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ABSTRACT
The Douglas Rachford algorithm is an algorithm that converges
to a minimizer of a sum of two convex functions. The algo-
rithm consists in fixed point iterations involving computations
of the proximity operators of the two functions separately.
The paper investigates a stochastic version of the algorithm
where both functions are random and the step size is constant.
We establish that the iterates of the algorithm stay close to
the set of solution with high probability when the step size
is small enough. Application to structured regularization is
considered.

Index Terms— Stochastic optimization, proximal me-
thods, Douglas Rachford algorithm, structured regulariza-
tions

1. INTRODUCTION

Many applications in the fields of machine learning [1]
and signal processing [2] require the solution of the program-
ming problem

min
x∈X

F (x) +G(x) (1)

where X is an Euclidean space, F and G are elements of
the set Γ0(X) of convex, lower semi-continuous and proper
functions. In these contexts, F often represents a cost func-
tion and G a regularization term. The Douglas-Rachford al-
gorithm is one of the most popular approach towards solving
Problem (1). Given γ > 0, the algorithm is written

yn+1 = proxγF (xn)

zn+1 = proxγG(2yn+1 − xn)

xn+1 = xn + zn+1 − yn+1 (2)

where proxγF denotes the proximity operator of F , defined
for every x ∈ X by the equation

proxγF (x) = arg min
y∈X

1

2
‖x− y‖2 + γF (y).
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Assuming that a standard qualification condition holds and
that the set of solutions arg minF +G of (1) is not empty, the
sequence (yn)n converges to an element in arg minF +G as
n→ +∞ ([3, 4]).

In this paper, we study the case where F and G are inte-
gral functionals of the form

F (x) = Eξ(f(x, ξ)), G(x) = Eξ(g(x, ξ))

where ξ is a random variable (r.v) from some probability
space (Ω,F ,P) into a measurable space (Ξ,G), with distri-
bution µ, and where {f(·, s), s ∈ Ξ} and {g(·, s), s ∈ Ξ}
are subsets of Γ0(X). In this context, the stochastic Douglas
Rachford algorithm aims to solve Problem (1) by iterating

yn+1 = proxγf(·,ξn+1)(xn)

zn+1 = proxγg(·,ξn+1)(2yn+1 − xn)

xn+1 = xn + zn+1 − yn+1 , (3)

where (ξn)n is a sequence of i.i.d copies of the random va-
riable ξ and γ > 0 is the constant step size. Compared to
the "deterministic" Douglas Rachford algorithm (2), the sto-
chastic Douglas Rachford algorithm (3) is an online method.
The constant step size used make it implementable in adap-
tive signal processing or online machine learning contexts. In
this algorithm, the function F (resp. G) is replaced at each
iteration n by a random realization f(·, ξn) (resp. g(·, ξn)).
It can be implemented in the case where F (resp. G) cannot
be computed in its closed form [5, 6] or in the case where
the computation of its proximity operator is demanding [7].
Compared to other online optimization algorithm like the sto-
chastic subgradient algorithm, the algorithm (3) benefits from
the numerical stability of stochastic proximal methods.

Stochastic version of the Douglas Rachford algorithm
have been considered in [2, 8]. These papers consider the
case where G is deterministic, i.e is not written as an expec-
tation and F is written as an expectation that reduces to a
sum. The latter case is also contained as a particular case of
the algorithm [9]. The algorithms [10, 11] are generalizations
of a partially stochastic Douglas Rachford algorithm where



G is deterministic. The convergence of these algorithms is
obtained under a summability assumption of the noise over
the iterations. The stochastic Douglas Rachford studied in
this paper was implemented in an adaptive signal processing
context [12] to solve a target tracking problem.

Whereas the paper [12] is mainly focused on the appli-
cation to target tracking, in this work we provide theoretical
basis for the algorithm (3) and convergence results. Moreover,
a novel application to solve a programming problem regulari-
zed with the overlapping group lasso online is provided.

