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An optimization-based approach to discover the unobservable

behaviour of a Discrete Event System through Interpreted Petri Nets

Francesco Basile1, Gregory Faraut2, Luigi Ferrara1 and Jean-Jaques Lesage2

Abstract—This paper deals with the problem of discov-

ering a Petri Net model of a discrete event system, starting

from the observation of long event sequences. Precisely,

given an Interpreted Petri Net (IPN) system modelling the

relations between input and output events of the system

(i.e. the reactive/observable behaviour), the internal state

evolutions of the system (i.e. the unobservable behaviour)

are firstly discovered and then modelled. The proposed

unobservable discovery takes advantage of the novel con-

cept of interpreted sequences, which better characterize

the system and model the behaviour by considering both

observable markings (outputs) and transition firings (in-

puts). The unobservable modelling is approached as a

net synthesis problem. It relies on an optimization-based

procedure that identifies the complementary structure; in

particular, places only are added to the original model.

Note to Practitioners. Black-box identification proce-

dures process an input/output sequence recorded for a

long period of time during the functioning of a closed-

loop controlled system, and then return a model of the

system. However, even if these models simulate well the

recorded sequence, they are not very accurate. Indeed,

they simulate also other sequences, that in general are not

admitted by the real system. The method proposed here

aims to make more accurate these models by discovering

the unobservable behaviour of a controlled system, related

to evolutions of the internal state (and variables) of the

system without changing the capability of simulating the

observed behaviour.

Keywords: Model discovery, Petri Nets, Discrete
Event Systems, Identification.

I. INTRODUCTION

A. Position of the paper

The problem of identifying a Discrete Event System
(DES) is of interest for many applications as, for exam-
ple, reverse engineering [24] or control [27], [2], [28],
[22] of (partially) unknown systems, fault diagnosis [23]
or system verification. This task is typically approached
by firstly observing the system and then modelling
it. In particular, sequences of inputs and outputs are
acquired during the operation of the system within its
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environment. The system is finally identified by building
a model that can reproduce the observed sequences,
simulating the observed behaviour.

The mathematical models mostly adopted in the liter-
ature for the identification of DESs are either Petri Nets
(PNs) or finite state automata [17], [11]. When the re-
sulting model is a PN, like in this paper, the net structure
(places, transitions and arcs) and its initial marking must
be computed. PNs have been successfully used to model
and analyze many DESs (e.g. UML modelled systems
[7], traffic sysytems [4], manufacturing systems [8] etc.
) thanks to their powerful mathematical formalism that
enables both qualitative and quantitative analysis.

The language of the identified model, that is the set
of sequences it can generate from the initial marking, in
general contains a subset of sequences that do not belong
to the observed language [23]. Such a subset represents
the exceeding language of the identified system. The
size of the exceeding language is usually assumed as a
measure of the fitness of the obtained model [10]. Indeed,
a large exceeding language is certainly undesired when
the identified model is used for diagnostic or verification
purposes, while it is tolerated for reverse engineering.

The behaviour of a reactive DES, for instance a
process and a controller in a closed-loop, can be split
into an Observable behaviour, related to direct output
changes depending on input changes, and an Unob-

servable behaviour, related to evolutions of the internal
state (and variables) of the system without changes
of observable data (inputs and outputs). Even if the
available data only capture the observable behaviour, the
identification algorithm should provide a model express-
ing both input/output causal relationships and internal
state evolutions due to input changes [24].

While Petri Nets provide the semantics to express
sequentiality, choices and parallelism, Interpreted Petri
Nets (IPNs) [16] also add the input/output interpretation
to transitions and places, thus being a natural choice
to model reactive systems. IPN models are suitable for
practical problems where the explicit representation of
the physical input and output signals is required, such as
model-based fault diagnosis and isolation.

This paper can be positioned in the continuation of
[16] as the papers [26], [24]. In the first paper [16],
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Fig. 1. Identification procedure of reactive systems in two steps.

a black-box identification procedure is provided that
discovers the observable behaviour as IPN fragments
from an input/output observed sequence. This sequence
is also converted into a firing sequence on the alphabet
of events associated to transitions (see first step in Fig.
1.). Therefore, the unobservable behaviour is discovered
from such a firing sequence, and the IPN fragments are
completed by adding connecting (unobservable) places
(see second step in Fig. 1.). Such a second step is essen-
tial in determining the size of the exceeding language of
the model.

Solutions to implement the second step have been
presented in [16], [26], [24]. In [16], [26] the added
unobservable places reflect the causal and concurrent
relationships between transition firings in the firing se-
quence obtained in the first step. In [24] the projection
of the firing sequence obtained in the first step on sub-
alphabets is used to discover specific patterns that are
characteristic of dependency relationships between the
transition firings. Both the approaches return as identified
model a 1-bounded net.

B. Paper contribution

This paper features a new approach for the unobserv-
able discovery with the following objectives:

• To model the unobservable behaviour of a reactive
DES by separating the dependency between the
trajectories generated by the system and its initial
state. Indeed, automation systems are designed to
execute repetitive actions, and so it is reasonable
that, after a certain number of observed events,

the exhibited behaviour does not dependent on the
initial state.

• To compute the unobservable places that model
the unobservable behaviour without searching for
specific patterns, as in the previous approaches [16],
[26], [24]. As a result, the added places implement
general constraints and further reduce the exceeding
behaviour of the model.

• To make the accuracy and complexity of the identi-
fication procedure tunable with respect to a design
parameter. Among the methods proposed for the
unobservable discovery, only the one proposed in
[24] can be tuned to reduce the exceeding behaviour
of the identified model and the approach illustrated
in this work will be shown to obtain more accurate
models. Moreover, the observable net, as well as
the identified unobservable one, are not required to
be 1-bounded.

• The identification procedure is not required to be
executable with real-time constraints and can be
performed off-line.

• To improve the quality of the identified model in
terms of accuracy with respect to other approaches.
At this aim, the sequences of transition firings of the
observable net obtained as result of the first stage
of the procedure depicted in Fig. 1 are enriched by
the observable markings reached during the firing
of these sequences. This makes possible to define
the exceeding language and the aforementioned
distance with respect to sequences of transitions (as-
sociated to system inputs) and markings (associated
to system outputs) and not transition only (as done
in [16], [26], [24]).

In order to achieve the objectives listed above the
following techniques/methodologies are used:

• A synthesis-based problem is set up to reduce the
exceeding language. There are approaches to DES
identification where it is assumed that either the
whole state space of the system, or the whole
language generated by it, is known [12], [19], [13],
[14]. If this is the case, the tackled problem is
more a net synthesis problem, rather than a net

identification one. In this paper a net synthesis
approach based on a graph is used. Precisely, the
approach presented in this paper, inspired by [18],
tries to make the reachability graph of the identified
model isomorphic to a graph generating a behaviour
having empty exceeding language with respect to
words of length r, where r is the design parameter.

• In addition to the size of the exceeding language,
that measures the size of the sequences not ob-
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served but generated from the initial marking, the
concept of distance of order k is introduced to
count the number of (sub)words of length k that
can be generated from any observable marking of
the model while they have not been observed. The
aforementioned graph generates a behaviour having
also null distance of order k.

• An optimization approach based on an ILP for-
mulation is used for the synthesis of unobervable
places. This is in line with a recent trend in PN-
related research which indicates that many analysis,
control, fault identification and diagnosis problems
can be more conveniently formulated and solved as
optimization problems, usually in the form of ILP
problems (see, e.g., [9], [29], [15]). Indeed, it turns
out that, despite their computational complexity,
optimization-based approaches can be practically
more convenient when compared to alternative so-
lutions, since they rely on off-the-shelf optimized
solvers, as opposed to ad hoc algorithms. In par-
ticular, various efficient software suites can be em-
ployed to tackle ILP problems, such as CPLEX R©
or FICOTM Xpress [1]

II. SYSTEMS, MODELS AND LANGUAGES

In this work, the identification process is assumed to
work on a rich data set of observations acquired from
the automation system and on an Interpreted Petri Net

(IPN) system modelling the observable behaviour.

