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ABSTRACT
We study the torque on low-mass planets embedded in protoplanetary discs in the two-
dimensional approximation, incorporating non-isothermal effects. We couple linear estimates
of the Lindblad (or wave) torque to a simple, but non-linear, model of adiabatic corotation
torques (or horseshoe drag), resulting in a simple formula that governs type I migration in
non-isothermal discs. This formula should apply in optically thick regions of the disc, where
viscous and thermal diffusion act to keep the horseshoe drag unsaturated. We check this
formula against numerical hydrodynamical simulations, using three independent numerical
methods, and find good agreement.

Key words: planets and satellites: formation – planetary systems: formation.

1 IN T RO D U C T I O N

Planets are thought to form in circumstellar discs around young
stars. In the core accretion model, gas giant planets emerge in the
disc through gas accretion on to a previously accumulated solid core
of a few times the mass of the Earth (M⊕; Pollack et al. 1996). An
alternative scenario involves direct fragmentation of the disc (Boss
1997), which is probably only possible in the outermost regions of
the disc (Boley 2009).

In general, objects embedded in protoplanetary discs will ex-
change angular momentum with the disc, which leads to a change
in their orbital parameters. The nature of this interaction depends
on the masses of the object and the disc. Small bodies, up to a few
km in size, on a Keplerian orbit will experience a head wind from
the gas, since the gas is partially supported by pressure and will thus
orbit at sub-Keplerian velocity (Weidenschilling 1977). This head
wind will lead to orbital decay, the time-scale of which can be as
short as a few 100 yr (Weidenschilling 1977).

The most massive objects, approximately the mass of Jupiter, can
tidally truncate the disc, forming a deep annular gap around their
orbits (Lin & Papaloizou 1986a). The planet, being repelled by both
gap edges, is locked inside the gap and will slowly accrete on to
the central star with the rest of the disc (Lin & Papaloizou 1986b).
The minimum mass for this type II migration to occur depends
on the scaleheight and viscosity of the disc (Crida, Morbidelli &
Masset 2006).

�E-mail: S.Paardekooper@damtp.cam.ac.uk

Planets that are not massive enough to open up a gap, but do
significantly perturb the disc, can be subject to a very rapid mode
of migration called type III when embedded in a very massive disc
(Masset & Papaloizou 2003). The mechanism of type III migration
relies on a distortion of streamlines in the coorbital region due to a
radial flow of gas with respect to the planet (Pepliński 2008). This
radial flow of gas can be due to the migration of the planet itself,
resulting in a positive feedback with the possibility of a runaway
process (Masset & Papaloizou 2003), with migration time-scales of
the order of a few tens of dynamical time-scales. Sustaining this
rapid mode of migration has proved to be very difficult (Pepliński,
Artymowicz & Mellema 2008a,b).

In this paper, we will be concerned with planets that do not
significantly perturb the disc, which is typically valid for objects up
to a few M⊕. This regime of type I migration was long thought to be
the simplest case, since it could be treated using a linear analysis. It
was shown in Goldreich & Tremaine (1979) that the torque exerted
on the planet by the disc can be decomposed in a wave torque,
arising at Lindblad resonances, and a corotation torque, generated
at corotation resonances. This analysis was subsequently refined
(Artymowicz 1993; Ward 1997), eventually resulting in a semi-
analytical torque formula for isothermal discs (Tanaka, Takeuchi
& Ward 2002). This formula has been confirmed by fully non-
linear, isothermal, hydrodynamical calculations (Bate et al. 2003;
D’Angelo, Kley & Henning 2003a).

The time-scale for type I migration is inversely proportional to
the mass of the planet and the disc, but is typically 104−5 yr for a 1
M⊕ planet embedded in a Minimum Mass Solar Nebula (Ward
1997; Tanaka et al. 2002). This is worrying, since the lifetime
of the disc is of the order of 106−7 yr, making the survival of
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low-mass planets highly unlikely. Planetary synthesis models have
great difficulties reproducing the observed semimajor axis distribu-
tion when including type I migration, and need to reduce the type
I torque from an order of magnitude (Ida & Lin 2008) to as much
as a factor of 1000 (Alibert et al. 2005; Mordasini, Alibert & Benz
2009).

The above results were obtained without considering magnetic
effects. It has been shown that including magnetic fields, either
regular (Terquem 2003) or turbulent (Nelson & Papaloizou 2004),
may slow down or even stop type I migration. It is not clear, however,
if protoplanetary discs are sufficiently ionized throughout to couple
effectively to the magnetic field.

There is another important ingredient missing in standard mod-
els of type I migration, which is to release the isothermal assump-
tion and account for the energy balance in a more realistic way.
A growing body of studies is dedicated to this problem, dealing
with high-mass planets (D’Angelo, Henning & Kley 2003b; Klahr
& Kley 2006), shadowing effects (Jang-Condell & Sasselov 2005),
and opacity jumps (Menou & Goodman 2004). In Paardekooper
& Mellema (2006a), it was shown through three-dimensional (3D),
radiation-hydrodynamic simulations that for deeply embedded low-
mass planets, type I migration could be qualitatively different from
the isothermal case. Planets could suddenly move outwards as
well as inwards, depending on the local opacity. This result was
confirmed using two-dimensional (2D) simulations with a self-
consistent heating and cooling balance (Kley & Crida 2008). It was
subsequently shown that this effect was due to the effect of a radial
entropy gradient in the disc on the corotation torque (Paardekooper
& Mellema 2008; Baruteau & Masset 2008a) and non-linear in
nature (Paardekooper & Papaloizou 2008).

In this series of papers, we aim at catching the essential physics of
the non-linear, non-isothermal corotation torque in a simple model
that can be used to predict the type I migration rate, as a function
of radial density and temperature gradients. In this paper, we con-
sider the unsaturated, adiabatic horseshoe drag, combined with a
linear estimate for the wave torque. Effects of viscous and ther-
mal diffusion will be considered in a forthcoming work. We start
in Section 2 with reviewing the basic equations and disc models,
and describe our numerical methods in Section 3. We give a more
detailed overview of isothermal type I migration in Section 4. In
Section 5 we present a simple model for the torque on a low-mass
planet in the presence of both entropy and vortensity gradients, and
subsequently compare this model to numerical simulations in Sec-
tion 6. A short discussion is given in Section 7, and we present our
conclusions in Section 8.

2 BASIC EQUATIONS

2.1 Governing equations

The basic equations are those of the conservation of mass, mo-
mentum and energy for a 2D disc in a frame rotating with angular
velocity �p. We adopt a cylindrical polar coordinate system (r , ϕ)
with the origin (r = 0) located at the central mass. The continuity
equation and the equation of motion take the form

∂�

∂t
= −∇ · (�v) (1)

and

Dv

Dt
+ 2�p k̂ × v = − 1

�
∇p − ∇�, (2)

respectively, while, in the adiabatic case, entropy is conserved along
streamlines:

D(p/�γ )

Dt
= 0, (3)

where γ is the adiabatic exponent. Above, � denotes the surface
density, v the velocity, p the vertically integrated pressure, � the
gravitational potential and k̂ the unit vector in the vertical direction.
The convective derivative is defined by

D

Dt
≡ ∂

∂t
+ v · ∇. (4)

In the remainder of this paper, we will refer to s ≡ p/�γ as the
entropy of the fluid. An ideal gas equation of state was used, p =
Rg�T /μ, where Rg is the gas constant, μ is the mean molecular
weight and T is the temperature. We neglect effects of self-gravity,
viscosity and thermal diffusion. The potential � contains terms due
to the central mass M∗, and a direct and an indirect term due to the
planet (see Nelson et al. 2000).