The next section introduces some notations. Section 3 is
devoted to the statement of the main convergence result. In
Section 4, an outline of the proof of the result in Section 3 is
provided. Finally, the algorithm (3) is implemented to solve a
regularized problem in Section 5.

2. NOTATIONS

For every function g ∈ Γ0(X), ∂g(x) denotes the subdif-
ferential of g at the point x ∈ X and ∂g0(x) the least norm
element in ∂g(x). The domain of g is denoted as dom(g).
It is a known fact that the closure of dom(g), denoted as
cl(dom(g)), is convex. For every closed convex set C, we
denote by ΠC the projection operator onto C. The indicator
function of the set C is defined by ιC(x) = 0 if x ∈ C, and
ιC(x) = +∞ elsewhere. It is easy to see that ιC ∈ Γ0(X) and
that proxιC = ΠC .

The Moreau envelope of g ∈ Γ0(X) is equal to

gγ(x) = min
y∈X

g(y) +
‖y − x‖2

2γ

for every x ∈ X. Recall that gγ is differentiable and∇gγ(x) =
1
γ (x − proxγg(x)). If f ∈ Γ0(X) is differentiable, then,
∂f(x) = {∇f(x)} and ∇f(proxγf (x)) = ∇fγ(x), for
every x ∈ X.

When S ⊂ X, d(x, S) denote the distance from the point
x ∈ X to the set S. In the context of algorithm (3) we shall de-
note D(s) = dom(g(·, s)) and D = dom(G). Denote B(X)
the Borel sigma field over X. For every p ≥ 1, Lp(Ξ,X) is the
set of all r.v ϕ from the probability space (Ξ,G, µ) into the
measurable space (X,B(X)), such that ‖ϕ‖p is integrable.

From now on, we shall state explicitly the dependence of
the iterates of the algorithm in the step size and the starting
point. Namely, we shall denote (xγ,νn )n the sequence (xn)n
generated by the stochastic Douglas Rachford algorithm (3)
with step γ, such that the distribution of xγ,ν0 over X is ν. If
ν = δa, where δa is the Dirac measure at the point a ∈ X, we
shall prefer the notation xγ,an .

3. MAIN CONVERGENCE THEOREM

Consider the following assumptions.

Assumption 1. For every compact set K ⊂ X, there exists
ε > 0 such that

sup
x∈K∩D

∫
‖∂g0(x, s)‖1+ε µ(ds) <∞.

Assumption 2. For µ-a.e s ∈ Ξ, f(·, s) is differentiable and
there exists a closed ball in X such that ‖∇f(x, s)‖ ≤ M(s)
for all x in this ball, where M(s) is µ-integrable. Moreover,
for every compact set K ⊂ X, there exists ε > 0 such that

sup
x∈K

∫
‖∇f(x, s)‖1+ε µ(ds) <∞ .

Assumption 3. ∀x ∈ X,

∫
d(x,D(s))2 µ(ds) ≥ Cd(x)2.

Assumption 4. For every compact set K ⊂ X, there exists
ε, C, γ0 > 0 such that for all γ ∈ (0, γ0] and all x ∈ K,

1

γ1+ε

∫
‖ proxγg(·,s)(x)−Πcl(D(s))(x)‖1+ε µ(ds) < C .

Assumption 5. There exists L > 0 such that ∇f(·, s) is µ-
a.e, a L-Lipschitz continuous function.

Assumption 6. There exists x? ∈ arg minF + G and
ϕ ∈ L2(Ξ,X) such that ϕ(s) ∈ ∂g(x?, s) µ-a.s, ∇f(x?, ·) ∈
L2(Ξ,X) and

∫
∇f(x?, s)µ(ds) +

∫
ϕ(s)µ(ds) = 0.