A. Observation data set

Automation systems are typically composed of a plant
and a controller in closed-loop, as represented in Fig.1;
the controller is commonly a Programmable Logic Con-
troller (PLC). In such a loop, the signals of the plant
sensors are the inputs of the PLC; in turn, the outputs
of the PLC control the actuators of the plant. For the
objectives of this work, such systems are observed from
the perspective of the PLC.

A PLC typically works by cyclically reading and
storing inputs, executing user program(s), and finally
writing the outputs (see Fig. 2). The READ-EXECUTE-
WRITE cycle is called the scan cycle.

The input signals of the PLC are represented by the set
I , where |I| is the cardinality of the set I and ij ∈ I is
the j-th input; similarly, the output signals of the system
are represented by the set O and oj ∈ O is the j-th
output. Each I/O signal is supposed to be binary.

In order to identify the system, sequences of I/O vec-
tors are acquired during the observation of the system.
We denote by Vj the sequence of I/O vectors acquired

Input reading

User Program Execution

Output Writing

Initialization

Fig. 2. PLC scan cycle.

at the j-observation; its length, noted |Vj |, depends on
the acquisition duration

Vj =

[

lI(1)

lO(1)

]

,

[

lI(2)

lO(2)

]

, ...,

[

lI(|Vj |)

lO(|Vj |)

]

where lI(k) = [li1(k), ..., li|I| (k)]
T and lO(k) =

[lo1(k), ..., lo|o| (k)]
T are two vectors whose entries are,

respectively, the levels of each signal associated to the
|I| inputs and |O| outputs observed during the j-th
acquisition at the k-th scan cycle.

The automation system exhibits a different behaviour
depending on its initial state and on the occurred events
over time. It is reasonable that each sequence Vj repre-
sents a trajectory generated by the system starting from a
specific state, e.g. the on-state of the automation system
or the state it reaches when a distinctive configuration
is observed; this state is referred to as initial state of
the system. Observations marked with a cycle (V o

j ) are
called cyclic since it is assumed, on the basis of an
additional knowledge about the observed system, that the
state reached by the system at the end of the sequence
is the initial state of the system.

The whole set of acquired observations is called
database and is denoted by D. The acquired sequences
are supposed to be sufficiently long and rich to capture
the behaviour of the system as best as possible; indeed,
the more data on the system is available, the closer to
reality the built model is.

The possibility of marking a sequence as cyclic is
a contribution of this paper; thanks to this feature,
the database is lighter and more expressive, since it is
only necessary to acquire each different cyclic trajectory
instead of a single long observation which includes all
the trajectories in any combination.

B. Background on Interpreted Petri nets

A brief recall on Petri Nets is presented in this section.
For a complete review on PNs, the reader can refer to
[21].

A Place/Transition net (P/T net) is a 4-tuple N =
(P, T,Pre,Post) where P is a set of places, T
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is a set of transitions and Pre and Post are the
|P | × |T | sized, natural valued, incidence matrices;
Post(p, t) = w means that there is an arc from t ∈ T
to p ∈ P with weight w and Pre(p, t) = 0 indicates no
arc from p to t. The incidence matrix C of the net is
defined as C = Post −Pre.

A marking (the net state) is a vector m : P → N|P |,
that assigns to each place a non-negative integer number
of tokens. A P/T system or net system 〈N,m0〉 is a net
N with an initial marking m0.

A transition t is state-enabled at m iff m ≥ Pre(·, t),

noted by m
t
→; its firing yields a new marking m

′ =
m + C(·, t), called state equation; it is denoted by

m
t
→ m

′. The set of reachable marking is denoted
by R(N,m0). If R(N,m0) is finite, it is possible to
compute a graph whose nodes are each one associated
to a single net marking; an arc labeled by t exiting from
a node associated to m and entering a node associated
to m

′ is associated to each state transition. Such a graph
is called reachability graph [21].

Extending this reasoning, a sequence σ = t1t2...tl is
state enabled at m1 iff m1

t1→ m2

t2→ ...
tl→ ml+1 and it

is denoted by m1
σ
→; the marking ml+1 can be easily

computed as ml+1 = m1 + Cσ, where σ : σ → N|T |

is the firing count vector associated to σ, whose k-
th component is the number of occurrences of tk in
σ; furthermore, et represents the firing count vector
associated to σ = t.

We denote by E(N,m0, σ) the set of state enabled
transitions at m = m0+Cσ in the net system 〈N,m0〉,

i.e. E(N,m0, σ) = {t ∈ T | m
t
→, m = m0 +Cσ}.

To explicitly represent the I/O relationships of a
closed-loop controlled system, Interpreted Petri Nets
(IPNs) are adopted. An IPN is defined as N =
(P , T,Pre,Post, γ, β) and such that:

• P is a set of places, T is a set of transitions and
Pre and Post are the pre– and post–incidence
functions that specify the arcs.

• γ : P → O ∪ {ǫ} is a mapping function which
associates to each place an output signal (observ-
able place) or ǫ (unobservable place). The set of
places is partitioned into two disjoint sets, the set
of observable places P and the set unobservable
places P u, so P = P ∪ P u and P ∩ P u = ∅. As
consequence, the following holds:

Pre =

[

Pre

PreU

]

,Post =

[

Post

PostU

]

,C =

[

C

C
U

]

.

• β : T → {0, 1} is the logical condition function of
transitions and such that ∀ti ∈ T, β(ti) = Fi(I,EI),
where EI = {↑ ii(↓ ii) | ii ∈ I} is the set of
the input signals’ rising (falling) edges and Fi(I)

depicts the conditions on the input signals and edges
to fire ti.

The marking of an IPN is denoted by m, where

m =

[

m

m
U

]

; the subvector m is called observable

marking and m
U is called unobservable marking.

An Interpreted PN system 〈N,m0〉 is an IPN N with
an initial marking m0. In an IPN system, a transition
t fires at m iff it is state enabled and logical condition
enabled, i.e. m

t
→ ∧ β(t).

C. Background on automata

Automata are used in this work to represent the
observed dynamics.

A Moore Machine (MM) is a 6-tuple A =
(Q,E, δ, q0,Λ, λ) consisting of a finite set of states Q,
the finite set of input transition events E, a transition
function δ : Q×E → Q, an initial state q0 ∈ Q, a finite
set of outputs Λ and an output function λ : Q → Λ. The
output function λ is surjective, since each output l ∈ Λ
has to be associated to at least one state q ∈ Q.

The set of admissible events in a state q ∈ Q can be
defined as A(q) = {e ∈ E | δ(q, e) is defined}; if an
admissible event e occurs in q, a state transition occurs
and q′ = δ(q, e) is reached, denoted by q

e
→ q′. As

for IPNs, multiple state transitions can be considered at
once: a production s from the state q1 ∈ Q is a sequence
s = e1e2...el such that q1

e1→ q2
e2→ ...

el→ ql+1.
A MM can be represented by a directed graph, which

associates a node to each state and an edge labelled by
e ∈ E to each couple (q, q′) such that q

e
→ q′.

III. PROBLEM STATEMENT

The goal of this paper is to identify the unobservable
places to be added to an existing IPN model to make it
more accurate. In this section, some assumptions on the
input model are made and some concepts are introduced
to measure the deviance between the given model and
the desired one. Then, the problem statement is formally
defined as an optimization problem looking for a net
minimizing the deviance with respect to the desired
behaviour.

A. Assumptions

Assumption 1. In this work, the automation system
is assumed to be already modeled by an IPN system
〈NObs,m0〉, where NObs = (P, T,Pre,Post, γ, β);
this model is also called observable IPN system, since
it represents the reactive, observable behaviour of the
automation system and only contains observable pieces,
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as Fig. 1 depicts [24]. It consists in general of different
disjoint fragments representing causal relations between
inputs and outputs of the system and is not bounded;
isolated transitions are also admitted. �

Assumption 2. The database D of acquired input/output
observations is assumed to be available. Such a set is
assumed to be simulated by 〈NObs,m0〉 in the sense
that, for each observation Vj ∈ D, giving as input the
input signals of Vj , the IPN system will produce the
same outputs of Vj , in sequence. �

B. Interpreted sequences and model languages

In this section, we characterize the behaviour that a
model exhibits in terms of generated sequences. This task
is fundamental to evaluate the capability of the model to
accurately represent the system.

