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We report on an implementation of the multiconfigurational time-dependent Hartree method (MCTDH) for
spin-polarized fermions (MCTDHF). Our approach is based on a mapping for operators in Fock space that
allows a compact and efficient application of the Hamiltonian and solution of the MCTDHF equations of motion.
Our implementation extends, builds on, and exploits the recursive implementation of MCTDH for bosons
(R-MCTDHB) package. Together with R-MCTDHB, the present implementation of MCTDHF forms the MCTDH-X

package. We benchmark the accuracy of the algorithm with the harmonic interaction model and a time-dependent
generalization thereof. These models consider parabolically trapped particles that interact through a harmonic
interaction potential. We demonstrate that MCTDHF is capable of solving the time-dependent many-fermion
Schrödinger equation to an arbitrary degree of precision and can hence yield numerically exact results even in
the case of Hamiltonians with time-dependent one-body and two-body potentials. We study the problem of two
initially parabolically confined and charged fermions tunneling through a barrier to open space. We demonstrate
the validity of a model proposed previously for the many-body tunneling to open space of bosonic particles
with contact interactions [Proc. Natl. Acad. Sci. USA 109, 13521 (2012)]. The many-fermion tunneling can be
built up from sequentially happening single-fermion tunneling processes. The characteristic momenta of these
processes are determined by the chemical potentials of trapped subsystems of smaller particle numbers: The
escaped fermions convert the different chemical potentials into kinetic energy. Using the two-body correlation
function, we present a detailed picture of the sequentiality of the process and are able to tell tunneling from
over-the-barrier escape.

DOI: 10.1103/PhysRevA.93.033635

I. INTRODUCTION

The time-dependent many-body Schrödinger equation for
interacting fermions governs systems from many different
fields ranging from electron dynamics in molecules [1] in
quantum or theoretical chemistry, over graphene [2] and
(fractional) quantum Hall states [3] in condensed matter, to the
physics of quantum computation [4], quantum simulation [5],
and quantum dots and mesoscopic structures and interactions
thereof [6–8], to name but a few. A general approach to deal
with the time-dependent many-body Schrödinger equation for
interacting fermionic particles is hence of great and general
interest, especially also in view of the recent experimental
demonstration of deterministic production of few-fermion
systems [9] and their detailed investigation [10–12] in the
context of ultracold atoms.

However, the solution of Schrödinger’s equation for many-
body systems presents a formidable and in most cases not
analytically tractable problem. The exceptions to this state-
ment include the Lieb-Liniger [13] and Tonks-Girardeau [14]
models for one-dimensional bosonic particles and the har-
monic interaction model for fermionic or bosonic particles
of any spatial dimension [15–17]. To date, unfortunately, no
way has been found to scrutinize these or other analytical
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models to obtain solutions for the time-dependent Schrödinger
equation for a general problem setting. Numerical methods
that solve the Schrödinger equation are thus needed. Such
numerical approaches also face limitations as the Hilbert
space of many-body systems is growing exponentially with
the particle number. Among the first approaches to the
time-dependent many-body problem were so-called mean-
field methods, which reduce the intractably large problem
by transforming the time-dependent many-body Schrödinger
equation (TDSE) to an effective one-body problem. This
transformation can be done in different ways. One approach
is to make a mean-field ansatz for the state of the system
and to derive the equations of motion for it by employing
a time-dependent variational principle [18,19]: Demanding
the stationarity of the functional action with respect to small
variations of the parameters of said mean-field ansatz and
demanding the solution to obey constraints (like, for instance,
normalization) yields the equations of motion for the param-
eters (the time-dependent orbital[s]) in the mean-field ansatz.
In the case of distinguishable particles, one obtains the time-
dependent Hartree-type or self-consistent field equations [18].
For indistinguishable bosons, these equations of motion are
called time-dependent Gross-Pitaevskii equation [20,21] for
a single-orbital ansatz and time-dependent multiorbital mean-
field equations [22] for a multiorbital ansatz. For fermions
they are named time-dependent Hartree(-Fock) equations [23].
All these equations have in common that they prescribe the
time evolution of a single ([anti]symmetrized) product of
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one-particle states or, in short, of one configuration. They
therefore cannot describe correlations between the particles
and their dynamics adequately since that necessitates multiple
configurations.

In order to straightforwardly go beyond the mean-field ap-
proach one allows not only one but all possible time-dependent
configurations to contribute to the ansatz. One arrives, after a
similar variational derivation as for the mean-field theories,
at the multiconfigurational time-dependent Hartree approach
(MCTDH) [24–26] for distinguishable particles, the MCTDH
for bosons in the case of indistinguishable bosons [27,28]
(for a dedicated version for the double-well special case,
see Ref. [29], and for the multilayer MCTDH for bosons
generalization, see Ref. [30]), or the MCTDH for fermions
(MCTDHF) [31–36] in the case of indistinguishable fermions,
which is also often referred to as multiconfigurational time-
dependent Hartree-Fock. The generalization to multiconfig-
urational ansätze and hence improved accuracy comes at a
price: The number of (symmetrized) basis states increases
exponentially with the number of particles considered. The
improvement in accuracy, however, can be crucial in order to
describe the ongoing quantum dynamics, since it incorporates
the evolution of correlations between the particles or degrees
of freedom in the system. Moreover, the ansatzes of MCTDH,
MCTDH for bosons, and MCTDHF form a formally complete
set of the respective many-body Hilbert spaces. Therefore,
these methods can in principle provide the exact solution of
the full TDSE when a convergence with respect to the number
of variational parameters in the description is achieved. This
has been demonstrated for the bosonic case in Refs. [37–39]
and the fermionic case in, for instance, Ref. [36].