Assumption 7. The function F + G satisfies one of the fol-
lowing properties :

(a) F +G is coercive i.e F (x) +G(x) −→‖x‖→+∞ +∞

(b) F + G is supercoercive i.e F (x)+G(x)
‖x‖ −→‖x‖→+∞

+∞.

Assumption 8. There exists γ0 > 0, such that for all γ ∈
(0, γ0] and all x ∈ X,∫
‖∇fγ(x, s)‖+

1

γ
‖ proxγg(·,s)(x)−Πcl(D(s))(x)‖µ(ds)

≤ C(1 + |F γ(x) +Gγ(x)|) .

Theorem 1. Let Assumptions 1– 8 hold true. Then, for each
probability measure ν over X having a finite second moment,
for any ε > 0,

lim sup
n→∞

1

n+ 1

n∑
k=0

P (d(xγ,νk , arg min(F +G)) > ε) −−−→
γ→0

0 .

Moreover, if Assumption 7–(b) holds true, then

lim sup
n→∞

P (d (x̄γ,νn , arg min(F +G)) ≥ ε) −−−→
γ→0

0, and

lim sup
n→∞

d (E(x̄γ,νn ), arg min(F +G)) −−−→
γ→0

0 .

where x̄γ,νn = 1
n

∑n
k=1 x

γ,ν
k .



Loosely speaking, the theorem states that, with high pro-
bability, the iterates (xγ,νn )n stay close to the set of solutions
arg minF +G as n→∞ and γ → 0.

Some Assumptions deserve comments.
Following [13], we say that a finite collection of subsets

C1, . . . , Cm of X is linearly regular if

∃κ > 0,∀x ∈ X, max
s∈{1,...,m}

d(x, Cs) ≥ κd(x,∩ms=1Cs)

In the case where there exists a µ-probability one set Ξ̃ such
that the set {D(s), s ∈ Ξ̃} = {C1, . . . , Cm} is finite, it is
routine to check that Assumption 3 holds if and only if the
domains C1, . . . , Cm are linearly regular. See [12] for an ap-
plicative context of the algorithm (3) in the latter case.

It is a known fact that

proxγg(·,s)(x) −→γ→0 Πcl(dom(g(·,s)))(x),

for each (x, s). Assumptions 4 and 8 add controls on the
convergence rate.

Since f(·, s), g(·, s) ∈ Γ0(X), and f(·, s) is differen-
tiable, ∂(F + G)(x) = ∇F (x) + ∂G(x) = E(∇f(x, ξ)) +
E(∂g(x, ξ)) [14], where the set E(∂g(x, ξ)) is defined by its
Aumann integralß∫

ϕ(s)µ(ds), ϕ ∈ L1(Ξ,X), s.t. ϕ(s) ∈ ∂g(x, s), µ-a.s.
™

Therefore, using Fermat’s rule, if x ∈ arg minF + G, then
there exists ϕ ∈ L1(Ξ,X), such that ϕ(s) ∈ ∂g(x, s) µ-
a.s, and

∫
∇f(x, s)µ(ds) +

∫
ϕ(s)µ(ds) = 0. We refer to

(∇f(x, ·), ϕ) as a representation of the solution x. Assump-
tion 6 ensures the existence of x? ∈ arg minF + G with a
representation∇f(x, ·), ϕ ∈ L2(Ξ,X).

4. OUTLINE OF THE CONVERGENCE PROOF

This section is devoted to sketching the proof of the
convergence of the stochastic Douglas Rachford algorithm.
The approach follows the same steps as [6] and is detailed
in [15]. The first step of the proof is to study the dynamical
behavior of the iterates (xγ,an )n where a ∈ D. The Ordi-
nary Differential Equation (ODE) method, well known in
the literature of stochastic approximation ([16]), is applied.
Consider the continuous time stochastic process xγ,a obtai-
ned by linearly interpolating with time interval γ the iterates
(xγ,an ) :

xγ,a(t) = xγ,an + (t− nγ)
xγ,an+1 − xγ,an

γ
, (4)

for all t ≥ 0 such that nγ ≤ t < (n + 1)γ, for all n ∈ N.
Let Assumptions 1–4 1 hold true. Consider the set C(R+,X)