At this aim, the novel concept of interpreted sequences

is introduced. These sequences, consisting of transition
firings and observable markings, are defined to represent
the dynamic behaviour in terms of inputs and outputs that
the IPN system is able to model. As it will be shown, a
more accurate unobservable discovery can be achieved
exploiting the definition of interpreted sequences.

Definition 3. An interpreted sequences is a sequence
of observable markings and transition firings, always
starting and ending with an observable marking. Let
iσ = m1 be an interpreted sequence of length 1, let
iσ = m1t1m2t2...tn−2mn−1tn−1mn be the interpreted
sequence of length n, then |iσ| denotes the length of iσ,
first(iσ) = m1, last(iσ) = mn.

It is useful to obtain the firing sequence of an inter-
preted sequence. At this aim, the following definition
comes in help.

Definition 4. The projection operator Π : iσ →
σ is defined as follows: Π(iσ) ≡ ǫ, if iσ =
m, while Π(iσ) ≡ t1t2...tn−2tn−1, if iσ =
m1t1m2t2...tn−2mn−1tn−1mn. Note that the length of
the firing sequence Π(iσ) is equal to |iσ| − 1. �

Given two interpreted sequences iσ1 and iσ2 such that
last(iσ1) = first(iσ2), it makes sense to define their
concatenation iσ1 iσ2 as the sequence consisting of the
string iσ1 immediately followed by the string iσ2 except
for the first marking of iσ2 that is removed/merged
with the last marking of iσ1. Note that Π(iσ1 iσ2) =
Π(iσ1)Π(iσ2).

Observable markings and transition firings of an in-
terpreted sequence can be associated to two kinds of ob-
servable symbols that the IPN system is able to generate;
in particular, transition firings generate symbols related

to physical input events and are contained in a set U ,
while observable markings generate symbols related to
physical output events and are contained in a set Y . We
denote by l the labelling function which associates the
appropriate symbols to transition firings and observable
markings.

For the sake of simplicity, the firing of the i-th
transition is associated to the symbol ti, i.e. l(ti) =
ti, U = {∪i l(ti)}. Similarly, we associate to the i-th
observable marking that the IPN system can reach from
the initial marking the symbol mi, i.e. l(mi) = mi, Y =
{∪i l(mi)}.

Thus, given the symbols for transition firings and
observable markings, the symbolization of an interpreted
sequence can be defined. At this aim, let S = Y ∪
U be the set of symbols, the symbolization of iσ
is w = l(iσ) ≡ l(m1)l(t1)l(m2)...l(tn−1)l(mn) =
m1t1m2...tn−1mn and is called word. Note that the
length of the word w is |w| = |iσ|; furthermore,
last(w) = l(mn).

As for interpreted sequences, concatenation can be de-
fined also for words: given w1 = l(iσ1) and w2 = l(iσ2),
their concatenation is w1w2 = l(iσ1iσ2). Thanks to
concatenation, a generic word w can always be written
as w = w1w2w3, where w1, w2, w3 ∈ S∗ are words and
w1 is called prefix of w, w2 is a subword of w and w3

is the suffix of w.

The set of words of length n generated by an IPN
system can be defined as follows: W n(N,m0) =
{l(iσ) ∈ S∗ | m0

σ
→ , σ = Π(iσ) , |iσ| = n}.

The generated language of length n is defined as
Ln(N,m0) =

⋃

k≤n

W k(N,m0). The generated language

of the net is denoted by L(N,m0) and is defined as
L(N,m0) =

⋃

n

Ln(N,m0).

The concepts just introduced for IPNs can be anal-
ogously defined for Moore machines. We will use au-
tomata during the synthesis of the unobservable subnet.
At this aim, the set of transition events E is chosen to be
isomorphic to T , i.e. each event ei ∈ E is conveniently
noted by ti ∈ T . The set of outputs of the Moore
machine Λ satisfies the relation Λ ⊆ Y .

Language definitions can finally be stated also for au-
tomata. Precisely, the set of words of length n generated
by a Moore Machine A from q0 is defined as:
W n(A) = {[λ(q0)t1λ(q1)t2...tn−1λ(qn−1)] | ti ∈
E, ∃ q1, q2...qn−1 ∈ Q : qi = δ(qi−1, ti) ,∀i ≥ 1}. The
generated language of length n is defined as Ln(A) =
⋃

k≤n

W k(A). The generated language of the MM is

denoted by L(A) and is defined as L(A) =
⋃

n

Ln(A).
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C. The observed language

Given the definitions of languages generated by IPNs
and automata, it is fundamental to also define the lan-
guage observed from the automation system in a similar
way.

At this aim, it is firstly necessary to define the in-
terpreted sequences that are directly derived from the
observed I/O sequences. Given the database D, the set
of observed interpreted sequences IΣ = {iσ1, ..., iσ|D|}
is obtained. Precisely, simulating each sequence Vj ∈ D
by 〈NObs,m0〉 and recording each transition firing and
the marking it yields, an interpreted sequence iσj is
obtained. Note that if the sequence V o

j is cyclic, the
associated interpreted sequence iσo

j is cyclic also.
Secondly, the set of the observations is defined:

Obs = { (IΣo)∗IΣo + IΣo },

where IΣo contains cyclic sequences only while
IΣo contains non cyclic sequences only, and it
holds: IΣ = IΣo ∪ IΣo, IΣo ∩ IΣo = ∅. Note that
the set of the observations Obs, as required, takes
into account both observed inputs (through transition
firings) and outputs (through observable markings);
in subsection III-E an in-depth motivation for this is
illustrated. The set of the symbolized observations
can then be defined as SObs = {l(iσ),∀iσ ∈ Obs},
while the observed language finally is:
LObs = {w ∈ S∗ | ∃w′ ∈ S∗ : ww′ ∈ SObs}, which
is prefix-closed by definition. LObs can be composed
of words of infinite length. It is useful to introduce
a length parameter, as for the language produced by
a model. Thus, the observed language of length n is:
Ln
Obs = {w ∈ LObs | |w| ≤ n}
Note that, due to Assumption 2, the given observable

IPN system satisfies the relation L(NObs,m0) ⊇ LObs;
the relation of inclusion between these two sets remarks
that the model could also produce never observed words,
i.e. it does not fit with the observations.

D. The model accuracy and the target IPN system

In this section, the concept of accuracy of a model is
illustrated. At this aim, we refer to a generic model M
of the automation system, which either is an IPN model
(M = 〈N,m〉) or an automaton model (M = A). This
is done without loss of generality, since the generated
languages are both based on transition firings and ob-
servable markings.

The simplest indicator that measures the degree of fit-
ness of a model with the observations takes into account
the difference between the words produced by the model
and the observed ones. Assuming that a good database
has been acquired, the following definition formalizes it.

Definition 5. Consider a model M such that L(M) ⊇
LObs; then, the exceeding language of length n of the
model is defined as Ln

Exc(M) = Ln(M) \ Ln
Obs. �.

The smaller is the exceeding language, the better the
model fits with the observations: if Ln

Exc(M) = ∅ ∀n,
it means that the model is able to perfectly reproduce
from the initial state the sequential behaviour observed
from the system. Such a perfect fit, however, is quite
never the target for a good model. In fact, since real
systems usually exhibit a rich behaviour, long sequences
are needed to capture them, and consequently large
values of n should be considered. However, observations
are generally not complete, i.e. not all the possible
trajectories are observed. Thus, building a model that
perfectly fits with the acquired trajectories implies that
new (future) observations cannot be generated by the
identified model.