Herein, we report on the implementation of MCTDHF that
relies on the equivalence of many-body Hamiltonians in Fock
space to a mapping [40] that helps us to optimally scrutinize
the sparsity of the Hamiltonian in configuration space.

We demonstrate how the algorithm converges to the exact
solutions of the TDSE for the case of spin-polarized fermions
even for Hamiltonians with time-dependent one- and two-body
potentials. We show the convergence and exactness of the
algorithm, we test it with the exactly solvable harmonic
interaction model (HIM) and its time-dependent generaliza-
tion (TDHIM) [37,38]. Thereby, we demonstrate MCTDHFs
capability to describe both ground states as well as many-body
dynamics with a time-dependent Hamiltonian, including time-
dependent one-body potentials and interactions, accurately.

We investigate charged fermions tunneling to open space
from an initial parabolic confinement similar to recent ex-
perimental realizations [9,10]. We thereby verify a model for
the many-boson tunneling to open space [41] to also hold in
the fermionic case. We prepare a system of N = 2 charged,
spin-polarized fermions in the ground state of a parabolic
trap. By subsequently transforming the potential to an open
configuration with a barrier, we allow the fermions to escape to
open space by tunneling. We monitor the process with the time
evolution of the momentum distributions and the one-body and
two-body correlation functions.

We implemented the solution of MCTDHF equations
of motion extending and exploiting our previous recursive
implementation of the MCTDH for bosons, the R-MCTDHB

package [42]. The resulting software is now capable of

solving the time-dependent many-body Schrödinger equation
for general indistinguishable particles. We name the resulting
software MCTDH-X, since it computes the dynamics of multi-
configurational wave functions of X = F fermions and X = B
bosons. The MCTDH-X software is distributed under a copy-left
license through the website [43] and provides numerically
exact results for bosons—as shown in Refs. [37,38]—and—as
shown below—numerically exact results for fermions.

Let us mention here that the present study considers long-
range interactions in partially large grids. The evaluation of
the respective two-body operators relies crucially on the so-
called interaction-matrix evaluation via successive transforms
algorithm introduced in Refs. [38,39]. Without this algorithm
the present and many recent investigations of realistic solutions
of the TDSE as, for instance, in Refs. [37,38,44–46] would
have been impossible.

The structure of this paper is as follows: In Sec. II, we
introduce the TDSE, derive the MCTDHF equations of motion,
describe our implementation of it, and show its accuracy.
Section III discusses charged fermion tunneling to open space
dynamics and Sec. IV gives conclusions and an outlook.

II. THEORY, IMPLEMENTATION, AND EXACTNESS

A. Time-dependent Schrödinger equation and Hamiltonian

The problem we aim to solve with the MCTDHF is the
time-dependent Schrödinger equation for N spin-polarized
interacting fermionic particles. The TDSE reads

i∂t |�〉 = Ĥ |�〉. (1)

Here, the wave function |�〉 and the Hamiltonian Ĥ depend on
all the particle coordinates �r1,...,�rN and time t . We investigate
systems with at most two-body operators in the Hamiltonian:

Ĥ =
∑

k

ĥ(�rk; t) +
∑
j<k

Ŵ (�rj ,�rk,t). (2)

Here, ĥ(�r) = 1
2∂2

�r + V (�r,t), is the one-body Hamiltonian and
Ŵ (�r,�r ′,t) represents the two-body interactions. Both terms are
generally time-dependent. In this work, we employ dimension-
less units throughout: The dimensionless Hamiltonian, Eq. (2),
is obtained by dividing the dimension-full Hamiltonian by
�

2

mL2 (m is the mass of the considered Fermions and L is a
conveniently chosen length scale).

In second quantization, one uses field operators to represent
the many-body problem:

�̂(�r,t) =
∑

k

âk(t)φk(�r; t). (3)

The functions φk(�r,t) are an orthonormal set of time-dependent
single-particle states or orbitals that build up a fully antisym-
metrized basis of the N -fermion Hilbert space. Consequently,
the Hamiltonian of Eq. (2) reads

Ĥ =
∑
kq

hkq(t)â†
kâq + 1

2

∑
kslq

Wksql(t)â
†
kâ

†
s âl âq . (4)
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Here, we used the following notations for the one-body and
two-body matrix elements hkq and Wksql , respectively:

hkq(t) =
∫

d�rφ∗
k (�r,t)ĥ(�r,t)φq(�r,t),

Wksql(t) =
∫∫

d�r ′d�rφ∗
k (�r ′,t)φ∗

s (�r,t)Ŵ (�r ′,�r,t)φq(�r,t)φl(�r ′,t).

(5)

In the following we will make use of the matrix elements of
the reduced one- and two-body density matrices,

ρkq(t) = 〈�|â†
kâq |�〉, ρkslq(t) = 〈�|â†

kâ
†
s âl âq |�〉, (6)

respectively, as well as the reduced one-body and two-body
densities [47,48]

ρ(1)(�r,�r ′,t) =
∑
kq

ρkqφ
∗
k (�r ′,t)φq(�r,t), and

ρ(2)(�r1,�r2,�r ′
1,�r ′

2,t) =
∑
kslq

ρkslqφ
∗
k (�r ′

1,t)φ
∗
s (�r1,t)φl(�r ′

2,t)φq(�r2,t),

(7)

respectively. Now, all prerequisites for the derivation of the
MCTDHF equations of motion are defined and we can proceed
by doing so.