2.2 Equilibrium models

We construct axisymmetric equilibrium models that have power-
law profiles in surface density and temperature, with indices −α

and −β, respectively. This means that the initial entropy profile is
a power law as well, with index −ξ , where

ξ = β − (γ − 1)α. (5)

The angular velocity is Keplerian, with a slight correction for the
radial pressure gradient to maintain pressure equilibrium. The tem-
perature at the location of the planet is chosen so that the pressure
scaleheight at the location of the planet is H p ≡ hrp, with h �
1. Typically, we use h = 0.05. In the absence of self-gravity, the
density at the location of the planet �p can be chosen arbitrarily.

2.3 Planet

The potential of the planet, located at r = rp and ϕ = ϕp, is taken
to be a softened point mass:

�p = − GMp√
r2 + r2

p − 2rrp cos(ϕ − ϕp) + b2r2
p

, (6)

with b being the softening parameter. In order to approximately
account for 3D effects, b should be comparable to h. Typically, we
use b = 0.4h. When calculating the torque on the planet, we include
all disc material. We have checked that excluding a fraction of the
Hill sphere in the torque calculation does not affect the results.
Below, we will use q to denote the mass ratio Mp/M∗.

3 N U M E R I C A L M E T H O D S

Equations (1)–(3) are solved on a cylindrical grid, extending from
r/rp = 0.4 to r/rp = 1.6, and the full 2π in azimuth. The typical
resolution amounts to �r/rp = 0.0013 and �ϕ = 0.0025. Due
to the small radial extent of the horseshoe region, a large radial
resolution is required. We have checked that taking square cells
around the planet’s location (by doubling the resolution in ϕ) does
not influence the results.

We have used three independent numerical codes: RODEO (ROe
solver for Disc Embedded Objects; Paardekooper & Mellema
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2006b), based on an approximate Riemann solver, FARGO (Fast Ad-
vection in Rotating Gaseous Objects; Masset 2000a,b) and RH2D

(Radiation Hydrodynamics in 2 Dimensions; Kley 1989, 1999). The
latter two methods are based on the van Leer upwind algorithm.

RODEO is based on the general relativistic Roe solver outlined in
Eulderink & Mellema (1995). It uses stationary extrapolation to in-
tegrate gravitational and geometrical source terms, and can handle
arbitrary coordinate frames. Since it is based on a Riemann solver,
RODEO is specifically designed to handle sharp discontinuities, usu-
ally in the context of shocks. We will see in Section 6 that although
shocks do not play a role for low-mass planets, discontinuities arise
in the flow for which the use of a Riemann solver can be an advan-
tage.

RH2D is a 2D mixed explicit/implicit second-order upwind algo-
rithm that also uses a staggered grid. It can treat radiation transport
in the flux-limited diffusion approximation, but in this paper we
are only concerned with adiabatic discs. Its advection algorithm is
based on the monotonic transport scheme by van Leer (1977).

FARGO1 is a 2D hydrodynamical code, using a polar grid centred
on the star. It solves the Navier–Stokes and continuity equations
as well as the energy equation in a more recent version (Baruteau
& Masset 2008a), which we use here. It is based on the van Leer
upwind algorithm, on a staggered mesh. Both FARGO and RH2D use
the FARGO algorithm: in each ring i, at every time-step, the averaged
azimuthal velocity v̄ϕ,i is computed. The ring is globally shifted
by the corresponding number of cells for the considered time-step
length δt : ni = E[v̄ϕ,i

δt

rδϕ
], where δϕ is the elementary angle asso-

ciated with a cell and r is the radius of the ring. Then, the advection
is performed using the remnant azimuthal velocity in every cell v′

ϕ

= vϕ − ni r δϕ/δt . In rotating discs where |v′
ϕ | � v̄ϕ , this enables

a speed-up of the computation and a lower numerical diffusivity
because of the larger time-step.

4 ISOTHER M A L TYPE I MIGRATION

In this section, we briefly review recent progress on type I migration
in the isothermal limit. This will prove helpful in understanding the
general case, since very similar processes operate.

One can linearize equations (1) and (2) and solve these numer-
ically using outgoing wave boundary conditions (Korycansky &
Pollack 1993). This yields a Lindblad torque (Tanaka et al. 2002,
their 2D result):


L/
0 = −3.2 − 1.468α, (7)

with2


0 = (q/h)2�pr
4
p �2

p (8)

and a corotation torque


c,lin/
0 = 2.04 − 1.36α. (9)

Note that the linear corotation torque is proportional to the radial
gradient of specific vorticity (Goldreich & Tremaine 1979), being
zero for α = 3/2. It is also important to stress that these results were
obtained with essentially no gravitational softening.

It was shown in Paardekooper & Papaloizou (2009a) that corota-
tion torques are non-linear in general, unless a very strong viscosity

1 http://fargo.in2p3.fr/
2 All torques presented in this paper will be normalized by 
0. Note that 
0

is proportional to q2.

is applied. The linear corotation torque is replaced by non-linear
horseshoe drag (Ward 1991):


HS/
0 = 3

4

(
3

2
− α

)
x4

s

h2

q2
, (10)

where xs is the half-width of the horseshoe region, in units of rp.
In the limit b → 0, it was shown in Paardekooper & Papaloizou
(2009b) that x2

s = 1.68q/h, making the horseshoe drag


HS/
0 = 2.11

(
3

2
− α

)
= 3.18 − 2.11α, (11)

which is a factor of more than 3/2 larger than the linear corotation
torque. The result that the non-linear corotation torque is larger than
its linear counterpart also holds for non-zero gravitational softening.

One can then combine equations (7) and (11) to obtain a formula
for the total torque:


/
0 = −0.02 − 3.578α, (12)

which can be seen as a non-linear equivalent of the 2D formula of
Tanaka et al. (2002):


lin/
0 = −1.16 − 2.828α. (13)

For a constant surface density disc (α = 0), inward migration has
slowed down by a factor of 100 through non-linear effects. However,
these formulae are of limited use due to the lack of gravitational
softening. In general, b should be of the order of h to account for
3D averaging effects, which would lead to a different value of xs

(Paardekooper & Papaloizou 2009b) and a different Lindblad torque
(Paardekooper & Papaloizou 2009a). The general conclusion that
non-linear corotation torques can slow down type I migration is still
valid, however.

5 A SI MPLE ADI ABATI C MODEL

In this section, we will construct a simple model describing type I
migration in terms of a linear Lindblad torque plus the non-linear
horseshoe drag. A first expression for the adiabatic horseshoe drag
was proposed in Paardekooper & Papaloizou (2008), obtained by
integrating the density perturbation due to entropy conservation
over the disc. In this approach, an assumption has to be made
on the exact geometry of the horseshoe region. Paardekooper &
Papaloizou (2008) considered rectangular streamlines and showed
that the resulting torque is of the correct magnitude. However, in
reality streamlines will not be rectangular, which can have a large
impact on the torque. Here, we try to relax this assumption and take
a different approach that allows us to combine the contributions of
entropy and specific vorticity in a simplified way and include the
contribution of the Lindblad torque.

5.1 Linear torques

Linearization of the two components of the equations of motion,
together with the continuity equation and the adiabatic condition
(equations 1–3) yields a pair of first-order ordinary differential equa-
tions (see Paardekooper & Papaloizou 2008, their equations 14 and
15). We have solved these linear equations for different background
surface density and temperature profiles to obtain simple estimates
of the Lindblad torque and linear corotation torque.