The empirical experience usually suggests that it
makes sense to devise a tolerance length ñ able to
preserve a rich set of observations. In this case a good
model M is such that:

• words of length ñ produced by the model from the
initial state are exactly the ones observed from the
initial state of the automation system;

• only words w = m1t1m2t2...tñ−1mñ that were
observed from the automation system can be pro-
duced by the model; thus, the behaviour of the
model M within any horizon that includes ñ state
transitions is coherent with the observations.

The two constraints are both necessary: if the first
one only is imposed, unknown words of length n ≤ ñ
could be produced after the first ñ steps from the initial
state; if the second one only is imposed, some words of
length n ≤ ñ could be produced by the model from the
initial state even if they were observed from a state of
the system different from the initial one.

In order to formalize these concepts, the operator V
is firstly introduced. It can be applied to the observed
language or to the language L generated by a model M
and is defined as:

V(L, n) = {w ∈ S∗ | ∃wi, we ∈ S∗ :

wi wwe ∈ L ∧ |w| = n}.
In words, the V operator yields all the subwords of length
n that can be picked from the given language L, starting
from any observable marking of the contained words.

Applying this operator to the observed language,
known words are yielded.

Definition 6. The set of known words of length n is
defined as: Kn

Obs = V(LObs, n). �

Thus a word is said known iff it was produced from
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any state of the automation system, reached from the
initial one, during the observation of its behaviour.

In general, a model could produce, at any state reach-
able from the initial one, words that are not known. In
order to evaluate this deviance, the distance between the
language L of the model and the observed language is
introduced.

Definition 7. Given a model M such that L(M) ⊇
LObs, the distance of order k is defined as:
dk(M) = |V(L(M), k) \ V(LObs, k)|. �

In words, the distance of order k between the language
generated by the model and LObs yields the number of
(sub)words of length k that start from any observable
marking and that L contains but LObs does not.

In the following example, the introduced definitions
are illustrated.

Example 8. Assume that the reactive behaviour of a
system has been identified through the IPN system
〈NObs,m0〉 in Fig. 3.

1

Fig. 3. 〈NObs,m0〉 depicting the observable behaviour of a system,
given under the form of two fragments. The conditions associated to
transitions have been omitted.

The dynamic behaviour is represented
by IΣ = {iσ1, iσ2, iσ

o
3} where iσ1 =

m0t1m0t3m2t1m2t1m2t1m2t4m1, iσ2 =
m0t1m0t2m2t1m2t1m2t4m1t5m2t1m2t1m2t4m1,
iσo

3 = m0t3m2t6m0t1m0; only the last sequence is
cyclic. The observable markings mi = [m(p1)m(p2)]

T

are: m0 = [0 1]T ,m1 = [1 0]T ,m2 = [1 1]T .
First, consider the unitary language length, i.e. n = 1.

The generated language of length 1 is L1(NObs,m0) =
{m0}, that is equal to the observed language of length 1,
thus L1

Exc(N
Obs,m0) = ∅. As for the distance measure,

it holds d1(NObs,m0) = ∞: indeed, source transitions
t2, t3, t5 generate infinite observable markings.

If n = 2 is chosen, L2(NObs,m0) =
{m0,m0t1m0,m0t5m3,m0t4m4,m0t2m2,m0t3m2,
m0t6m0}, where m3 = [0 2]T ,m4 = [0 0]T ;
however L2

Obs = {m0,m0t1m0,m0t3m2}, thus
L2
Exc = {m0t5m3,m0t4m4,m0t2m2,m0t6m0}. The

distance of length 2 is clearly infinite.

The given IPN system is not a good model of the sys-
tem, since meaningless observable markings are reached,
i.e. the ones that are not 1-bounded; in addition, it
contains exceeding words for n = 2 already. Proper
unobservable places should thus be added to better fit
the model with the observations. �

Thanks to the illustrated definitions, the treated prob-
lem can be stated as minimization problem on both
the exceeding language and the distance between the
observed language and the language produced by the
model. At this aim, the concept of k-completeness is in-
troduced. For the sake of rigor, the term k-completeness
has been firstly used in [20] with a weaker meaning. Here
this term is extended to include the exceeding language.

Definition 9. Consider a model M such that
L(M) ⊇ LObs; it is said to be k-complete iff it holds
Lk
Exc(M) = ∅ and dk(M) = 0. �

Clearly, the main target is the building of a ñ-
complete model. At this aim, the design parameter
ñ ≤ r ≤ liσmax ≡ max

iσk∈IΣ
|iσk| is introduced; note that

r̃-completeness entails ñ-completeness. If r = liσmax is
chosen, the desired model is said maximally accurate,
since it perfectly fits with the observations.

The problem statement can be finally expressed.

Problem statement. Given an IPN system 〈NObs,m0〉
modelling the automation system, the goal is to construct
a new IPN system 〈N ′,m′

0〉 so that it is r-complete, by
adding a set of unobservable places to 〈NObs,m0〉. �

In conclusion, note that ñ cannot be a free parameter.
Indeed, the value liσmax is clearly an upper bound for ñ. A
lower bound also exists; indeed ñ ≥ 2 must hold since at
least one transition firing must be considered. However,
in case of cyclic sequences in the acquired database, the
relation ñ ≥ liσ

o

max must hold, where liσ
o

max = max
iσ∈IΣo

|iσ|;

indeed, the identity of cyclic sequences is preserved and
made discernable from any other observed behaviour.

E. The importance of markings in language definitions

Standard definitions of Petri net languages are usually
based on transition firings only, while in this work also
observable markings are used. The main motivation is
that both inputs (transitions) and outputs (observable
places) are representative of the automation system and
must be taken into account when evaluating the gener-
ated language of the model; indeed, if only sequences of
transitions are considered for the unobservable discovery,
then a less accurate model is obtained.

To prove this difference, an example is now given. At
this aim, languages generated by sequences of transitions
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Fig. 4. The observable IPN system 〈NObs,m0〉.

only should be considered; however, we do not formally
recall these languages since they can be easily derived by
those generated by interpreted sequences using the pro-
jection operator Π(iσ). Hence, the definition of exceed-
ing language and distance can be immediately extended
to such languages. We simply refer to them by applying
the tilde symbol to the already defined languages and
measures, e.g. L̃n

Obs is the observed language of length
n containing sequences of transitions only. The example
can now be illustrated.

Consider the observable IPN system 〈NObs,m0〉
in Fig. 4. The set of observed interpreted
sequences is: IΣ = {iσ1, iσ2, iσ3}, where
iσ1 = m0t1m11t4m10t5m9t2m3t8m4t6m1t9m0,
iσ2 = m0t1m11t4m10t2m5t5m3t8m4t6m1t9m0,
iσ3 = m0t1m11t3m7t7m8t4m6t6m2t5m1t9m0; they
are not cyclic.

Suppose that an IPN system 〈N,m0〉, differing from
〈NObs,m0〉 by a set of unobservable places, must be
found such that it ensures L̃2

Exc(N,m0) = ∅ and
d̃2(N,m0) = 0.

The IPN system in Fig. 5. satisfies these constraints;
however, it is able to generate words of length 3 (con-
taining 2 transition firings) that were never observed. For
example, the word w = m10t2m5t8m6 does not belong
to the known words, but can be produced by the model
when σ = t1t4t2t8 is fired. Indeed, once t2 is fired, the
firing of t8 or t5 is enabled. In other words, the model
is not 3-complete.

When also observable markings are considered in ad-
dition to transition firings, then t8 is only expected when
the firing of t2 produces m3, and t5 is only expected
when the firing of t2 produces m5. Thus, applying
to this example the method proposed in this work, a
3-complete IPN system 〈N ′,m′

0〉 is found that better
models the system and still satisfies L̃2

Exc(N
′,m′

0) = ∅
and d̃2(N ′,m′

0) = 0.

2

Fig. 5. The IPN system 〈N,m0〉 satisfying d̃2(N,m0) = 0 and
L̃2

Exc(N,m0) = ∅.