B. MCTDHF equations of motion

To derive the equations of motion of MCTDHF, we
first formulate a general multiconfigurational ansatz for the
wave function. Then, we use the time-dependent variational
principle [19] to minimize the error in describing the solution
of the TDSE with said ansatz. The ansatz is obtained by
truncating the field operator in Eq. (3) from an infinite to
a finite sum of M operators {âk(t)}Mk=1. Consequently, some
expressions in Sec. II A become finite sums [cf. Eqs. (3), (4),
and (8)] or have a finite set of indices [cf. Eqs. (5) and (6)].

The wave function corresponding to a field operator in a
finite set of M time-dependent orbitals [see Eq. (3)] is the
ansatz for MCTDHF and reads

|�〉 =
∑

�n
C�n(t)|�n; t〉 =

∑
�n

C�n(t)
M∏
i=1

(â†
k(t))nk |vac〉. (8)

Here, a vector notation �n = (n1, . . . ,nM ) for the occupation
numbers was invoked. In total, this ansatz contains Nconf = (MN )
terms and as many time-dependent coefficients C�n(t). The
occupation number states or configurations {|�n; t〉} are fully
antisymmetrized products of the orbitals {φk(�r; t)}Mk=1. The
Nconf coefficients and M orbitals are the variational parameters
in the derivation of the MCTDHF equations of motion. The
functional action of the TDSE [Eq. (1)] reads as follows [19]:

S =
∫

dt

⎛
⎝〈�|Ĥ − i∂t |�〉 +

∑
ij

μij (t)(〈φi |φj 〉 − δij )

⎞
⎠.

(9)

Here, the orthonormality of the orbitals {φk(x; t)}Mk=1 is ensured
by the Lagrange multipliers μij (t) in S. From demanding the

stationarity of this functional action with respect to variations
of the coefficients C�n(t) and the orbitals {φk(�r,t)}Mk=1,

∂C∗
�n (t)S

[{C�n(t)},{φk(�r,t)}Mk=1

] != 0 ∀ �n;
(10)

∂φ∗
k (�r,t)S

[{C�n(t)},{φk(�r,t)}Mk=1

] != 0 ∀ k,

the equations of motion for the orbitals and the coefficients of
the MCTDHF are obtained. To simplify the resulting equations
of motion and without loss of generality we use an invariance
property of the ansatz [Eq. (8)] (see Refs. [24,26]) and set
〈φk|i∂t |φq〉 = 0. For details of the derivation, see, for instance,
Refs. [34–36]. The obtained coefficients’ equations of motion
read

H(t)C(t) = i∂tC(t); H �m �m′(t) = 〈 �m; t |Ĥ | �m′; t〉. (11)

Here, C(t) collects all coefficients C�n(t) in a vector. The
indexing of this vector is a key part of the implementation
of MCTDHF and is described in the following subsection.
The orbitals’ equations of motion read

i∂tφj (�r,t) =

P̂

⎛
⎝ĥφj (�r,t) +

M∑
k,s,q,l=1

{ρ(t)}−1
jk ρkslq(t)Ŵsl(�r,t)φq(�r,t)

⎞
⎠,

P̂ = 1 −
M∑

j ′=1

|φj ′ 〉〈φj ′ |. (12)

The projector P̂ emerges in the derivation from the
Lagrange multipliers introduced in the functional ac-
tion, Eq. (9), to ensure the orthonormality of the or-
bitals. The local time-dependent potentials Ŵsl(�r; t) =∫

d�r ′φ∗
s (�r ′,t)Ŵ (�r,�r ′,t)φl(�r ′,t) were defined. Equations (11)

and (12) form the core of the MCTDHF. The number of
coefficients’ equations [Eq. (11)] is (MN ) and the number
orbitals’ equations [Eq. (12)] is M . In the latter equation (12),
the main computational effort is to compute O(M4) two-body
terms (containing ρkslq). With this scaling of the problem
size, O(10) fermions are tractable at present without further
optimization of the MCTDH-X software. We note that the
equations of motion, (11) and (12), are of the same shape as
the orbital equations of motion in the case of bosons [34]. The
coefficients’ and orbitals’ equations form a coupled, integro-
differential, and generally nonlinear set: The evaluation of
Eq. (11) for the coefficients C�n(t) necessitates the matrix
elements Wksql(t) and hkq(t) [Eq. (5)] computed from the
current set of orbitals {φk(�r,t)}Mk=1. The propagation of Eq. (12)
for the orbitals {φk(�r,t)}Mk=1 necessitates the matrix elements
ρkq(t) and ρkslq(t) [Eq. (6)] computed from the present
set of coefficients C�n(t). We move on and describe our
implementation of MCTDHF.

C. Hamiltonian as a mapping in configuration space

Our MCTDHF implementation relies on a mapping for
operators in Fock space as described in Ref. [40] and takes
maximal advantage of the sparsity of the Hamiltonian in Fock
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basis [Eq. (11)]. We use the address

I
(
h1, . . . ,hkμ

) = 1 +
kμ∑

j=1

(
N + kμ − hj

kμ + 1 − j

)
(13)

to index all occupation number states of N fermions in M

orbitals. Here kμ is the number of holes, i.e., 0 occupation
numbers in the configuration �n, and hj are the positions of
these holes. Importantly, the indexing defined by Eq. (13)
allows us to write the coefficients C�n(t) in a compact vector
notation C(t) as done in the MCTDHF coefficients equation
of motion, Eq. (11), above. We continue by illustrating how a
general set of operators’ actions can be cast in a compact and
intuitive form by scrutinizing the indexing in Eq. (13). The
action of any of the operators that appear in the Hamiltonian
Eq. (4) applied to a given configuration |�n1; t〉 will yield
a modified configuration α|�n2; t〉. Evidently, α depends on
the occupation numbers �n1 and on the applied creation and
annihilation operators. Since all the configurations have an
index assigned through Eq. (13), it is sufficient to know three
numbers to apply any operator: (i) the index I1 of |�n1; t〉,
(ii) the index I2 of |�n2; t〉, and (iii) the prefactor α. Let us
consider the generic one-body operators â