Solving the linear equations (see Paardekooper & Papaloizou
2008) results in a linear Lindblad torque:

γ
L/
0 = −(2.5 + 1.7β − 0.1α)

(
0.4

b/h

)0.71

. (14)
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Non-isothermal type I planetary migration – I 1953

It was shown in Paardekooper & Papaloizou (2008) that the linear
corotation torque in adiabatic discs is associated with singularities
due to radial gradients in entropy and in the quantity

�κ2

�p2/γ
, (15)

with κ being the epicyclic frequency, equal to � in a Keplerian
disc. The condition that the above quantity should be constant for
the corotation torque to be zero is a generalization of the condition
that the gradient of specific vorticity should vanish, which applies
in the strictly barotropic case. One is then led to a two-term ex-
pression for the linear corotation torque: one proportional to ξ and
one proportional to 3/2 + (1 − 2/γ )α − 2β/γ . From our linear
calculations, we found

γ
c,lin/
0 = 0.7
(

3
2 +

(
1 − 2

γ

)
α − 2β

γ

) (
0.4
b/h

)1.26

+ 2.2ξ

(
0.4

b/h

)0.71

, (16)

which can be written in terms of ξ rather than β:

γ
c,lin/
0 = 0.7
(

3
2 − α − 2ξ

γ

) (
0.4
b/h

)1.26

+ 2.2ξ

(
0.4

b/h

)0.71

, (17)

making the total linear torque


lin = 
L + 
c,lin. (18)

We will compare this linear estimate to non-linear simulations at
early times in Section 6.

For an isothermal disc (β = 0, γ = 1 and therefore ξ = 0), and
b/h = 0.4, we have


iso/
0 = −1.4 − 0.6α, (19)

while a 3D calculation by Tanaka et al. (2002) resulted in


3D,iso/
0 = −1.364 − 0.541α. (20)

Therefore, our adopted value of the smoothing length gives reason-
able agreement with fully 3D calculations in the isothermal limit.

The dependence of the torque on softening can be quite com-
plicated (see Paardekooper & Papaloizou 2009a, for the isothermal
case). We have chosen for a simple power-law scaling that is valid
around b/h = 0.4, which is a reasonable value (see above). In Fig. 1
we show the total torque for a disc where the corotation torque
vanishes, for different softening parameters. While equation (14)
gives a good estimate for b/h = 0.6 (and b/h = 0.4, which is not
shown), for more extreme values of b/h the simple estimate fails.
However, these extreme values are not of interest physically, since
b/h ≈ 0.4 gives reasonable agreement with 3D results. For the sake
of completeness, we note that the failure of equation (14) at small
softening is not due to the failure of linearity, but due to the failure
of the simple scaling with b/h of equation (14).

Not only does the magnitude of the Lindblad torque depend on
softening, but also its dependence on α changes. This can already be
appreciated by comparing the 3D isothermal result on the Lindblad
torque from Tanaka et al. (2002),


L,3D/
0 = −2.34 + 0.099α, (21)

to the 2D result given by equation (7). The coefficient of α changes
sign between 2D (unsoftened) and 3D calculations. We also see this
change when using smaller softening parameters. Equation (14)
gives good results for b/h ≈ 0.4, however. This is illustrated in

0 10 20 30 40 50
t (orbits)

-4

-3

-2

-1

0

γΓ
/Γ

0

b/h=1.0
b/h=0.6
b/h=0.3

Figure 1. Total torque on a q = 1.26 × 10−5 planet embedded in an
adiabatic disc (γ = 5/3) with α = 3/2 and β = 1, so that the corotation
torque vanishes. Different curves denote different values of the softening
parameter b and the dotted lines show the prediction of equation (14). Results
were obtained with RODEO.

0 100 200 300 400 500 600
t (orbits)

-10

-8

-6

-4

-2

0

2

4

γΓ
/Γ

0

α=3/2, β=0

α=3/2, β=2

α=0, β=1

ΓL

Figure 2. Total torque on a q = 1.26 × 10−5 planet embedded in an
adiabatic disc (γ = 5/3, h = 0.05) with different density and temperature
profiles, for b/h = 0.4. Since the disc is adiabatic, the corotation torque
saturates, leaving the Lindblad torque only. The dotted lines indicate the
prediction of equation (14). Results were obtained with RODEO.

Fig. 2, where we show the long-term evolution of the total torque
for inviscid, adiabatic discs with various temperature and density
profiles. Since there is no viscosity or heat diffusion, the corotation
torque saturates, leaving only the Lindblad torque, which is then
compared to equation (14). The agreement is very good for this value
of b/h. Further experiments have shown that for smaller softening,
the dependence on α is reversed, while for larger softening it is
somewhat weaker. In all cases, however, the coefficient of α is
small.

This is illustrated in the left-hand panel of Fig. 3, where we
compare numerical results for two different values of b/h to
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0.0 0.2 0.4 0.6 0.8 1.0
α

-5

-4

-3

-2

-1

γΓ
L
/Γ

0

analytical
Tanaka 3D
Tanaka 2D

b/h=0.6
b/h=0.3

0.0 0.5 1.0 1.5 2.0
β

-5

-4

-3

-2

-1

analytical
Tanaka 3D
Tanaka 2D

Figure 3. Lindblad torque on a q = 5 × 10−6 planet embedded in an adiabatic disc (γ = 1.4) with h = 0.05. Solid lines indicate the prediction of equation (14),
the dotted line indicates the 3D result of Tanaka et al. (2002) and the dashed line the 2D result from Tanaka et al. (2002). Symbols denote results from numerical
simulations, obtained with FARGO. Left-hand panel: β = 0, for different values of α. Two values of b/h were considered: b/h = 0.6 (black solid line, black
symbols) and b/h = 0.3 (grey solid line, grey symbols). Right-hand panel: α = 1/2 with b/h = 0.6, for different values of β.

equation (14), as well as to the formulae of Tanaka et al. (2002). For
b/h = 0.6, the coefficient of α is positive, and equation (14) gives
good results for all values of α. This also holds for b/h = 0.4. For
smaller values of b/h, the trend with α reverses, and equation (14)
deviates from the numerical result by approximately 15 per cent for
α = 0.

In the right-hand panel of Fig. 3, we show the trend of the
Lindblad torque with β. We have also reconstructed the β depen-
dence of the linear results from Tanaka et al. (2002) (their tables 1
and 2). Their 3D result gives a temperature dependence that is less
steep than what we find from our 2D simulations. The numerical
results are in very good agreement with equation (14).

5.2 Horseshoe drag

In this section, we present a simple model for the non-linear coro-
tation torque, the horseshoe drag, in the presence of entropy and
vortensity gradients. Following Ward (1991), we consider the torque
produced by material on streamlines undergoing horseshoe turns.
We consider a region R interior to the two separatrices, separating
the horseshoe region from the rest of the disc, and bounded by two
lines of constant ϕ, 
1 and 
2 on the trailing and leading sides of the
protoplanet, respectively (see Paardekooper & Papaloizou 2009a,
and also fig. 4). These boundaries are supposed to be sufficiently far
from the protoplanet that the corotation torque is determined within.
Assuming a steady state, this torque may be obtained by consider-
ing the conservation of angular momentum within R written in the
form


c,hs =
∫ ∫

R
�

(
∂�p

∂ϕ

)
rdϕdr = −

[∫
Fdr

]
2


1

, (22)

with F = � (j − j p) (� − �p)r (see Paardekooper & Papaloizou
2009a). Here, j = rvϕ is the specific angular momentum and jp

is j evaluated at the orbital radius of the protoplanet. Assuming
symmetric horseshoe turns (for a validation, see Section 5.2.2), we

have


c,hs = 2rp

∫ xs

0
(F − F0)dx, (23)

where F0 equals F in the unperturbed disc and x = (r − rp)/rp.
Assuming Keplerian rotation, and using first-order expansions for
j − j p and � − �p, we can approximate

F − F0 ≈ −3

4
r3

p �p�
2
px

2 � − �0

�0
. (24)

Below, we discuss some physical arguments that allow us to relate
the state (density, pressure and velocity) after the turn to the initial
state.