IV. A SOLUTION BASED ON ILP PROBLEMS SOLVING

In this section we present the methodology adopted to
enforce r-completeness. Firstly a Moore machine Er is
constructed which models the dynamics that the new IPN
system should exhibit. Then new unobservable places
implementing the dynamics of Er are computed by
solving ILP problems and added to the given IPN system.
These places act exclusively on the state enabling of a
given transition t of the IPN model without affecting the
logical condition function β(t).

A. Modelling of the desired behaviour

In this subsection, a Moore machine Er , depending on
the design parameter r, is built such that it is r-complete.
At this aim, some considerations are useful.

For the sake of simplicity, firstly suppose that a single
interpreted sequence iσ1 = m0t1m1 . . . t|iσ1|−1m|iσ1|−1

has been observed from the system (IΣ = {iσ1}). The
most trivial Moore Machine A representing the system
is made of |iσ1| states, where q0 is the initial state and
a state qi is associated to each marking mi in the inter-
preted sequence, i.e. λ(qi) = l(mi), 0 ≤ i ≤ |iσ1| − 1.

Such states are linked as a chain: qi
ti+1

→ qi+1, 0 ≤ i ≤
|iσ1| − 1. Note that each state has a single output and
input arc; in addition, the automaton is acyclic, i.e. no
directed path starts from and returns to the same state
qi. This model guarantees by construction L(A) = LObs,
and thus is maximally accurate.

Now consider the case of two interpreted sequences
observed from the system (IΣ = {iσ1, iσ2}). They
necessarily share a prefix iσ of length 1 due to the
common initial marking, i.e. iσ1 = iσiσ′

1 and iσ2 =
iσiσ′

2; however, in the general case |iσ| ≥ 1 holds.
Assume that the sequence iσ1 is firstly represented in
the trivial automaton A. It can be noted that the states
qi, 0 ≤ i ≤ |iσ| − 1 already model the prefix of iσ2;
thus, it is sufficient to continue the chain from q|iσ|−1 to
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model iσ′
2. As a result, the state q|iσ|−1 has two output

arcs, one for iσ′
1 and one for iσ′

2. This trivial automaton
is still acyclic and maximally accurate and can model
two interpreted sequences.

Acyclic automata are not suitable for representing a
cyclic observed interpreted sequence iσo. At this aim, we
introduce cycles in the model. Let IΣ = {iσo}, the trivial
automaton A is built as before, except for q|iσo|−2 being

linked to q0 instead of q|iσo|−1, i.e. q|iσo|−2

t|iσo|−1

→ q0.
Such an automaton is cyclic and maximally accurate.

Note that using a trivial automaton the number of
states grows with the length of the observed interpreted
sequences; furthermore, these sequences are expected to
be long because rich trajectories of the system must be
acquired. Hence, it makes sense to compact the model by
using cycles also for non cyclic interpreted sequences,
instead of using chains only. As a result the model
generates, in addition to the observed words, exceeding
words also, since infinite paths exist due to cycles. As
discussed, such exceeding behaviour is desirable if it is
“controlled”.

In conclusion, it is clear that a proper manage-
ment of cycles allows the building of compact mod-
els that guarantee a certain degree of accuracy. The
algorithm proposed in this subsection builds a cyclic,
compact, non-maximally accurate model Er that ensures
r-completeness.

The basic idea for building Er is to split it into
two sides: the left side, that includes the initial state,
is constructed as a trivial automaton; the right side,
instead, contains cycles to compact the model. The
typical structure of Er is exemplified in Fig. 6, where
r = 5 is chosen without loss of generality; obviously,
it is supposed that r satisfies the discussed bounds, i.e.

liσ
o

max ≤ ñ ≤ r ≤ liσmax. The two sides share the states
along the boundary line (l = r).

In detail, in the left side:

• words of length l ≤ r are generated from the initial
state, such that the constraint Lr

Exc(Er) = ∅ is
ensured;

• if a cycle exists, it only returns to the initial state
and never passes through any state on the bound-
ary line. Such cycles represent cyclic interpreted
sequences.

Instead, in the right side:

• words of length l ≥ r are generated from the initial
state;

• cycles are allowed iff 1) from any state only words
can be generated such that dr(Er) = 0, 2) they do
not return to any state at the left of the boundary
line.

left side right side

Fig. 6. An example of Er where r = 5. The left side of Er

guarantees Lr

Exc(Er) = ∅; the right side ensures dr(Er) = 0.
Labels to states and arcs have been omitted for the sake of readability.

Finally note that, in both sides, terminal states can exist,
i.e. states without output arcs.

To present the algorithm that constructs this automa-
ton, some definitions are necessary. For the sake of
brevity, we will denote by σk each sequence σk =
Π(iσk), iσk ∈ IΣ; in addition, the length |σk| is denoted
by lk. Finally, given a sequence σ, the first transition of
the sequence is given by σ(1) and the k-th, k ≤ |σ|,
is given by σ(k); furthermore, σ(m,n) denotes the sub-
sequence of σ having all its elements from the m-th to
the n-th; if n < m the empty sequence is returned.

Definition 10. Given the set of observed interpreted
sequences IΣ, we firstly denote by mk,s (tk,s) the
s-th marking (transition firing) observed during the k-th
acquisition, where 0 ≤ s ≤ lk and mk,0 = m0,∀k.
Then, we denote by wn(iσk, s) a direct word, defined
as: wn(iσk, s) = mk,stk,s+1...tk,s+n−1mk,s+n−1, where
s + n − 1 ≤ lk. Each wn(iσk, s) is a known word by
definition. �

The algorithm that builds Er is based on a sliding
window mechanism. This window has a dynamic size
and slides on each observed word l(iσ) (iσ ∈ IΣ); at
any moment, it only contains a subword of l(iσ). The
automaton is constructed by adding at each step a state
associated to the subword contained in the window; we
denote by ω(q) the word w associated to a state q. In
particular:

1) firstly, l(iσ1) is selected. The window is positioned
at the beginning of the observed word (s = 0);
the length of the window is l = 1 and contains
the word w0 = w1(iσ1, 0) = m0: the initial state
q0 is created and associated to w0, i.e. ω(q0) =
w0, λ(q0) = last(w0) = m0. The window’s
length l is then incremented by a unit and the
word w1 = w2(iσ1, 0) is encountered. A state q1
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is thus constructed, such that ω(q1) = w1 and
λ(q1) = last(w1); the state q0 is linked to q1 by
an arc labelled by σ1(1). This procedure repeats
until l = r − 2;

2) l = r − 1 is set (maximum length of the window)
and the word w = wr−1(iσ1, 0) is encountered. The
state qr−3 is linked to qr−2 through an arc labelled
by σ1(r − 2);

3) the window, now, slides by one step (s = 1)
keeping the same length; the contained word is
w′ = wr−1(iσ1, 1). This word is said to be a
successor of the previously encountered word w. A
new state qr−1 is created and associated to w′. The
previous state is linked to qr−1 by an arc labelled
by σ1(r−1). The window then slides again (s = 2)
and a new state is created and properly linked. This
process, whose details are given in the following,
continues until: a) the window reaches the end of
iσ1, if iσ1 is not cyclic; b) the window reaches the
second-last marking of iσ1, otherwise. As usual,
a state qf is created and associated to the word
contained in the window. If iσ1 is cyclic, qf is
directly linked to q0 through an arc labelled by
σ1(|σ1|); in this way, the state resetting property
of cyclic sequences is implemented in Er;

4) when the processing for l(iσ1) is finished, the fol-
lowing observed word l(iσ2) (if it exists) is selected
and the procedure is re-executed from the step 1);
new states and arcs are thus added to Er.

If, at any step, it happens that a word w is encountered
again in the window, the state qw, associated to w and
created the first time that w was encountered in that step,
is re-used and new input/output arcs added. State re-
using only produces new output arcs when applied at step
1) and 2), while it can also produce cycles when applied
at step 3); thus, in line with the discussed structure of
Er (Fig. 6.), the algorithm ensures that cycles can only
return to states of the right side.