†
4â1 and â

†
6â3 and

the configuration |�n1; t〉 = |1,1,1,0,1,0,0,1,0〉 as an example.
One finds

â
†
4â1|1,1,1,0,1,0,0,1,0〉 = |0,1,1,1,1,0,0,1,0〉;

and â
†
6â3|1,1,1,0,1,0,0,1,0〉 = (−1)|1,1,0,0,1,1,0,1,0〉.

In our example, we have N = 5,M = 9 and the num-
ber of holes is kμ = 4. Consequently, for â

†
4â1 with I1 =

I (4,6,7,9) = 8, we find I2 = I (1,6,7,9) = 73 and α = 1 from
Eq. (13). For â

†
6â3 with I1 = 8, we find I2 = I (3,4,7,9) = 26

and α = (−1). For many operators’ actions on a configuration
one finds that the respective prefactor α is zero and one does
therefore not have to consider the action of the operator on that
configuration. In order to minimize the effort in the evaluation
of the MCTDHF coefficients equations of motion (11), we
therefore only save the triples I1,I2,α when α �= 0 in a
dedicated custom data type in our implementation of Eq. (11).
The data type is constructed with the following recipe: For
every one- or two-body operator in the Hamiltonian (4), we
analyze for every I1 if α is zero. If so, we move on to the next
configuration. Only if α is nonzero, I1,I2, and α are stored.
The resulting set of triplets (I1,I2,α) for every operator in the
Hamiltonian (4), for all configurations |�n1; t〉, constitutes the
most compact (and hence memory-efficient) way of applying
the Hamiltonian to a given vector C(t) of coefficients. This
allows for a faster evaluation of the coefficients equation of
motion and for the handling of configuration spaces with a
larger number of coefficients.

D. Benchmark with the time-dependent harmonic interaction
model

The HIM and TDHIM are models that are exactly solvable
when a coordinate transform from Cartesian to center-of-mass
and relative coordinates is applied to their Hamiltonians.
Solutions are known for any spatial dimension and for bosonic
and fermionic systems [15]. The existence of exact solutions

distinguishes the HIM models from other example problems
such as, for instance, the helium atom (cf. Ref. [36]), for
which approximate solutions with a very high accuracy are
available—but not exact ones.

Since the HIM and TDHIM Hamiltonians present a cor-
related many-body problem in Cartesian coordinates, these
models are a good test for the accuracy of the MCTDHF algo-
rithm which, of course, also works in Cartesian coordinates.
Benchmarks have been performed previously in the case of
the MCTDH for bosons with the HIM and its time-dependent
generalization, the TDHIM in Refs. [37,38]. Let us mention
here that the TDHIM presents a much tougher problem for the
algorithm than typical physical problems like the tunneling
to open space discussed in Sec. III because the TDHIM
Hamiltonian has time-dependent one- and two-body terms.
In a study of the eigenstates of the HIM, we found that
MCTDHF yields results with an arbitrarily large accuracy,
see Supplemental Material [49].

In this section, we asses the correctness of our implementa-
tion and the formal exactness of MCTDHF with the fermionic
versions of the TDHIM.

To arrive at a time-dependent generalization of the HIM, the
TDHIM, we chose a Hamiltonian with time-dependent trap-
ping frequency ω ≡ ωTD(t) and time-dependent interparticle
interaction K ≡ KTD(t). The obtained TDHIM Hamiltonian
Ĥ ′ reads [37,38]

Ĥ ′(t) =
N∑

i=1

[
−1

2
∂2

�r + 1

2
ωTD(t)2�r2

]
+KTD(t)

j=N∑
i<j

(�ri − �rj )2.

(14)

We now adopt the strategy in the Refs. [37,38] and set

ωTD(t) = ω[1 + f (t)]; KTD(t) = K

[
1 − ω2

0

2NK
f (t)

]
.

(15)

With this choice, we apply the coordinate transformations to
relative �xj = 1√

j (j+1)

∑j

i=1(�rj+1 − �ri), j = 1, . . . ,N − 1

and center-of-mass coordinates �xN = ∑N
i=1 �ri . We obtain

Ĥ ′
rel =

N−1∑
i=1

(
− 1

2
∂2

�xi
+ 1

2
δ2
N �x2

i

)
; δN =

√
ω2 + 2NK. (16)

Ĥ ′
CM(t) = −1

2
∂2

�xN
+ 1

2
ω(t)2 �x2

N . (17)

It is important to note that due to our choice of ω(t) and K(t),
the Hamiltonian of the relative problem is time-independent
and identical to the one obtained for the HIM, i.e., when setting
f (t) ≡ 0 in Eqs. (14) and (15); see also Ref. [49]. Moreover,
the Hamiltonian of the center-of-mass problem Ĥ ′

CM(t) defines
the following time-dependent, but one-body problem that can
be easily solved numerically exactly [50]:

i∂t |�CM(t)〉 = Ĥ ′
CM(t)|�CM(t)〉. (18)