5.2.1 Pressure equilibrium

First of all, it is important to note that the disc will always try to
maintain pressure balance: material that has executed a horseshoe
turn should still be in pressure equilibrium with its surroundings.
This assumption was not made in the original barotropic model
(Ward 1991), where the density (and therefore the pressure) was
allowed to change while keeping the rotation profile fixed, similar
as in equation (24). In reality, the disc will change its rotation pro-
file in order to retain pressure balance. However, this adjustment
after the turn does of course not affect the torque. We can therefore
use equation (24), where only density changes are considered, to
obtain the torque on the planet, but we have to keep in mind that the
actual state of the fluid after the turn may well be different. Below,
we work out the density changes due to entropy conservation and
vortensity evolution. While entropy conservation can work directly
on the density, because the pressure can be kept constant, the vorten-
sity evolution will mainly affect the rotation profile, just as in the
barotropic case. To obtain the torque, however, it is again sufficient
to consider changes in surface density only, and use equation (24).
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Non-isothermal type I planetary migration – I 1955

5.2.2 Mass conservation

One important constraint that has not been discussed so far is con-
servation of mass, which states that the amount of mass that goes
into the horseshoe turn at x < 0 must come out of the turn at x > 0.
If material between x = x0 < 0 and x = 0 will make the turn and
come out of the turn between x = 0 and x = x1 > 0, then we must
have that∫ x1

x0

�(� − �p)rdr = 0. (25)

It is clear that the assumption of pressure balance, together with
mass conservation, will lead to an asymmetry in the horseshoe leg
(i.e. x1 �= −x0). Since the effect works in the opposite direction for
the other horseshoe leg, the end result is that one leg will appear
wider than the other. Although this in general can affect the torque,
we show below that the impact on the torque is usually quite small.

For simplicity, we take the gradients of entropy and specific
vorticity to be zero. There is still an asymmetry in this case due
to curvature, and this will give us an estimate of the importance of
this effect. We then have � = �0 and � = �K (ignoring the radial
pressure gradient), and using a first-order Taylor expansion of � −
�p and �0, we have∫ x1

x0

(1 − αx + x)xdx = 0. (26)

Writing x1 = −x0 + δx, and keeping only terms that are first order
in δx, we can solve for δx:

δx = 2

3
(α − 1) x2

0 . (27)

Since δx � x0 (because x0 � 1), the combined effect of both
horseshoe legs on the torque, which scales as x4

s , is a change of
a factor (1 + 2δx/x0), which can be of the order of 10 per cent
for considerable gradients in density. When gradients of specific
vorticity and entropy are present, they can also contribute to the
asymmetry (e.g. through equation 28). For gradients in entropy and
vortensity that are not too large, this effect is small. The assumption
made in equation (23) that the horseshoe turns are symmetric should
therefore give reasonable results.

5.2.3 Entropy conservation

In pressure equilibrium, changes in entropy are directly related to
changes in density. Consider material that has made a horseshoe turn
from −x to x (we assume symmetry at this point; see Section 5.2.2).
The old state at x is given by �0, p0 and s0 and the new state
by �, p, s. Pressure balance dictates that p = p0, while entropy
conservation gives s = s0(1 + 2ξ x), which makes the density � =
(p0/s)1/γ , or

� =
{

�0

(
1 − 2 ξ

γ
x
)

0 < x < xs

�0 otherwise.
(28)

A similar equation holds for the other horseshoe leg.

5.2.4 Specific vorticity

In a barotropic disc, specific vorticity is conserved along stream-
lines. We can, analogous to the entropy case discussed above, write
down an expression for the change in specific vorticity after the
turn:
ω/� − ω0/�0

ω0/�0
= 2x

d log(ω0/�0)

d log r
, (29)

0.96 0.98 1.00 1.02 1.04
r

3.05

3.10

3.15

3.20

φ

Figure 4. Schematic overview of streamlines near the horseshoe region,
with the planet indicated by the black dot. The separatrix is coloured black,
and the thick curve indicates the location of the entropy discontinuity. The
top and bottom of the figure can be thought of as 
2 and 
1, respectively.
This picture applies before any material that has made the turn comes back
on the other side of the planet.

for 0 < x < xs and zero otherwise. Here, ω = ∇ × v denotes the
vorticity.

In a non-barotropic disc, specific vorticity, or vortensity, is no
longer conserved along streamlines:

D

Dt

( ω

�

)
= ∇� × ∇p

�3
= −∇s × ∇p

γ�2s
. (30)

In a barotropic disc, in which p = p(�), ∇� and ∇p are parallel ev-
erywhere, which makes the source term in the above equation zero,
with the result that vortensity is conserved along streamlines. Note
that for a non-barotropic disc, in regions where the density and pres-
sure are smooth, the right-hand side of equation (30) is small, since
p ∼ h2� with h � 1. However, at the outgoing separatrix, material
that has made a horseshoe turn meets disc material that still has the
unperturbed value of the entropy. At this specific streamline, a large
entropy gradient exists (it is formally infinite across the separatrix)
perpendicular to the flow (see Fig. 4). The change in vortensity
induced by the associated source term gives rise to an additional
entropy-related torque.

This is further illustrated in Fig. 5, where we show the 2D dis-
tribution of the specific vorticity (bottom panel), together with the
source term in equation (30) (top panel). The background surface
density profile is such that the vortensity is constant, initially. All
structure seen in the bottom panel of Fig. 5 is therefore due to the
source term depicted in the top panel. It is clear that this source term
only acts on the outgoing separatrix, where advection of entropy
generates an entropy discontinuity. The pressure gradient entering
equation (30) is due to the hydrostatic envelope of the planet; hence,
the source term is localized around the planet. Entropy advection
along the horseshoe bend does not change the pressure (Baruteau
& Masset 2008a; Paardekooper & Papaloizou 2008), so the only
other possible pressure gradients are due to the wakes (which play
no role for low-mass planets, where xs < h) or due to a global radial
pressure gradient. The latter can indeed contribute to the vortensity
source, but it is easy to see that the effect will be symmetric in both
horseshoe legs, and therefore this does not result in a torque on to
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Figure 5. Top panel: source term in the vortensity equation, in units
of �2

p/�p. Bottom panel: relative change in vortensity (ω/� −
ω0/�0)/(ω0/�0). The dashed curves show the location of the separatrix.
Both panels show results for a q = 1.26 × 10−5 planet, embedded in an
h = 0.05 disc with α = 3/2 and β = −3/2 after 10 orbits. A large value for
the softening parameter was used, b/h = 2, to reduce the influence of the
wakes on the coorbital region. Results were obtained with RODEO.

the planet. In Fig. 5, the initial pressure was taken to be constant
(β = −α = −3/2) for clarity.

It can be seen from Fig. 5 that the lines of constant specific
vorticity are not exactly parallel to the separatrix, moving slightly
away from the planet’s orbit near ϕ = 2.0 and ϕ = 4.5. This is
due to the adjustment of the disc to maintain pressure equilibrium.
The propagation of the vortensity discontinuity triggers a pressure
wave that can be clearly identified especially at early times. It can
also be observed in barotropic discs whenever there is an initial
radial gradient in specific vorticity. The presence of the vortensity
discontinuity makes this pressure wave more apparent.

From now on, we assume that vortensity is conserved everywhere
except along the outgoing separatrix. Consider the integration of
equation (30) along the outermost streamline of the horseshoe re-
gion. The only entropy gradient of importance is perpendicular to
the streamline after it has encountered the planet (see above). We
therefore write equation (30) as

D

Dt

( ω

�

)
= −∇⊥s∇‖p

γ�2s
= −∇⊥s∇‖�

γ�s
, (31)

where ∇⊥ and ∇‖ indicate the component of the gradient perpen-
dicular and parallel to the streamline, respectively, and � is the fluid
enthalpy. The orientation is such that we take the gradient of � in
the direction away from the planet, which means that we have to
take the gradient of s into the horseshoe region.