As a result of state re-using, a single state exists for
each encountered word of length l < r−1, while at most
two states associated to the same word of length r − 1
can exist, one created at step 2) and positioned at the
left of the boundary line and one created at step 3) and
belonging to the right side; in this case, the state created
at step 2) is called early (E) state, while the one created
at step 3) is called late (L) state. The remaining states
are said to be regular (R) states.

In the following example, the illustrated algorithm is
applied.

Example 11. Consider again the observable IPN system
of Example 8 and suppose that ñ = 5 is given.

Applying the illustrated algorithm for r = 5, the MM
in Fig. 7. is obtained: each state q contains the associated
word w = ω(q) and the output λ in the form λ(q) =
l(mi) = mi. All the states are regular (R). �

Fig. 7. Er for the system and r = 5.

In the last part of this subsection, r-completeness of
Er is demonstrated and the algorithm is formalized.

Lemma 12. The automaton Er ensures dr−1(Er) = 0.

Proof. The thesis holds because:

• taken any state q ∈ Q, the associated word w =
ω(q) can be produced by Er, since a path exists that
starts |w|−1 states backward and ends in q and such
that: 1) the j-th state along the path, 1 ≤ j ≤ |w|,
has as output the j-th marking that composes w;
2) the j-th transition between the j-th state and the
j+1-th state, 1 ≤ j ≤ |w| − 1, is the j-th transition
that composes w.

• words due to cyclic sequences can be produced,
thanks to the backward arcs directed to the initial
state;

• Er does not produce any other word other than the
cited ones; indeed, if a word w ∈ V(L(Er), r − 1)
existed such that w /∈ V(LObs, r − 1), then a path
leading to a state associated to w or an incorrect arc
to any state would exist; however, this is impossible
by construction.

The main property of Er can now be demonstrated.

Proposition 13. The automaton Er is r-complete.

Proof. The thesis holds iff:

• dr(Er) = 0; this is true thanks to Lemma 12 and
considering that each state q ∈ Q only admits tran-
sitions that generate observed successors after ω(q),
thus only known words of length r are produced.

• Lr
Exc(Er) = ∅; this is true since: 1) in the left side

Er is constructed as the trivial automaton; 2) no
cycles return to the states created at step 1) and 2),
which belong to the left side.
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In Algorithm 1 the function createState(w, type),
used also in Algorithm 2, creates a new state q such that
ω(q) = w and whose type is contained in the variable
type, which either is R,E or L.

Algorithm 1: construction of Er

input : IΣ, r
output: Er = (Q,E, δ, q0,Λ, λ)
Initialize:

1 q0 = createState(w1(iσ1, 0),R)
2 Q = {q0}, E = ∅
3 for k = 1 to |IΣ| do

4 l = 2, qprec = q0
5 for j = 2 to |iσk| do

6 if l > r − 1 then l = r − 1;

7 if j < |iσk| ∨ iσk is not cyclic then

8 qcurr = getState(Q, iσk, l, j − l, r)
9 Q = Q ∪ qcurr

else

10 qcurr = q0, since cyclic sequence lead
the model to the initial state

11 e = σk(j − 1)
12 δ(qprec, e) = qcurr, i.e. the succession of

two words is translated into an arc that links
the two associated states

13 E = E ∪ e, qprec = qcurr, l = l + 1

14 λ(q) = last(ω(q))∀q ∈ Q, Λ = {λ(q), ∀q ∈ Q}.

The function getState is also used and its pseudocode
is presented in Algorithm 2. This function takes as input
Q, the selected iσ, the length of the window l, the current
sliding step s and the value of the design parameter r and
returns the state associated to the encountered word. This
state is firstly searched in Q using the function find,
which yields, if exists, the already existing state in Q; if
the state is not found in Q, then a new one is created.

B. Strategy for computing the unobservable places

The given IPN system 〈NObs,m0〉 is in general not
r-complete since some sequences could exist that can be
produced by NObs from m0 but not by Er from q0. In
the general case, each one of these sequences can be split
in two parts: the first sub-sequence (that can be empty) is
still feasible in Er; the second one begins with the first
infeasible transition firing, i.e. the first transition that is
not expected in Er. If the first transition firing of each
infeasible (sub)path is blocked through an unobservable
place, then only the first half will be firable and the
exceeding language will be reduced. The addition of new

Algorithm 2: the getState function

Function q=getState(Q, iσ, l, s, r)is

1 w = wl(iσ, s), type = R, q = ∅
2 if l = r − 1 then

3 if s = 0∧ ∃wl(iσi, s
′) = w, iσi ∈ IΣ, s′ > 0

then type = E ;

4 if s > 0∧ ∃wl(iσi, s
′) = w, iσi ∈ IΣ, s′ = 0

then type = L ;

5 q = find(Q,w, type)

6 if q = ∅ then
q = createState(w, type)

unobservable places to NObs, leads to a new IPN system
〈N ′,m′

0〉. Constraints that involve the disabling of a
single transition firing by a single unobservable place
are called local (I). Obviously, the added unobservable
places must ensure the firability of all the observed
sequences in Σ ≡ {σ1, ..., σ|IΣ|, iσk ∈ IΣ} (II) and
reset their status at the end of each cyclic sequence (III),
otherwise the condition Ln(N ′,m′

0) ⊇ Ln
Obs, for any

finite n, could not be satisfied anymore. The constraints
II and III are called global constraints, since they are
shared among all the unobservable places.

The three constraints just illustrated, however, are in
general not sufficient to reach the objective: indeed,
additional global constraints are needed to implement in
the new IPN system the same concept of state re-using
of Er (IV).

The general idea given, in the following a formaliza-
tion is illustrated. At this aim, the following notation
is introduced: it is denoted by δr(q, t) the transition
function of Er, and similarly by Qr the state space of
Er. Furthermore, it is denoted by Ar(q) the function that
yields the set of admissible transition events in the state
q ∈ Qr.

C. Global algebraic constraints

In this section the set of constraints that each new
unobservable place must ensure is devised; to resume:

1) each observed sequence in Σ must be enabled at
the initial marking;

2) the state must be reset at the end of each cyclic
sequence;

3) if two productions s1 and s2 of Er, starting from q0
and not passing through it, lead to the same state,
then the associated sequences of transition firings
σ1 and σ2, fired from the initial marking, must lead
to the same marking.
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In order to formalize these constraints, the following
definitions come in help.

Definition 14. The function Zr(q) : Qr → {σi} is
defined as:
Zr(q) = {σk(1, s+ |w| − 1) | w|w|(iσk, s)= w,w = ω(q)
iσk ∈ IΣ, s = 0 if |w| < r − 1, else s ≥ 0 if q is R or E,
else s > 0}. �

In words, Zr(q) returns all the sub-sequences of
transition firings obtained from the observed firings and
corresponding to the productions in Er that start from q0
and end in q. Considered the Example 11 and the state
q such that ω(q) = m2t1m2t1m2t4m1, then Zr(q) =
{σ′, σ′′, σ′′′}, where σ′ = σ1, σ

′′ = t1t2t1t1t4, σ
′′′ = σ2;

note that σ′′ is a sub-sequence of σ2.

Definition 15. Consider the automaton Er and an unob-
servable place p identified by a row vector cU of the in-
cidence matrix. The place is said r-consistent iff ∀q ∈ Qr

it holds c
U
σi = c

U
σj where σi, σj ∈ Zr(q), i 6= j.�

The previously enumerated constraints can now be
mathematically expressed.

Proposition 16. Given a r, consider the following set of
global constraints, denoted by C(Σ, r)



























mU
0
+ c

U
σ̃1 ≥ preU σ̃2, σ̃1 = σk(1, l− 1),

σ̃2 = σk(l), σk ∈ Σ, ∀1 ≤ l ≤ lk; (16.1)
c
U
σ = 0, ∀σo ∈ Σ; (16.2)

c
U
σ = c

U
σi, ∀σi ∈ Zr(q), σi 6= σ, ∀q ∈ Qr,

and σis arbitrary chosen from Zr(q); (16.3)

where preU ,postU ,mU
0 are the unknowns, and pre-

cisely the pre and post incidence row vectors and the
initial marking of an unobservable place to be computed,
and cU = postU −preU . The set of constraints ensures
that the unobservable place 〈(preU ,postU ),mU

0 〉 satis-
fies the global constraint 1) through (16.1), 2) through
(16.2) and 3) through (16.3).

