dt ≤ 1 +
u

4s
. (95)

Using (93), (95), we obtain:

∣∣∣∣∣H
(1)
0 (s)−

(
2
πs

)1/2
eis−iπ/4(

2
πs

)1/2
eis−iπ/4

∣∣∣∣∣ ≤ 1

4sΓ(1/2)

∫ ∞
0

e−uu−1/2udu ≤ Γ(3/2)

4sΓ(1/2)
=

1

8s
. (96)

Estimate (96) implies (70). �

5 Estimates for ‖ψ+‖∞

The Lippmann-Schwinger integral equation (4) can also be rewritten as:
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(I − A+(|k|))ϕ+(·, k) = ϕ+
0 (·, k), (97)

where

ϕ+(x, k) = Λ−sψ+(x, k), ϕ+
0 (x, k) = Λ−seikx, (98)

A+(|k|) = Λ−sG+(|k|)Λ−s(Λ2sv),

where I is the identity operator, Λ denotes the multiplication operator by the
functions (1 + |x|2)1/2, G+(|k|) denotes the integral operator with the Schwartz
kernel G+(x−y, k) of (4), (5), v is the multiplication operator by the function v(x),
s = (d+ ε)/2, ε > 0, k ∈ Rd \ {0}, x ∈ Rd.

We recall that the following Agmon estimate holds:

‖Λ−sG+(|k|)Λ−s‖L2(Rd)→L2(Rd) ≤ C0(d, s)|k|−1, s > 1/2, |k| ≥ 1, (99)

see, for example, [E], [N1] and references therein.
Using (99) one can see that

‖A+(|k|)‖L2(Rd)→L2(Rd) ≤ Q, s > 1/2, |k| ≥ 1, (100)

Q := C0(d, s)‖Λ2sv‖∞|k|−1. (101)

As a corollary of (97), (98), (100), we have that if Q < 1, s > d/2, |k| ≥ 1, then:

‖ϕ+‖L2(Rd) ≤
‖ϕ+

0 ‖L2(Rd)

1−Q
, (102)

where

‖ϕ+
0 ‖L2(Rd) =

(∫
Rd

dx

(1 + |x|2)s

)1/2

=: Id(s). (103)

Proof of Lemma 1. Using (97), (98), (102) we obtain that

|ψ+(x, k)− eikx| ≤
∣∣∣∣∫
Br

G+(x− y, k)v(y) < y >s ϕ+(y, k))dy

∣∣∣∣ ≤ (104)

≤ ‖ϕ+(·, k)‖L2(Rd)J(x) ≤ ‖ϕ
+
0 (·, k)‖L2

1−Q
J(x), x ∈ Rd,

J(x) =

(∫
Br

|G+(x− y, k)v(y) < y >s |2dy
)1/2

. (105)
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For d = 3 we have:

‖ϕ+
0 ‖2L2(R3) ≤

∫
R3

dy

(1 + |y|2)s
≤ 4π

∫ ∞
0

r2dr

(1 + r2)s
≤

≤ 4π

(∫ 1

0

r2dr

(1 + r2)s
+

∫ ∞
1

r2dr

(1 + r2)s

)
≤

≤ 4π

(
1

3
+

∫ ∞
1

r2dr

(r2)s

)
= 4π

(
1

3
+

1

(2s− 1)

)
≤ 10

3
π; (106)

J(x) =

(∫
Br

v2(y)(1 + y2)s

16π2|x− y|2
dy

)1/2

≤
‖v‖L∞(D)(1 + r2)s/2

4π

(∫
Br

1

|y|2
dy

)1/2

(107)

≤ 1

4π
‖v‖L∞(D)(1 + r2)s/2‖(4π

∫ r

0

dρ)1/2‖ =
‖v‖L∞(D)(1 + r2)s/2r1/2

2
√
π

, x ∈ R3.

(108)

For d = 2 we have:

‖ϕ+
0 ‖2L2

=

∫
Rd

|ϕ+
0 (y, k)|2dy =

∫
R2

dy

(1 + |y|2)s
=

= π

∫ ∞
0

dr2

(1 + r2)s
≤ π

∫ ∞
0

dz

(1 + z)s
=

2π

ε
; (109)

J(x) =

(∫
Br

|H(1)
0 (|k||x− y|)|2

16
|v(y)|2(1 + |y|2)sdy

)1/2

≤

≤ ‖v‖L∞(D)(1 + r2)s/2
1

4
(

∫
Br

|H(1)
0 (|k||x− y|)|2dy)1/2. (110)

From (93) we obtain:

|H(1)
0 (s)| ≤

(
2

πs

)1/2
1

Γ(1/2)

∫ ∞
0

e−uu−1/2
∣∣∣∣1 +

iu

2s

∣∣∣∣−1/2 du ≤ ( 2

πs

)1/2

. (111)

Hence, we have:(∫
Br

|H(1)
0 (|k||x− y|)|2dy

)1/2

≤
(∫

Br

2

π|k||x− y|
dy

)1/2

≤

≤
(∫ r

0

2πr
2

π|k|r
dr

)1/2

= 2

√
r

|k|
. (112)

Estimate (25) follows from (104), (106), (107).
Estimate (26) follows from (104), (109), (110), (112).
Lemma 9 is proved.
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Proof of Lemma 2 (A). Using the Lippmann-Schwinger equation (4) for d = 3,
we obtain that

‖ψ+‖∞ ≤ 1 + ‖ψ+‖∞‖v‖∞
∫
Br

dx

4π|x|
≤ 1 + ‖ψ+‖∞‖v‖∞

∫ r

0

r2

r
dr ≤

≤ 1 + ‖ψ+‖∞‖v‖∞
r2

2
dr. (113)

Estimates (27) follows from (113).
(B). Using the Lippmann-Schwinger equation (4) for d = 2, we obtain that

‖ψ+‖∞ ≤ 1 + ‖ψ+‖∞‖v‖∞
∫
Br

|H1
0(|x||k|)|dx

4
≤ 1 +

‖ψ+‖∞‖v‖∞
4

∫ r

0

(
2

π|k|r

)1/2

2πrdr ≤

≤ 1 + ‖ψ+‖∞‖v‖∞
√

π

2|k|

∫ r

0

r1/2dr ≤ 1 +

√
2π

|k|
‖ψ+‖∞‖v‖∞r3/2

3
. (114)

Estimates (28) follows from (114).
Lemma 10 is proved.�
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