We take the gradient of s into the horseshoe region to be infinite,
formally:

∇⊥s/s = 2ξxsδ(x − xs). (32)

It is easy to see that this models a jump in entropy across the
separatrix that has the correct magnitude.

Noting that factors involving s are constant along the streamline,
and assuming � ≈ �p and taking the velocity along the streamline
to be v = v̄rp�pxs, with v̄ being a constant, we can integrate
equation (31) from the turn at x = 0 near the stagnation point to a
point far away from the planet to end up with

�
( ω

�

)
(x) = 2ξ

v̄γ

�turn − �0(xs)

r2
p �p�p

δ(x − xs), (33)

where �turn is the enthalpy at the location of the turn, near the
stagnation point. Along this streamline, the velocity varies from
0 at the stagnation point to v = 3xsrp�p/2 far away from the
planet; therefore, we need 0 < v̄ < 3/2. The choice of v̄ basically
depends on the exact geometry of the horseshoe region (see below).
Equation (33) then gives the vortensity production at the outgoing
separatrices, a process that does not operate in barotropic discs.

Note that in the case of multiple stagnation points close to
the planet (Masset, D’Angelo & Kley 2006; Paardekooper &
Papaloizou 2009b; see also Fig. 13) there is always a single stagna-
tion point where the entropy discontinuity starts for both horseshoe
legs (the stagnation points below the planet in the top panels of
Fig. 13). We therefore do not have to make any additional assump-
tions on the detailed flow topology close to the planet.

To make further progress, we now assume that the pressure (or
enthalpy) structure is not significantly changed from the barotropic
case or, equivalently, the case with ξ = 0. For ξ �= 0, advection of
entropy leads to changes in enthalpy, which is then discontinuous
across the separatrix. It is difficult to see which value of � to take
(inside or outside the separatrix) in that case. Note, however, that
the jump in � is of the order of xs and therefore small. It should
not affect the pressure structure near the outgoing separatrix. This
has been verified using numerical simulations. We can then find
�turn − �0 by using the Bernoulli invariant E (see Paardekooper &
Papaloizou 2009b):

E = 1

2
r2

p (� − �p)2 + � + �p − 3

2
r2

p �2
px

2. (34)

Considering two points on the same streamline, one at the turn
(where x = 0 and � = �p) and one far away from the planet (where
x = xs and �p = 0), we have

�turn + �p,turn = −3

8
x2

s r
2
p �2

p + �0(xs). (35)

Using equation (35) in equation (33), we end up with

�
( ω

�

)
(x) = 2ξ

v̄γ

�p

�p

(
q

d
− 3

8
x2

s

)
δ(x − xs), (36)

with d =
√

|r turn − rp|2/r2
p + b2. Numerical simulations for

isothermal discs (Masset et al. 2006; Paardekooper & Papaloizou
2009b) show that the stagnation point is located roughly 3/2 soften-
ing lengths away from the planet, making d = √

13/4b. In adiabatic
discs, the situation is slightly different. As was shown in Masset et al.
(2006), the width of the horseshoe region is directly related to the
perturbed value of the Bernoulli invariant at the stagnation point
E′ = �′

turn + �p,turn:

xs = 1

rp�p

√
−8

3
E′. (37)
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Non-isothermal type I planetary migration – I 1957

On the other hand, it was shown in Paardekooper & Papaloizou
(2009b) that x4

s ∝ 1/γ . Therefore, there should exist a direct re-
lationship between the location of the stagnation point and γ . We
should have E′ ∝ 1/

√
γ , and, assuming for simplicity that both the

perturbed enthalpy and the planet potential at the stagnation point
have the same dependence on γ , this leads to

|r − r turn|
rp

=
√

nγ − 1b (38)

for some constant n. It was noted in Paardekooper & Papaloizou
(2009b) that the location of the stagnation point is essentially de-
termined by the Lindblad wakes, which makes it very difficult to
model. The best we can do is fix the constant n so that we recover
the isothermal result for γ = 1. This means we take n = 13/4, and
we will see in Section 6.3 that this gives reasonably good results for
γ > 1. We then have

d =
√

13γ

4
b. (39)

Away from the outgoing separatrices, the specific vorticity source
term is small, and we can assume conservation of vortensity. We
then have for the total vortensity

ω

�
=

⎧⎨
⎩

ω0
�0

(
1 − 2

d log( ω
� )

d log r
x
)

+ �
(

ω

�

)
0 < x < xs,

ω0
�0

otherwise.
(40)

The term in parenthesis results from conservation of specific vor-
ticity, that is also present in barotropic discs.

5.2.5 Total horseshoe drag

We now add the contributions of entropy (equation 28) and vorten-
sity (equation 40) to the density perturbation, which gives

� − �0

�0
= −2

ξ

γ
x + 2

(
α − 3

2

)
x − �0

ω0
�

( ω

�

)
. (41)

The vortensity-related perturbation (the second term on the right-
hand side) is the same as in the barotropic case. The entropy-related
density perturbation (the first and the last terms on the right-hand
side) is caused by density structures produced by material conserv-
ing its entropy, bound to the horseshoe region, plus an additional
component linked to the production of vortensity at the outgoing
separatrices. We again stress that the contribution of the vorten-
sity to the density perturbations (the last two terms in the above
equation) will affect the rotation profile rather than the density.
However, the torque exerted on the planet will be the same, just as
in the barotropic case.

In order to find the torque, we can now perform the integral in
equation (23), using equations (24) and (41), yielding


c,hs = 3

4
�pr

4
p �2

px
4
s

(
3

2
− α + ξ

γ

(
8q

v̄dx2
s

+ 1 − 3

v̄

))
. (42)

For ξ = 0, we recover the barotropic result of Ward (1991). Note that
although xs is well defined for b → 0 (Paardekooper & Papaloizou
2009b), the contribution of the entropy discontinuity diverges if
d → 0 as well.

If we write xs = C
√

q/h/γ 1/4, with C = C(b/h) (Paardekooper
& Papaloizou 2009b), then we have

γ
c,hs/
0 = 3

4
C4

(
3

2
− α + ξ

γ

(
8
√

γ

v̄C2

h

d
+ 1 − 3

v̄

))
. (43)

Note that the component due to a radial entropy gradient can easily
overpower the contribution from the vortensity gradient. Also note

that for fixed b/h (which makes C a constant as well, as long as
xs < h), the horseshoe drag 
c,hs scales as q2/h2, just as the linear
torque.

Numerical simulations and analytical arguments indicate that the
geometry of the horseshoe region is the same for all low-mass
planets, as long as xs < h (Masset et al. 2006; Paardekooper &
Papaloizou 2009b). Therefore, one choice of v̄ should suffice. We
have obtained good agreement with numerical simulations using
v̄ = 1.0. We have measured the horseshoe width xs to be

xs = 1.1

γ 1/4

(
0.4

b/h

)1/4 √
q

h
, (44)

i.e. C = 1.1 for b = 0.4 h. We note that the scaling with b/h
breaks down for small softening (b/h < 0.3). Equation (43) is then
completely determined:

γ
c,hs/
0 = 1.1
0.4

b/h

(
3

2
− α

)
+ ξ

γ

0.4

b/h

(
10.1

√
0.4

b/h
− 2.2

)
.