Proof. The proof comes straightforwardly, noticing that:

• Inequalities (16.1) ensure that legal firings are not
affected, through the condition of transition abilita-
tion in a state.

• Equalities (16.2) guarantee state resetting on cyclic
sequences, by setting the initial marking to the
reached one through the state equation.

• Equalities (16.3) ensure that the marking reached
from mU

0 by firing any sequence in Zr(q) always
leads to the same marking mU

q ,∀q ∈ Qr (r-
consistency). At this aim, an arbitrary sequence σ is
chosen from Zr(q) which leads to a certain marking
mU ; then, it is imposed that the same marking mU

is reached when all the other sequences in Zr(q)
are fired.

In the following proposition, an important property on
the set of constraints just illustrated is given.

Proposition 17. The set C(Σ, r + 1) is equally or less
restrictive than C(Σ, r).

Proof. In order to prove the thesis, only the equalities
(16.3) must be considered, since (16.1) and (16.2) do not
depend on r.

First, note that the boundary line (l = r+1) in Er+1 is
positioned just at the right of the boundary line (l = r) in
Er; thus, the states on the boundary line (l = r) of Er are
at the left of the boundary line (l = r+1) of Er+1. As a
consequence, possible cycles returning to those states are
not present in Er+1, being not permitted, i.e. some of the
equalities (16.3) could not be contained in C(Σ, r + 1).

Secondly, each state qr of Er at the right of the bound-
ary line (l = r) becomes a state qir+1 of Er+1 belonging
to the right side and such that ω(qir+1) = wi

pω(qr),
where |wi

p| = 2. Since ω(qir+1) is encountered no more
frequently with respect to ω(qr) in the sliding window,
no more times qir+1 is re-used, thus no more equalities
(16.3) are contained in C(Σ, r + 1).

D. Local algebraic constraints

In the following proposition, local constraints related
to firing disablings are treated.

Proposition 18. Consider the IPN system 〈NObs,m0〉,
a state q ∈ Qr and a sequence σ ∈ Zr(q). The following
set of constraints
{

mU
0
+ (postU − preU )σ < preU etu; (18.1)

preU etu > 0; (18.2)

where preU ,postU ,mU
0 are the unknowns, disables the

firing of tu after σ.

Proof. The proof comes straightforwardly since by in-
equality (18.1) the undesired firing is disabled while by
(18.2) the presence of an output arc directed to tu is
imposed.

E. The core algorithm

In this section, the core algorithm that produces the
desired IPN system 〈N ′,m′

0〉 is presented. The following
propositions illustrate some properties of the proposed
algorithm.

Proposition 19. Algorithm 3 produces a r-complete IPN
system only if the places of the input IPN system are r-
consistent.

Proof. For each state q ∈ Qr, undesired firings
are searched among the state enabled transitions in
E(N ′,m′

0, σ), σ ∈ Zr(q); they are then disabled through
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Algorithm 3: r-completeness enforcement

input : Er, IΣObs, r, 〈NObs,m0〉.
output: A new IPN system 〈N ′,m′

0
〉 that ensures

r-completeness if all ILPs have a solution.
1 Initialize: 〈N ′,m′

0
〉 = 〈NObs,m0〉

fmin = (preU + postU ) · 1+mU
0

2 foreach q ∈ Qr do

3 Select an arbitrary σ ∈ Zr(q)
4 T treated

u = ∅
5 while {{E(N ′,m′

0
, σ) \ Ar(q)} \ T treated

u } 6= ∅
do

6 Select an arbitrary
tu ∈ {E(N ′,m′

0
, σ) \ Ar(q)} \ T treated

u

7 S =







































mU
0
+ c

U
σ̃1 ≥ preU σ̃2, σ̃1 = σk(1, l − 1),

σ̃2 = σk(l), σk ∈ Σ, ∀1 ≤ l ≤ lk;

c
U
σ = 0, ∀σo ∈ Σ;

c
U
σ = c

U
σi, ∀σi ∈ Zr(q), ∀q ∈ Qr;

mU
0
+ (postU − preU )σ < preU etu;

preU etu > 0;

8 if ∄ pU ∈ P ′ s.t. S is satisfied then

a new unobservable place pU is
constructed:
[preU ,postU ,mU

0
, solved] =

solveILP (S, fmin)
9 if solved then

P ′ = P ′ ∪ pU , Pre
′
=

[

Pre
′

preU

]

,

Post
′
=

[

Post
′

postU

]

, m′
0
=

[

m
′
0

mU
0

]

10 T treated
u = T treated

u ∪ tu

ILPs at the marking m
′, where m

′
0

σ
→ m

′. Successively,
the next state q′ ∈ Qr is selected and the procedure
repeated.

Since the disabling of undesired firings is only en-
forced at the marking m

′, it is necessary that the marking
reached when any other sequence σi 6= σ ∈ Zr(q)
is fired from m

′
0 is equal to m

′; in other words, all
the places of 〈N ′,m′

0〉 must be r-consistent. Noted that
the unobservable places added by the algorithm are r-
consistent, only the places of the IPN system given as
input must be r-consistent.

It is immediate to recognize that the observable IPN
system 〈NObs,m0〉 has k-consistent places whatever k is
chosen; indeed, for any sequence σi ∈ Zk(q),∀q ∈ Qr,
the IPN always reaches the same (observable) marking,

whose symbol is last(ω(q)).

Proposition 20. Given the IPN system 〈NObs,m0〉, if
all the ILP problems of Algorithm 3 are solved then
the produced IPN system 〈N ′,m′

0〉 is r-complete. In
the general case, it holds Ln

Obs ⊆ Ln(N ′,m′
0) ⊆

Ln(NObs,m0) for any finite n.

Proof. Suppose that a complete solution has been found,
i.e. the unobservable places implement for the IPN
system 〈N ′,m0〉 the same dynamics of Er. Then, the
new model is r-complete.

On the other hand, if some ILP fails, the resulting
IPN system is in general not r-complete; in addition,
it could be unbounded, which can happen when the
given IPN system 〈NObs,m0〉 contains isolated and
source transitions. However, the added places (if any)
still guarantee the removing of certain unexpected words
and thus a reduction of the exceeding language.

Unsolvability of some ILPs is due to the nature of a
Petri net place: it is mostly like a counter since it only
maintains memory of its current status. Being it insen-
sible to the order in which increments and decrements
occur, it is not able to implement any constraint that is
order-sensible.

The main property of the method is expressed by the
following proposition.

Proposition 21. Let 〈N ′
r+1,m

′
0〉 and 〈N ′

r,m0〉 be the
solutions given by Algorithm 3 when r + 1 and r
are respectively chosen as parameters. Then, it holds
Ln(N ′

r+1,m
′
0) ⊆ Ln(N ′

r,m0), for any finite n, inde-
pendently of the number of solved ILPs.

Proof. To prove the thesis, only equalities (16.3) (the
ones due to state re-using) and inequalities (18.1), (18.2)
(the ones due to firing disablings) must be considered,
since the remaining are common in the two problems.

As illustrated for the proof of Proposition 17, each
state qir+1 of Er+1 associated to a word of length r has
no more output arcs of the corresponding state qr of
Er such that ω(qir+1) = wi

pω(qr). As a result, no more
words can be produced by the automaton Er+1 with re-
spect to the automaton Er, i.e. Ln(Er) ⊇ Ln(Er+1),∀n
holds.

On the basis of these considerations, it is clear that the
r + 1 problem has to guarantee at least the same firing
disablings of the r problem or even more.