The obtained time-dependent energy reads

ETDHIM(t) = εrel + ε′
CM(t),

(19)
ε′

CM(t) = 〈�|Ĥ ′
CM|�〉.
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FIG. 1. Convergence of the MCTDHF for the TDHIM model
for N = 2 and N = 7. The upper panel shows the time-dependent
parameter f (t) modulating both interactions and the frequency of
the parabolical trap [cf. Eqs. (14) and (15)]. The lower panel depicts
the computed results for the time-dependent energy ε ′

CM(t) for the
exact solution (solid red line) and MCTDHF(M) for increasing
numbers of orbitals M for two (blue dashed lines) and seven fermions
(black dashed-dotted line with points). Fast convergence of the
MCTDHF(M) predictions for ε ′

CM(t) to the exact value is observed
for the present case of almost erratically time-dependent one- and
two-body parts in the Hamiltonian when M is increased. We find
that the MCTDHF prediction for ε ′

CM(t) is indistinguishable from the
exact energy for M = 10 in the case of N = 2 and for M = 15 for
the case of N = 7. All quantities shown are dimensionless.

Since our choice for K(t) and ωTD(t) keeps δN = √
ω2 + 2NK

time-independent and identical to the δN in the case of the
time-independent HIM Hamiltonian, εrel = D

∑N−1
i=1 [ 2i+1

2 δN ]
remains also unchanged and time-independent (see Ref. [49]).
For computational convenience, we use the same parame-
ters as in Refs. [37,38], K0 = 0.5 and ω = 1 with f (t) =
sin(t) cos(2t) sin(0.5t) sin(2t). We plot the exact solution for
ε′

CM(t) in Fig. 1 together with the MCTDHF predictions for
N = 2 and N = 7 fermions for various numbers of orbitals
M .

We find that the MCTDHF(M) prediction converges to the
exact result ε′

CM(t) rapidly for increasing M . This is analogous
to the convergence of MCTDH for bosons for the TDHIM
model as shown in Refs. [37,38]. We note here that in the
cases where the energies obtained from MCTDHF(M) are
identical to the exact one, a further increase of M does
not change the predictions of the method anymore: The
wave function’s time evolution converges and represents a
numerically exact solution to the time-dependent Schrödinger
equation. Importantly, the occupations of the least occupied
orbitals remain negligibly small in the case of a converged
solution of the TDSE with MCTDHF(M). This renders a
practical criterion for the convergence and numerical exactness
of MCTDHF(M) for any given application.

III. TUNNELING TO OPEN SPACE OF FEW-FERMION
SYSTEMS

There is outstanding experimental progress in the determin-
istic production of few-fermion systems [9] and detailed inves-
tigations on their properties [10–12]. Of particular interest is
here that these experiments with few-fermion systems consider
situations where one or several of the particles are escaping
from an initial confinement to open space. The theoretical
work entailing the above experiments deals mostly with the
issue of the decay rates with respect to the possible different
decay channels for fermions with internal structure; see, for
instance, Refs. [51,52]. The correlation functions and their
evolution have, however, not been systematically investigated
yet. This motivates us to apply MCTDHF to the problem of
initially parabolically confined fermions that are allowed to
tunnel through a potential barrier to open space. We stress
here that our simulations below consider a system with a
similar one-body potential as the few-fermion systems in the
experiments of the Heidelberg group [9,10], but both the
two-body potential and the constituents of the system differ
from the experimental realization: In our simulations Coulomb
and not contact interactions are considered and the constituents
we consider are spin-polarized fermions and not fermions
with an internal degree of freedom. We adopt our scheme to
model the process from previous work on bosons tunneling
to open space [38,41,53]: The system is initialized in the
interacting ground state of a parabolic potential (time t < 0).
Subsequently, at time t � 0, the potential is transformed to an
open form with a barrier that allows for the system to tunnel
to open space. For the sake of simplicity and convenience
of computations, we use the same potential V (�r,t) without
a threshold as Refs. [38,41,53]. See Fig. 2(a) for a plot.
As interparticle interaction Ŵ (�r,�r ′) we use the regularized
Coulomb interaction from Ref. [8],

Ŵ (�r,�r ′) = λ0√
|�r − �r ′|2 + α2e−β|�r−�r ′| , (20)

where we set α = 0.1 and β = 100, also as in Ref. [8].
Since the following considerations are for one spatial di-

mension, we are going to use the labels x and k synonymously
for the vectors �r and �k, respectively. We restrict the present
study to the case of N = 2 fermions because the potential
V (x,t > 0)’s barrier [cf. Fig. 2(a)] is too small for larger
particle numbers to still speak of a tunneling process: For
the case of N = 3 the energy per particle is comparable to the
height of the barrier. Let us emphasize that we checked the
results in the following for their convergence with respect to
the number of orbitals M in our computations and found that
M = 6 orbitals yield an essentially exact description.

In the following, we study the dynamics for N = 2 fermions
for the case λ0 = 1.0 and λ0 = 0.5 and investigate if the
model for the many-boson tunneling process in Ref. [41,54] is
predictive also for fermions. This model decomposes the one-
dimensional Hilbert space into “IN” and “OUT” regions and
considers single-particle ejection processes from the viewpoint
of energies. When a particle is ejected from IN to OUT,
the subsystem which is left behind remains with an energy
EIN (N − 1) = EIN (N ) − μ1. Here, μ1 is the first chemical
potential [see Fig. 2(b)], EIN (N ) is the numerical result of the
two-fermion system, and EIN (N − 1) is the analytical result
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FIG. 2. Scheme and model for the fermion tunneling to open
space process. (a) The setup used to study how initially parabolically
confined (black dashed line) fermions tunnel to open space when
the potential is transformed to its open form (solid black line).
For reference, an initial density is sketched (blue line). After the
transformation of the potential, the system becomes unbound and
tunnels through the barrier to open space. (b) Model for the tunneling
process. The one-dimensional Hilbert space is split into IN and
OUT regions at the maximum of the barrier (vertical red line). The
many-fermion process can be built up from concurrently happening
single-fermion tunneling processes: Each fermion escapes into OUT
with a characteristic momentum. This characteristic momentum is
in turn defined by the chemical potentials μi of the harmonically
trapped, interacting system in the IN region before the ejection.
Neglecting interactions in the OUT region, one obtains momenta
ki = √