1. In the case where the domains are common, i.e s 7→ D(s) is µ-a.s
constant, the moment Assumptions 1 and 2 are sufficient to state the dyna-
mical behavior result. See [12] for an applicative context where the domains
D(s) are distinct.

of continuous functions from R+ to X equipped with the
topology of uniform convergence on the compact intervals.
It is shown that the continuous time stochastic process xγ,a
converges weakly over R+ (i.e in distribution in C(R+,X))
as γ → 0. Moreover, the limit is proven to be the unique
absolutely continuous function x over R+ satisfying x(0) = a
and for almost every t ≥ 0, the Differential Inclusion (DI),

ẋ(t) ∈ −(∇F + ∂G)(x(t)), (5)

(see [17]). Differential inclusions like (5) generalize ODE to
set-valued mappings. The DI (5) induces a map Φ : D ×
R+ → D, (x0, t) 7→ x(t) that can be extended to a semi-flow
over cl(D), still denoted by Φ.

The weak convergence of (xγ,a) to x is not enough to
study the long term behavior of the iterates (xγ,an )n. The se-
cond step of the proof is to prove a stability result for the
Feller Markov chain (xγ,an )n. Denote by Pγ its transition ker-
nel. The deterministic counterpart of this step of the proof is
the so-called Fejér monotonicity of the sequence (xn) of the
algorithm (2). Even if some work has been done [5, 18], there
is no immediate way to adapt the Fejér monotonicity to our
random setting, mainly because of the constant step γ. As an
alternative, we assume Hypotheses 5-6, and prove the exis-
tence of positive numbers α,C and γ0, such that for every
γ ∈ (0, γ0],

En‖xγ,an+1 − x?‖2 ≤‖xγ,an − x?‖2 (6)
− αγ(F γ +Gγ)(xγ,an ) + γC.

In this inequality, En denotes the conditional expectation with
respect to the sigma-algebra σ(xγ0 , x

γ
1 , . . . , x

γ
n) and

F γ(x) =

∫
fγ(x, s)µ(ds), Gγ(x) =

∫
gγ(x, s)µ(ds).

Since γ 7→ F γ(x)+Gγ(x) is decreasing [6, 15], the func-
tion F γ + Gγ can be replaced by F γ0 + Gγ0 . Besides, the
coercivity of F +G (Assumption 7) implies the coercivity of
F γ0 + Gγ0 ( [6, 15]). Therefore, assuming 5–7 and setting
Ψ = F γ0 + Gγ0 , there exist positive numbers α,C and γ0,
such that for every γ ∈ (0, γ0],

En‖xγ,an+1 − x?‖2 ≤ ‖xγ,an − x?‖2 − αγΨ(xγ,an ) + γC. (7)

Equation (7) can alternatively be seen as a tightness result.
It implies that the set Iγ of invariant measures of the Markov
kernel Pγ is not empty for every γ ∈ (0, γ0], and that the set

Inv = ∪γ∈(0,γ0]Iγ (8)

is tight( [19, 20]).
It remains to characterize the cluster points of Inv as γ →

0. To that end, the dynamical behavior result and the stability
result are combined. Let Assumptions 1– 8 hold true. 2 Then,

2. Assumptions 3, 4 and 8 are not needed if the domains D(s) are com-
mon.



the set Inv is tight, and, as γ → 0, every cluster point of Inv is
an invariant measure for the semi-flow Φ. The Theorem 1 is a
consequence of this fact.