Since global constraints are no more restrictive in the
r+1 problem (due to Proposition 17), no less transition
disablings are implemented through ILPs with respect
to the r problem; in addition, also new local constraints
are enforced, due to Ln(Er) ⊇ Ln(Er+1),∀n. The
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Fig. 8. The IPN system 〈N ′,m0〉 computed by Algorithm 3 for the
system of example 11 and r = 5. Arc weight is shown close to the
arc arrow.

Fig. 9. Exceeding language produced by the IPN 〈NObs,m0〉. A
green point means empty exceeding language.

resulting net, thus, exhibits a non-greater exceeding
behaviour.

Note that Algorithm 3 produces unobservable places
with minimum arcs weight and minimal initial tokens, as
the function fmin = (preU +postU ) ·1+mU

0 imposes,
where 1 is a column vector having all elements equal
to 1. Notice that Proposition 20 still holds if a trade-off
between arc weights and the number of initial tokens
is imposed, i.e. if the three terms (preU ,postU ,mU

0 )
are weighted. In addition, the algorithm still works if
the IPN system 〈N,m0〉 given as input is the result of
Algorithm 3 applied for k < r.

The following example shows the method applied.

Example 22. Consider the system presented in example
11. The method is applied for r = 5. Recall that the
target behaviour is represented by the automaton Er in
Fig. 7.

Seven unobservable places are produced, as shown
in Fig. 8. Each unobservable place is constructed to
implement a specific linear system. In particular, p7 is

Fig. 10. An observable IPN system 〈NObs,m0〉.

constructed to disable t5 just after w = m0. How-
ever, p7 already disables t5 after m2t1m2t4m1t5m2,
as checked at line 8 in Algorithm 3. In the very same
way, p3 is originally computed for disabling t2 after w =
m0t1m0t2m2, but also disables t3 after m0t1m0t3m2.

The solution given by the algorithm is r-complete (all
the ILPs are solved). The distance (exceeding language)
is 0 (empty) for lengths n ≤ 5. In addition, the
distance linearly grows for n ≥ 6; for example, the
word we = m0t1m0t2m2t1m2t1m2t4m1t5m2 was
never observed but can be produced. The method, thus,
greatly reduces the original exceeding language of the
observable IPN system, which is depicted in Fig. 9. �

Example 23. This example compares the method pro-
posed in this work with the approach illustrated in
[24]. Such pattern-based approach is chosen for the
comparison because, on the one hand, it generalizes the
patterns considered in [16] and, on the other hand, it
is not limited to t-invariants as in [26]. Thus, at the
best of our knowledge, it is the best preforming method
presented in the literature.

Consider the IPN shown in Fig. 10
and suppose IΣ = {iσ}, where iσ =
m0t1m1t3m0t2m1t4m0t5m2t6m0t5m2t1m3t3m2t2
m3t4m2t6m0 and m0 = [0 0]T ,m1 = [1 0]T ,m2 =
[0 1]T ,m3 = [1 1]T . Let 〈N ′,m′

0〉 be the IPN computed
using the approach proposed in [24]; this method can
be tuned by the free parameter m in such a way that
higher is m more accurate is the computed model. For
the comparison, the maximum value m = |T | = 6
has been chosen. Similarly, let 〈N ′′,m′′

0〉 be the IPN
computed with the method proposed in this paper for
r = 3.

Fig. 11 and 12 compare the two IPNs respectively on
the exceeding language and on the distance measure. As
depicted, the IPN computed by the proposed method is
far more accurate.

In addition, if r = 4 is chosen, the obtained model
exhibits empty exceeding language and distance for each
length n, i.e. it is maximally accurate.

The method proposed in [24] fails to deliver a more
accurate model because:

• it is based on sequences of transition firings instead
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Fig. 11. Comparison of the exceeding language generated by
〈N ′,m′

0〉 and 〈N ′′,m′′

0 〉. A green point means empty exceeding
language.

Fig. 12. Comparison of the distance between the observed language
and the generated one by 〈N ′,m′

0〉 and 〈N ′′,m′′

0 〉. A green point
means distance equal to 0.

of interpreted sequences, which account for observ-
able markings also;

• it searches in the firing sequence for patterns based
on rules and, thus, is limited to a number of cases.

In this specific example, no pattern is found relating
the firing of t5 with other transition firings, thus more
exceeding words are generated. �

F. Evaluation of the computational complexity

The computational complexity required by the ap-
proach presented in this paper depends on two main
tasks: 1) building of Er; 2) execution of the optimization
technique based on ILPs.

As for the first task, let liσmax the longest observed
interpreted sequence, then:

• The spatial complexity is O(|D| liσmax); indeed, in
the worst case the automaton Er contains |D| liσmax

states, independently on r. However, in real-case

scenarios the required spatial complexity is far from
the worst case, since state re-using is expected to
occur frequently, especially for small values of r;

• The temporal complexity is
O(|D| liσmaxlog(|D| liσmax)). To illustrate this, first
note that data structures minimizing both insertion

and search time complexity are O(log(n)), where
n is the number of elements in the structure;
an example of these structures are Red-Black
trees, which take a space complexity of O(n). In
the computation of Er, every time a word w is
encountered in the window, a state q is searched

such that ω(q) = w; if it does not exist, then a
new state is created and inserted. Considered that:
1) at each step, a search operation (and possibly an
insertion) is performed; 2) the maximum number
of steps is |D| liσmax, the thesis holds.

As for the second task, as many ILPs are created for
each state as the number of unexpected transition firings
the net enables. This number is not known a-priori, since
it depends on the observations, the accuracy of the given
IPN and on r; in general, given the observations and the
IPN, when r increases, the number of ILPs can increase
(see Proposition 21). However, in the worst case, |T |−1
ILPs need to be solved for each non terminal state of Er

and |T | for each terminal state. In detail, for each ILP:

• The number of unknowns is 1+2|T |, due to the ini-
tial marking mU

0 and the row vectors preU ,postU .
Each unknown is an integer varying between 0 and
maxV al; maxV al is an upper bound that the user
can set to bound the search space;

• The number of total constraints is
∑

k |iσk| − 1
+ |IΣo| + kliσmax, respectively due to (16.1), (16.2)
and (16.3), where k is a not known a-priori propor-
tional constant depending on r and the observations.
In addition, the ILP also contains 1+1 inequalities,
respectively due to (18.1) and (18.2).

The complexity of each ILP is known to be NP-
complete and exponentially grows with |T |. In principle,
this could be a limiting factor for the identification of
complex systems; however several measures can be taken
to dominate the space and time resources required by the
method, such as:

• Using off-the-shelf optimized software.
• Identifying the individual subsystems of the system,

and then merging the computed models. Methods
in the literature have been proposed for automated
partitioning of a system for identification purposes
[25].

• Decreasing the value of the design parameter r.
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V. CONCLUDING REMARKS

An approach for the identification of the unobserv-
able behaviour of a Petri Net model from long event
sequences has been presented. The proposed approach
exploits the mathematical representation of PNs and im-
proves previous approaches by evaluating the accuracy of
the identified model with respect to sequences of transi-
tions (inputs) and markings (outputs) and not only transi-
tions. At this aim, ILPs are employed as the core element
of an optimization-based procedure; this formulation is
particularly convenient since off-the-shelf optimization
tools can be employed to solve it. The resulting model
is a general net, while previous solutions only return
1-bounded nets. It is important to notice that the net
produced is not minimal in the number of unobservable
places. In fact, the result strongly depends on the order
in which linear systems are solved. Furthermore, the
method allocates an unobservable place for solving a
single transition disabling but, in the general case, a
place could implement multiple transition disablings; this
possibility has not been taken in consideration and will
be investigated in future research.

The proposed approach works on logical models,
while the explicit consideration of time is becoming
crucial for the specification and verification of systems
such as transportation systems [4], real-time systems, as
well as the study of problems such as state estimation,
and fault diagnosis [3]. First results to the identification
of timed net models have been proposed in [6], [5]
to identify a Time Petri Net from sequences of timed
transition firings; future research will be devoted also on
the identification of timed IPN models.
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