(45)

5.3 Total torque

The total torque in the non-linear regime (t � 2 orbits in an invis-
cid disc), before saturation sets in, is given by (Paardekooper &
Papaloizou 2009a)


 = 
L + 
c,hs, (46)

with 
L being given by equation (14) and 
c,hs given by equa-
tion (45).

We now take b/h = 0.4, which makes the total torque:

γ
/
0 = −2.5 − 1.7β + 0.1α + 1.1

(
3

2
− α

)
+ 7.9

ξ

γ
, (47)

where the last two terms describe the non-linear corotation torque.
This equation is compared to numerical simulations in Fig. 6, show-
ing remarkably good agreement between our simple model and fully

0 5 10 15 20
t (orbits)

-12

-10

-8

-6

-4

-2

0

2

γΓ
/Γ

0

α=0, β=1
α=3/2, β=-3/2
ΓL+Γhs, Γlin

Figure 6. Total torque on a q = 1.26 × 10−5 planet (with b/h = 0.4)
embedded in an adiabatic disc (γ = 5/3, h = 0.05) with different density and
temperature profiles. The dotted lines indicate the prediction of equation (18)
(middle two lines) and the result of equation (47) (top and bottom lines).
Results were obtained using RODEO.
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Figure 7. Total torque, as given by equation (47), in units of 
0/γ . The
solid line indicates where the total torque is zero. The white dot indicates
the Minimum Mass Solar Nebula, having β = 1 and α = 3/2. Top panel:
γ = 1.4, middle panel: γ = 5/3. The bottom panel is the same as the
middle panel, but for C = 1.3, valid for higher mass planets that obtain the
maximum value of xs.

non-linear hydrodynamical simulations. We will defer a detailed
numerical analysis to Section 6.

Equation (47) is shown as a function of α and β in the middle
panel of Fig. 7 for γ = 5/3. Positive torques, and therefore out-
ward migration, are readily obtained for β > 0, i.e. for temperature
profiles that decrease outwards. A glance at equation (14) reveals
that this is completely due to the entropy-related corotation torque,
since the Lindblad torque becomes more negative with increasing
β. In the top panel of Fig. 7 we show equation (47) for γ = 1.4, a

value often adopted for protoplanetary discs (Kley & Crida 2008;
Paardekooper & Papaloizou 2008). For this lower value of γ , the
entropy gradient depends stronger on the temperature gradient (see
equation 5), resulting in a steeper slope for the zero-torque line.
Since protoplanetary discs are expected to have β > 0 in most
parts, this indicates that outward migration is a serious possibility.

In the bottom panel of Fig. 7, we return to γ = 5/3, but use a
larger value of C, C = 1.3, that would correspond to higher mass
planets that are able to push against the Lindblad wake to take the
stagnation point close to (r , ϕ) = (rp, π ) (Masset et al. 2006).
Formally, one should use d = b as well, but we have found that the
stagnation point never actually reaches the planet. Effectively, one
should use C < 1.3 in combination with b < d <

√
5b, but C =

1.3 in combination with d = √
5b gives reasonably good results

(see Section 6.6).

5.4 Locally isothermal limit

It is straightforward to obtain the isothermal limit of equation (47)
by setting β = 0 and γ = 1 (and therefore ξ = 0), which then leaves
the linear Lindblad torque plus the vortensity-related horseshoe
drag:


iso/
0 = −0.85 − α, (48)

where we have used b/h = 0.4. Compared to the 3D linear result
(equation 20), migration has slowed down by approximately 50 per
cent for α = 0, but the direction is inwards for all realistic surface
density profiles.

A different approximation that is often used is the locally isother-
mal limit, which means solving the isothermal equations but with
a radially varying sound speed (or, equivalently, temperature). One
arrives at this limit by taking γ → 1 and, crucially, invoke infinitely
efficient thermal diffusion. This effectively takes the entropy-related
horseshoe drag into the linear regime. The total torque then consists
of the linear Lindblad torque, the linear entropy-related corotation
torque plus the non-linear vortensity-related horseshoe drag:


lociso/
0 = −(2.5 − 0.5β − 0.1α)
(

0.4
b/h

)0.71

− 1.4β

(
0.4

b/h

)1.26

+ 1.1

(
3

2
− α

) (
0.4

b/h

)
. (49)

Note that the temperature dependences of the Lindblad and coro-
tation torque work against each other, leaving a total torque that is
less sensitive to temperature variations.

In Fig. 8, we compare equation (49) to numerical results obtained
with FARGO, showing good agreement over a wide range of β. Note
that, contrary to the adiabatic case, a negative temperature gradient
works in favour of inward migration. This is due to the relatively
weak dependence of the linear corotation torque on β, compared
to the Lindblad torque. We have found inward migration for all
reasonable values of α and β.

However, the good agreement as seen in Fig. 8 is not the whole
story, as can be seen from Fig. 9. While the solid curve denotes a
case of constant specific vorticity, a non-linear rise in the torque
can be observed. This is due to the source term in the vorticity
equation. It is important to note that the analysis presented above
for adiabatic discs is not valid in the locally isothermal case, since
entropy (which would correspond to c2

s in this case) is not conserved
along a streamline. One would get a source term proportional to
∂p/∂ϕdc2

s /dr , the effect of which will strongly depend on the
geometry of the horseshoe region. Note, however, that the impact of
the source term is quite small even for a steep temperature gradient
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Figure 8. Total torque on a q = 5 × 10−6 planet (with b/h = 0.6) embed-
ded in a locally isothermal disc with h = 0.05. Diamonds denote numerical
results obtained with FARGO and squares the result of equation (49). Corre-
sponding results are connected with a line. For the top row (seven runs),
α = 1/2; for the middle row (four runs) α = 3/2; and for the bottom row
(two runs), α = 5/2.
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Figure 9. Total torque on a q = 1.26 × 10−5 planet (with b/h = 0.4)
embedded in a locally isothermal disc (γ = 1, h = 0.05, β �= 0) with different
density and temperature profiles. The dotted lines indicate the result of
equation (18). Results were obtained with RODEO.

β = 2. We note that the effect is negligible for |β| < 1 and for
β = 2 comparable to the non-linear effect associated with barotropic
horseshoe drag (see the dashed curve in Fig. 9). A locally isothermal
disc is nevertheless an interesting case, since it would correspond
to a part of the disc that can cool very efficiently, i.e. the outer parts
of protoplanetary discs.

6 N U M E R I C A L R E S U LTS

In this section, we will try to validate the simple model by means
of numerical simulations.
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RODEO
RH2D
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Figure 10. Total torque on a q = 1.26 × 10−5 planet (with b/h = 0.4)
embedded in an adiabatic disc with γ = 5/3, h = 0.05, α = 0 and β =
1. Different line styles denote different codes, while different line colours
indicate whether the planet is kept in the middle of a grid cell or on the edge.
The dotted line indicates the result of equation (47). The resolution used is
�r/rp = �ϕ = 0.0025.

6.1 Code comparison

We first check whether our independent numerical methods give
similar results. In Fig. 10, we compare results for the three different
numerical methods on an adiabatic disc with γ = 5/3, h = 0.05,
α = 0 and β = 1. The grey curves denote models for which the grid
is chosen so that r/rp = 1 lies on the edge of a grid cell. For these
models, all codes agree nicely on the final torque, with each other
as well as with equation (47). They also agree on the linear part
of the torque (for t < 2). RODEO shows a slightly faster rise in the
torque. Since this difference arises as soon as non-linear effects set
in, it probably originates close to the separatrix, where the vorticity
source term plays a major role.

In Fig. 11, we compare the difference between equation (46)
and numerical results obtained with FARGO for different entropy
gradients. The relative difference is well within 20 per cent except
for the cases where ξ = 0.8. Results obtained with RODEO show
similar good agreement. Therefore, not only do all codes agree on
the torque, they also agree very well with our simple analytic model
over a large range of α and β within 30 per cent.