5. APPLICATION TO STRUCTURED
REGULARIZATION

In this section is provided an application of the stochastic
Douglas Rachford (3) algorithm to solve a regularized optimi-
zation problem. Consider problem (1), where F is a cost func-
tion that is written as an expectation, andG is a regularization
term. Towards solving (1), many approaches involve the com-
putation of the proximity operator of the regularization term
G. In the case where G is a structured regularization term,
its proximity operator is often difficult to compute. When G
is a graph-based regularization, it is possible to apply a sto-
chastic proximal method to address the regularization [7]. We
shall concentrate on the case whereG is an overlapping group
regularization. In this case, the computation of the proximity
operator ofG is known to be a bottleneck [21]. We shall apply
the algorithm (3) to overcome this difficulty.

Consider X = RN , N ∈ N?, and g ∈ N?. Consider g
subsets of {1, . . . , N}, S1, . . . , Sg , possibly overlapping. Set
G(x) =

∑g
j=1 ‖xSj‖, where xSj denotes the restriction of x

to the set of index Sj and ‖ · ‖ denotes the Euclidean norm.
Set F (x) = E(ξ,η)(h(η〈x, ξ〉)) where h denotes the hinge
loss h(z) = max(0, 1− z) and (ξ, η) is a r.v defined on some
probability space with values in X × {−1,+1}. In this case,
the problem (1) is also called the SVM classification problem,
regularized by the overlapping group lasso. It is assumed that
the user is provided with i.i.d copies ((ξn, ηn))n of the r.v
(ξ, η) online.

To solve this problem, we implement a stochastic Dou-
glas Rachford strategy. To that end, the regularization G is
rewritten G(x) = EJ(g‖xSJ

‖) where J is an uniform r.v
over {1, . . . , g}. At each iteration n of the stochastic Dou-
glas Rachford algorithm, the user is provided with the realiza-
tion (ξn, ηn) and sample a group Jn uniformly in {1, . . . , g}.
Then, a Douglas Rachford step is done, involving the compu-
tation of the proximity operators of the functions gn : x 7→
‖xSJn

‖ and fn : x 7→ h(ηn〈x, ξn〉).
This strategy is compared with a partially stochastic Dou-

glas Rachford algorithm, deterministic in the regulariza-
tion G, where the fast subroutine Fog-Lasso [21] is used to
compute the proximity operator of the regularization G. At
each iteration n, the user is provided with (ξn, ηn). Then,
a Douglas Rachford step is done, involving the compu-
tation of the proximity operators of the functions G and
fn : x 7→ h(ηn〈x, ξn〉). Figure 1 demonstrates the advantage
of treating the regularization term in a stochastic way.

In Figure 1 "Stochastic D-R" denotes the stochastic Dou-
glas Rachford algorithm and "Partially stochastic D-R" de-
notes the partially stochastic Douglas Rachford where the su-
broutine FoG-Lasso [21] is used at each iteration to compute

Fig. 1. The objective function F +G as a function of time in
seconds for each algorithm

Fig. 2. Histogram of the Initialization and the last iterates of
the Stochastic D-R (S. D-R) and the partially stochastic D-R
(Part. S. D-R)

the true proximity operator of the regularization G. Figure 2
shows the appearance of the first and the last iterates. Even if
a best performing procedure [21] is used to compute proxγG,
we observe on Figure 1 that Stochastic D-R takes advantage
of being a stochastic method. This advantage is known to be
twofold ([22]). First, the iteration complexity of Stochastic
D-R is moderate because proxγG is never computed. Then,
Stochastic D-R is faster than its partially deterministic coun-
terpart which uses Fog-Lasso [21] as a subroutine, especially
in the first iterations of the algorithms. Moreover, Stochastic
D-R seems to perform globally better. This is because every
proximity operators in Stochastic D-R can be efficiently com-
puted ([23]). Contrary to the proximity operator ofG [21], the
proximity operator of gn is easily computable. The proximity
operator of fn is easily computable as well. 3

3. Even if h(x) = log(1+exp(−x)) (logistic regression), the proximity
operator of fn is easily computable, see [2].
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