2mμi . (The figure is adapted from Refs. [38,41], and all
quantities shown are in dimensionless units.)

for the single-fermion ground state of the harmonic oscillator,
EIN (1) = 0.5, since N is 2. The emitted particle in the OUT
region has the energy μ1 at its disposal, which it converts to
kinetic energy. Since the potential V (x,t > 0) is zero in almost
all of the OUT region, the emitted particle can approximately
be considered as free and its kinetic energy is therefore

given by μ1 = k2
1

2m
. Consequently, a characteristic momentum

k1 = √
2mμ1 will manifest in the momentum distribution

ρ(k,t) = ∑
jq ρjq φ̃

∗
j (k; t)φ̃q(k; t). Here, φ̃q(k; t) denotes the

Fourier transform of the orbital φq(x; t). The second emitted

particle has the second chemical potential μ2 = EIN (N −
1) − EIN (N − 2), with EIN (N − 2) = 0, to convert it to
kinetic energy upon its ejection. This results in a second
characteristic momentum k2 = √

2mμ2 in the momentum
distribution ρ(k,t). By continuously applying this idea, the N -
body tunneling process can be reconstructed by concurrently
happening single-particle tunneling processes; cf. Fig. 2(b).

The momenta obtained from the model for the N = 2 and
λ0 = 1.0 case are k1 = 2.103 and k2 = 1.0. For the N = 2,
λ0 = 0.5 case, we find k1 = 1.931 and k2 = 1.0. We plot
the exact time evolution of the momentum density ρ(k,t) in
Fig. 3. We find that the model for the tunneling process—
albeit originally devised for bosonic particles with a contact
interparticle interaction potential—predicts the momenta of
the fermions with Coulomb interactions emitted to open space
with a remarkable degree of accuracy; see Figs. 3(b) and 3(c).
Upon closer inspection of Fig. 3(b), we find a peak structure in
the momentum distribution in between k1 = 2.103 and k2 =
1.0. This structure corresponds to a correlated pair ejection
(see correlation functions g(1) and g(2) below) as the energy of
the whole system EIN (N = 2) = 2.712 is sufficiently over the
height of the barrier (2.226) for λ0 = 1.0. Furthermore, one
gets a good estimate of the momentum of the process, kred,
with the assumption that a particle with energy μ1 + μ2 =
EIN (N = 2) and the reduced mass κ = 1

2 was ejected:

kred =
√

2κEIN (N = 2).

One finds kred = 1.613 for λ0 = 1 and kred = 1.538 for λ0 =
0.5. Since there is no clear feature around kred in the momentum
distribution ρ(k,t) in Fig. 3(c) for the case of λ0 = 0.5, we infer
that in that case the total energy of the system is not sufficiently
over the barrier for the correlated two-body ejection to happen.
Let us remark here that this is an interesting difference to the
tunneling dynamics of the bosonic systems investigated in
Refs. [38,41,54]. We leave it as subject of further investigations
to determine if and how the emergence of kred in the momentum
distribution is modified for a larger number of fermions or
bosons with the same Coulomb interactions as in the present
study. We infer from the remarkable agreement of the predicted
momenta and the momentum peaks in ρ(k,t) in Fig. 3 that
the bulk of the many-fermion tunneling to open space process
is—like its many-boson counterpart—built up by single-
particle processes with characteristic momenta k1,k2, . . .

determined by chemical potentials μ1,μ2, . . . of trapped
subsystems of decreasing particle number N,N − 1, . . . .

We move on to investigate the dynamics of the one-body
correlation functions in momentum space |g(1)(k,k′; t)|2 and
in real space, |g(1)(x,x ′; t)|2. The definition of g(1) is [47]

g(1)(ξ,ξ ′,t) = ρ(1)(ξ,ξ ′,t)√
ρ(1)(ξ,ξ,t)ρ(1)(ξ ′,ξ ′,t)

,

where ξ = k for the momentum space correlation function and
ξ = x for the real-space correlation function. The reduced one-
body densities in momentum space, ρ(1)(k,k′,t), are obtained
from Eq. (8) by applying a Fourier transform to the orbitals.
In the case of uncorrelated particles characterized by the
momenta k and k′ or coordinates x and x ′, the correlation
function is 1, while it is 0 for correlated particles. Its pattern
allows us to analyze whether the particles tunnel sequentially
or not (see in this context also the two-body correlation g(2)
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FIG. 3. Comparison of characteristic momenta of two-fermion tunneling to open space to model predictions. Panel (a) shows the overall
momentum distributions ρ(k) at times t = 0,30,100 in the time evolution of the tunneling process for N = 2 and λ0 = 1.0. Centered around
k = 0, the momentum distributions have a broad feature corresponding to the trapped fraction of the system (cf. harmonic oscillator [HO]
background label). The particles that escape to open space correspond to the peaks which emerge in the momentum distributions with time.
These peaks’ momentum distributions are enlarged for λ0 = 1.0 in panel (b) and for λ0 = 0.5 in panel (c). According to the model in Fig. 2(b),
the characteristic fermion ejection momenta are defined by the chemical potentials μi of the harmonically trapped, interacting system. The
obtained momenta ki = √