Results displayed in Fig. 10 were obtained at a resolution of
�r/rp = �ϕ = 0.0025. For C = 1.1, we have xs = 0.015, so
the half-width of the horseshoe region is resolved by six grid cells.
Lowering this to four cells had little effect on the torques, suggesting
that they are converged at this resolution. There is however the
interesting difference between the black and grey curves in Fig. 10,
which we discuss next.

6.2 Planet position

The only way in which the simulations indicated by the grey and
the black curves in Fig. 10 differ is the position of the planet on
the grid. While for the results obtained with RODEO, this has almost
no effect on the torque, both FARGO and RH2D show a difference of
approximately 50 per cent between the two planet positions. This is
a numerical effect that has to do with the sharp gradient in specific
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Figure 11. Total torque on a q = 5 × 10−6 planet (with b/h = 0.6)
embedded in an adiabatic disc with h = 0.05 and γ = 1.4. Diamonds denote
numerical results obtained with FARGO and squares the result of equation (46).
Corresponding results are connected with a line. For ξ = −0.7 and ξ = 0.8,
three values of α were considered, α = {0.5, 1.5, 2.5}, from top to bottom.
For ξ = −0.4 and ξ = 0.4, we show results for α = 0.5 and 1.5 (from top to
bottom), while for all other values of ξ results are shown for α = 0.5 only.
In all cases, the temperature gradient can be found from β = ξ + 0.4α.

0 5 10 15 20
t (orbits)

-4

-3

-2

-1

0

1

2

γΓ
/Γ

0

Δr=0.0025
Δr=0.00125

middle
edge

Figure 12. Same as Fig. 10, for different radial resolutions. All results were
obtained with FARGO.

vorticity that arises at the outgoing separatrix under the influence
of the entropy-related source term. Such a sharp feature is difficult
to handle numerically. It also appears in locally isothermal simula-
tions, but is absent in fully isothermal runs, where there is no source
term for the specific vorticity. The use of a Riemann solver, which is
specifically designed to handle discontinuities, largely evades this
problem. Being a numerical artefact, it also disappears at higher
resolution, which is illustrated in Fig. 12. After doubling the radial
resolution, the grey curve becomes indistinguishable from the black
curve. The torque then does not show the slow decay after 10 orbits

and settles close to the value that is obtained by putting the planet
on the edge of a grid cell at low resolution.

The amplitude of this numerical effect strongly depends on the
detailed geometry of the horseshoe region close to the stagnation
point, which in turn depends on background gradients of tempera-
ture and density. We observed that it is virtually absent for a disc
with α = 3/2 and β = −3/2.

6.3 Streamline analysis

The exact geometry of the horseshoe region is of significant im-
portance in determining the corotation torque, in isothermal discs
through xs only but for adiabatic discs also through the location of
the stagnation point r stag. There is a direct relation between xs and
r stag (Masset et al. 2006; Paardekooper & Papaloizou 2009b). In
Fig. 13, we show the streamlines close to the planet for isothermal
models (left-hand panels) and adiabatic models (right-hand panels)
for a q = 1.25 × 10−5 planet (top panels) and a q = 1.08 × 10−4

planet (bottom panels). The top left-hand panel is consistent with
the findings in Masset et al. (2006), with the stagnation point lo-
cated approximately 3brp/2 from the planet. For an adiabatic model
with the same disc parameters, the stagnation point shifts further
away from the planet, to approximately 2brp. It was checked that
an adiabatic model with γ = 1.01 looks similar to the isothermal
model. We conclude that the simple scaling of equation (39) gives
a reasonable estimate for the location of the stagnation point for
different values of γ . We again note that it is very difficult to model
the position of the stagnation point in a simple way, because it de-
pends on the way the wake is able to influence the corotation region
(Paardekooper & Papaloizou 2009b).

6.4 Softening

In this section, we discuss models that use different gravitational
softening parameters. Although we have argued in Section 5.1 that
using b/h = 0.4 gives linear torques that are in agreement with 3D
linear theory, it is not clear at present what value of b/h will repro-
duce the 3D non-linear torque (or horseshoe drag). It is therefore
important to investigate the behaviour of the torque as a function of
b/h.

For isothermal models, it has already been noted that there
is a strong dependence on b/h, due to the C4 scaling of the
vortensity-related horseshoe drag (Paardekooper & Papaloizou
2009a). Smaller values of b/h give stronger corotation torques, but
since xs is finite in the limit b → 0 (Paardekooper & Papaloizou
2009b) the horseshoe drag is well defined. The first term of the
entropy-related horseshoe drag (see equation 43) is proportional to
C2h/b, and therefore formally diverges for b → 0. In our simple
model, this stems from the stagnation point being located where the
planet potential diverges. In practice, there will always be a finite
distance from the stagnation point to the planet, and furthermore
the planet potential should not diverge. For appropriate values of d
and therefore �turn, equation (43) should still hold in the limit b →
0. This limit is impossible to reach through numerical simulations,
of course, since one always must resolve the gravitational potential
in hydrodynamic simulations.

We have varied b/h between 0.2 and 0.6, and the results are dis-
played in Fig. 14. Black lines indicate isothermal simulations for
α = 0, which show a less negative torque for smaller softening pa-
rameters. Therefore, the horseshoe drag, being positive and stronger
for smaller values of b/h, is more than able to compensate for the
Lindblad torque, which is more negative for smaller b/h. This effect,
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Figure 13. Streamlines close to the planet embedded in a disc with α = 0 and β = 0, for γ = 1 (isothermal models, left-hand panels) and γ = 5/3 (right-hand
panels). Top panels: q = 1.26 × 10−5, bottom panels: q = 1.08 × 10−4. Solid curves denote streamlines belonging to the horseshoe region, while dashed
curves denote streamlines from the inner and outer discs. Results were obtained with RODEO.

due to C being larger for smaller values of b/h, is nothing compared
to the softening dependence of the entropy torque (see the grey
curves in Fig. 14). The total torque varies by an order of magnitude
in this range of b/h, and this is including the more negative Lindblad
torques for smaller b/h. Clearly, b/h is a crucial parameter for the
entropy-related torque.

The dotted lines in Fig. 14 have been obtained from equations
similar to equation (47), for appropriate values of C and d. We
have found that a constant value for d/b gives good results, i.e.
the distance between the stagnation point and the planet is a fixed
number of softening lengths, irrespective of the value of b/h. The
scaling of equation (44) breaks down, however, for b/h < 0.3, and
we have measured C = 1.26 for b/h = 0.2. This gives a good match
to the simulation for the total torque. We note that in principle, one
could come up with a more complicated functional form for C(b/h),
using the results from Paardekooper & Papaloizou (2009b).

Although our numerical methods agree on the strong dependence
of the torque on b, for small softening the differences become
larger. This is illustrated in Fig. 15, where we compare the total
torque for different softening parameters for RODEO and FARGO. For
b/h > 0.4 the agreement is very good, while for b/h = 0.2 the
difference is approximately 30 per cent. Note that the source term

in the vortensity equation becomes very strong at small softening,
leading to a strong contribution from the entropy discontinuity at
the outgoing separatrix. This is a very challenging situation for
numerical methods, and it is not surprising that the differences
between the methods are larger in this regime.

The solid curve in Fig. 15 denotes equation (46), without the
correction applied in Fig. 14 for the breakdown of the scaling of C
with b/h. Therefore, it predicts too large a torque at small softening
(about 20 per cent). Overall, however, the agreement is very good.