2mμi are shown as black arrows in panels (b) and (c). The position of the main peaks agrees very well with the
prediction of the model, k1,k2. The additional structure in the case of the stronger interactions in panel (b) can be attributed to a correlated
two-body escape process (see text for further discussion). The momentum associated with this process is kred = √

2κ(μ1 + μ2) = 1.613, where
κ = 1

2 is the reduced mass of the two-fermion system [see gray arrow in panel (b)]. For the weaker interactions λ0 = 0.5 in panel (c), the
two-fermion tunneling or escape seems to be less favorable, since no clear features are seen at the respective momentum kred = 1.538. All
quantities shown are dimensionless. See text for further discussion.

below). From the value of the correlation function g(1), it
can further be inferred whether certain points in space (x,x ′)
or combinations of momenta (k,k′) correspond to the same
(|g(1)| = 1) or to different (|g(1)| = 0) orbitals.

As a first observation (left column of Fig. 4), we find that
the correlation of the initial state of the fermionic systems is
much stronger than in the bosonic counterpart investigated in
Refs. [38,41], which is essentially uncorrelated, i.e., |g(1)|2 ≈
1. Throughout the tunneling process, we find an emergence
of a line structure of correlations in |g(1)(k,k′; t)|2 around
the momenta k1,k2 at which particles are ejected from the
well to open space; see top right panel of Fig. 4. We deduce
from this line structure that the tunneling process can be
controlled by adjusting the potential in the outer region in

analogy to the bosonic tunneling to open space process [41,54].
Upon detailed comparison of the emergent line structure with
respect to the bosonic case [41] in which the lines are simply
marked by |g(1)| → 0, the following interesting difference
is found: At the second momentum k2 one actually finds
|g(1)(k2,k)| ≈ 1 which is enclosed by lines at a small distance ι

with |g(1)(k2 ± ι,k)| < 1 (cf. black arrows and their vicinity in
top right panel of Fig. 4). The different correlation properties of
k1 and k2 hint that the fermions traveling at these velocities are
sitting in different orbitals. This indicates that the two fermions
escape sequentially. For an investigation of the reasons for this
difference to the case of the bosonic tunneling to open space,
where the single-particle processes happen concurrently, see
the discussion of the two-body correlations below.

033635-7



ELKE FASSHAUER AND AXEL U. J. LODE PHYSICAL REVIEW A 93, 033635 (2016)

FIG. 4. Spatial and momentum one-body correlation functions of
fermion tunneling to open space. We plot the correlation functions
|g(1)(x ′,x; t)|2 and |g(1)(k′,k; t)|2 in real and momentum space in the
top and bottom rows, respectively, for the λ0 = 1 case. In comparison
to the bosonic case (see Refs. [41,54]), we observe a generally more
strongly correlated behavior in both real and momentum space for
the ground states depicted in the left column. In the momentum
correlations (top left and top right panels), a line structure emerges at
the momenta corresponding to the escaping fermions, k1,k2 with time.
While the fermions that still reside in the well at k ≈ k′ ≈ 0 are almost
uncorrelated (|g(1)|2 ≈ 1), the fermion escaping with momentum k1 is
uncorrelated with those at rest (|g(1)(k′ ≈ k1,k ≈ 0; t = 200)|2 ≈ 0,
see upper right panel). Interestingly, the fermion escaping with k2

is correlated with the one at rest (|g(1)(k′ ≈ k2,k ≈ 0; t = 200)|2 ≈
1, see black arrows in top right panel). However, the k2 velocity
is embedded by thin lines where |g(1)(k′ = k2 ± ε,k; t = 200)|2 < 1
(see dark lines next to the arrows in the top right panel). The periodic
structure in the real-space correlation in the bottom right panel reflects
the momentum correlations in the top right panel. To guide the eye,
we mark the top of the barrier by the black lines. The difference in
the escape velocities k1,k2 leads to a strong spatial correlation (see
rectangular areas with |g(1)(x,x ′; t = 200)|2 ≈ 0 on the off-diagonal
of the bottom right panel). All quantities shown are dimensionless;
see text for further discussion.

The momenta k1,k2 are reflected in |g(1)(x,x ′; t)|2 as peri-
odic structures. The large difference between k1 and k2 causes
one of the fermions to escape much more quickly than the
other. This leads to a strong correlation, i.e., |g(1)(x,x ′; t)|2 ≈ 0

FIG. 5. Momentum two-body correlation functions of fermion
tunneling to open space. We plot the correlation functions
g(2)(p1,p2,p1,p2; t) in momentum space, for the λ0 = 1 case for times
t = 0 (left) and t = 200 (right). In both panels, the Pauli exclusion
principle is manifest, since g(2)(p,p,p,p) = 0. For the initial state
in the left panel, we find large values of g(2)(p1,p2,p1,p2), where
|g(1)(p1,p2)|2 is small and vice versa (cf. top left panel of Fig. 4). This
also vaguely holds for the t = 200 plot (cf. top right panel of Fig. 4). In
the right panel at t = 200, the black arrows mark the escape momenta
obtained from our model and the momentum distributions (cf. Fig. 3).
The p1/2 = k2 = 1 tunneling at p1/2 = k2 = 1.0 is anticorrelated
or antibunched (g(2) < 1), whereas the tunneling at k = 2.103 is
correlated or bunched (g(2) > 1). The found correlated pair tunneling
process emerges as a strongly bunched structure on the diagonal
around kred = 1.613, i.e., g(2)(kred,kred,kred,kred)  1. All quantities
shown are dimensionless; see text for further discussion.

on the off diagonal (cf. white “rectangles” on the off diagonal
in the bottom right panel of Fig. 4). Moreover, this strong
correlation on the off diagonal of g(1) can be interpreted as a
feature of the process being sequential.

Since the overall features in the momentum distributions
(peaks corresponding to chemical potentials) and the one-body
correlation functions (line structure in k space) are quite similar
in the cases of fermions and bosons, we conclude that (i) the
model in Fig. 2 initially put forward for bosons is indeed also
predictive for the case of fermions and (ii) the process for
fermions is likely to allow for a control by the threshold value
of the potential T = limx→∞ V (x,t > 0) in the same way as
it does for bosons [54]: By changing the threshold T , the
peaks in the momentum distribution can be shifted and are
turned off when T becomes larger than the chemical potential
corresponding to the respective process. The newly discovered
feature of correlated two-body escape as well as the found
differences in the time evolution of the one-body correlation
function are motivating for a more detailed investigation of the
process using the two-body correlation.

g(2)(ξ1,ξ2,ξ
′
1,ξ

′
2,t) = ρ(2)(ξ1,ξ2,ξ

′
1,ξ

′
2,t)√

ρ(1)(ξ1,ξ1,t)ρ(1)(ξ2,ξ2,t)ρ(1)(ξ ′
1,ξ

′
1,t)ρ

(1)(ξ ′
2,ξ

′
2,t)

.

Here, ρ(2) is the reduced two-body density [cf. Eq. (8)].
In Fig. 5, we depict a plot of g(2) in momentum space
(ξ = p) for the case of λ0 = 1.0. As a first observation, we
find that the two-body correlation function in momentum
space exhibits a structure which is complementary to the

one-body correlation function g(1) in momentum space (top
row of Fig. 4): Wherever g(1)(p1,p2) is comparatively large,
g(2)(p1,p2,p1,p2) is comparatively small, and vice versa.
Moreover, we can decipher the details of the mechanism of
the two-body tunneling to open space: A particle escaping
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with p1 = k1 = 2.103 is bunched with the other particle not
having the same momentum, i.e., g(2)(k1,a,k1,a) > 1 only for
a �= k1 and 0 otherwise (see arrows at k1 = 2.103 in Fig. 5).
This means that it is likely that the second particle travels
at a different velocity if the first one is found traveling at
k1. Moreover, a particle traveling at velocity p1 = k2 = 1.0
is bunched with the other particle having the momentum
k2, i.e., g(2)(k2,a,k2,a) > 1 only for a ≈ k1 and 0 otherwise.
This underlines the sequential nature of the process: The
second particle at k2 can start its escape only once the other
particle has already escaped with the momentum k1 (see arrows
at k2 = 1.0 in Fig. 5). Moreover, the two-body correlation
function demonstrates clearly that the peaks in the momentum
distributions at kred (cf. top right panel of Fig. 3) indeed
correspond to a correlated two-body escape: Two particles
escape with similar momenta as g(2)(p1,p2,p1,p2) exhibits
strong bunching on the diagonal around p1 ≈ p2 ≈ kred. This
bunching feature in g(2) on the diagonal disappears for the cases
in which the peaks around kred are absent in the momentum
distributions, i.e., for λ0 = 0.5 and λ0 = 0 (not shown). This
corroborates the finding that the two-body escape we see is
indeed an over-the-barrier effect and not tunneling.

IV. CONCLUSIONS AND OUTLOOK

In the present work, we have demonstrated that the
MCTDHF theory and algorithm are capable of solving general
time-dependent many-fermion problems to an arbitrary degree
of accuracy; i.e., we have shown the numerical exactness
of MCTDHF for the spin-polarized case. We found expo-
nentially converging ground-state energy eigenvalues for the
eigenstates of the harmonic interaction model. By solving the
time-dependent harmonic interaction model with MCTDHF
we demonstrated that even with erratically time-dependent
one-body and two-body terms in the Hamiltonian, an exact
solution of the time-dependent Schrödinger equation can still
be obtained.

We further studied the tunneling to open space process
of few-fermion systems composed of charged spin-polarized
particles. We assess the validity of a model put forward for
the process for bosons with a contact interaction potential also

in the present case of fermions interacting with a regularized
Coulomb interaction. The prediction of the model for the
escape momenta of the fermions is remarkably accurate.
From a comparison of the momentum distributions and one-
body correlation functions in the process with the model,
we infer that the many-fermion tunneling to open space
process is built up from sequentially happening single-particle
processes whose characteristic momenta k1,k2, . . . emerge
from the chemical potentials μ1,μ2, . . . of trapped subsystems
of decreasing particle number N,N − 1, . . . . For the case,
where the total energy of the system is sufficiently above
the barrier height of the single-particle potential, we find an
additional signature in the momentum distributions, which is
associated with a correlated two-body escape process. Using
the one-body and two-body correlation functions, we were
able to demonstrate the sequentiality of the process and that the
discussed two-body process corresponds to an over-the-barrier
escape and not tunneling.

To scrutinize and investigate the emergent features in the
correlation functions for a larger number of particles and other
types of interactions are subjects of future work.

As further future applications of our MCTDHF imple-
mentation, we envisage for instance studies of statistical
relaxation and chaos [55,56], quantum turbulence [57], and
vortices [58] as well as Hubbard Hamiltonians [59], electronic
decay processes [8], and high-harmonic-order generation [60].
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