6.5 Vortex formation

Vortices in protoplanetary discs can form as a result of the Rossby
wave instability (Lovelace et al. 1999). This instability is usually
discussed in the context of giant, gap opening planets (Li et al. 2005;
de Val-Borro et al. 2007), for which it was observed in most numer-
ical codes for inviscid discs (de Val-Borro et al. 2006). Although the
low-mass planets discussed in this paper are not massive enough to
significantly perturb the surface density, the strong entropy gradients
that exist at the outgoing separatrix can lead to vortex formation.
This was observed in almost all simulations with a significant ini-
tial entropy gradient (see Fig. 16 for a typical example). Baruteau

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 1950–1964

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/401/3/1950/1097210 by guest on 15 D
ecem

ber 2020



1962 S.-J. Paardekooper et al.

0 5 10 15 20
t (orbits)

-4

-2

0

2

4

6

8

10
γΓ

/Γ
0

b/h=0.2
b/h=0.4
b/h=0.6

γ=1,α=0,β=0
γ=5/3,α=0,β=1

Figure 14. Total torque on a q = 1.26 × 10−5 planet embedded in an h =
0.05 disc with α = 0, for different values of b/h, for γ = 1 and β = 0 (black
curves) and for γ = 5/3 and β = 1 (grey curves). Dotted lines indicate
the result of equation (47), for appropriate values of C and d. Results were
obtained with RODEO.
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Figure 15. Total torque on a q = 1.26 × 10−5 planet embedded in an
h = 0.05 disc (γ = 5/3) with α = 0, β = 1, for different values of b/h.
Results are shown for RODEO (squares) and FARGO (diamonds). The result of
equation (46) is indicated by the solid curve.

& Masset (2008a) also reported the appearance of a vortex in the
same context. When the source term in the vorticity equation acts
to decrease the vorticity, which is always true for one of the horse-
shoe legs, there is the possibility of forming an anticyclonic vortex.
Since the formation of this vortex occurs after the turn, it does not
affect the torque. This may not be the case when the vortex inter-
acts with the planet when it reaches the opposite side; it may then
affect the partial saturation of the corotation torque. This will be
discussed in a forthcoming work. Note that a small kinematic vis-
cosity is enough to kill the vortex before it reaches the opposite side
of the planet.
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Figure 16. Perturbed vorticity (ω − ω0)/ω0 due to the presence of a q =
1.26 × 10−5 planet in a disc with h = 0.05, α = 0 and β = 1 after 20
orbits. The strong entropy gradient at the outgoing separatrix leads to the
appearance of an anticyclonic vortex, visible as the circular shaped vorticity
minimum at (r , ϕ) = (0.985, 5.2). Results were obtained with RODEO.

6.6 Higher mass planets

Although the main focus of this paper is on low-mass planets,
for which xs < h or, equivalently, q < h3 (Paardekooper &
Papaloizou 2009b), there exist an interesting intermediate class of
planets with masses of approximately 20–50 M⊕ that experience a
boost in the corotation torque (Masset et al. 2006). It was shown
in Paardekooper & Papaloizou (2009b) that this is due to the fact
that for xs > h, Lindblad torques are less effective in affecting
the shape of the horseshoe region. As a result, the width of the
horseshoe region increases and the stagnation points move closer
to the planet. Both effects will enhance the horseshoe drag, in the
isothermal case (Masset et al. 2006), but especially in the adiabatic
case.

In Fig. 17, we show the total torque on planets of different masses.
Note that since 
0 ∝ q2, curves for planets for which xs < h

would fall on top of each other when the x-axis is rescaled in
an appropriate way (Paardekooper & Papaloizou 2009a). This is
expected from linear theory, but this also holds when the non-
linear horseshoe drag is incorporated, because xs ∝ √

q (Masset
et al. 2006; Paardekooper & Papaloizou 2009b). We found that for
q/h3 > 0.2, the boost as discussed in Masset et al. (2006) sets in.
This can be seen in Fig. 17 from the solid and dashed curves. For
q = 10−4 = 0.8 h3, the maximum torque is reached. Beyond this
mass, gap formation starts to play a role, lowering the mass and
the opacity of the corotation region, which reduces the effect of the
corotation torque. This was also observed in Kley & Crida (2008).

The maximum torque in Fig. 17, achieved for q = 10−4, is in good
agreement with equation (47), but with C = 1.3. As mentioned in
Section 5.3, since the stagnation point does not actually reach the
location of the planet (see the bottom panels of Fig. 13), C < 1.3,
but this will be at least partly compensated by the decrease in d
compared to d/b = √

13γ /4 as used in equation (47). The overall
result is similar to taking C = 1.3 (see Fig. 17), which is good
enough for our purposes.

We comment that a more general torque formula, valid for higher
masses, would therefore have C = C(b/h, q) and d = d(q). A
detailed analysis is beyond the scope of this paper, but we point
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Figure 17. Total torque on planets of different masses (using b/h = 0.4),
embedded in an adiabatic γ = 5/3 disc with h = 0.05, α = 0 and β = 1. The
dotted lines denote equation (47) for C = 1.3 (top) and C = 1.1 (bottom).
Results were obtained with RODEO.

out that the results of Masset et al. (2006) and Paardekooper &
Papaloizou (2009b) could be used to derive approximate functional
forms for the mass dependence of C and d.

7 D ISCUSSION

In equation (47), we have presented a formula for the unsaturated
torque on low-mass planets. This torque consists of the Lindblad
torque, together with the barotropic and entropy-related horseshoe
drag. The barotropic part of the horseshoe drag is due to mate-
rial conserving its vortensity, and its expression is identical to the
barotropic case. The entropy-related part of the horseshoe drag
is exerted by density structures produced by material conserving
its entropy, plus an additional component linked to the production
of specific vorticity at the outgoing separatrices. Masset & Casoli
(2009) recently studied the case with β = 0 in detail, arguing that
there is no contribution to the torque associated with a density re-
sponse resulting from entropy advection. If we neglect this term in
our simple model, and take v̄ = 3/2, our expression for the density
perturbation agrees with that in Masset & Casoli (2009). We com-
ment that the contribution of entropy advection to the total torque
is small compared to that due to vortensity generation (20–30 per
cent, depending on the softening length), but keeping it gives better
agreement with numerical simulations.

Since we consider the unsaturated torque, equation (47) should
apply only in regions of the discs where thermal and viscous diffu-
sion keep the corotation torque unsaturated. We will study saturation
effects in a forthcoming work. Here, we just comment that it has
been shown (Kley & Crida 2008; Paardekooper & Papaloizou 2008)
that when including viscosity as well as thermal diffusion (possi-
bly through radiative effects) a sizable fraction of the unsaturated
corotation torque can be sustained.

We have worked in the 2D approximation throughout this paper.
Although we have used a reasonable value for the gravitational
softening parameter to mimic 3D averaging, a fully 3D model of
the horseshoe region is required to capture possible effects due to
vertical motions. The strong dependence of the torque on softening

suggests that non-isothermal effects in 3D may be very strong, but it
is important to keep in mind that the torque depends on the detailed
flow structure around the planet, which may well be different in 3D.

We have neglected effects of any magnetic fields. It remains to
be seen, for example, whether a fully turbulent disc (Nelson &
Papaloizou 2004) allows for horseshoe turns to occur. Self-gravity
was also ignored. It was shown in Pierens & Huré (2005) that self-
gravity tends to make the wave torque slightly stronger due to a
shift in the Lindblad resonances. This was confirmed numerically
by Baruteau & Masset (2008b), who also showed that the impact of
self-gravity on the corotation torque is small.

When calculating the torque on the planet, we have included all
disc material. Tests have shown that it makes very little difference
for these low-mass planets when a fraction of the Hill sphere is
excluded. The situation is different for high-mass planets, for which
a circumplanetary disc may appear. In these cases, it is an issue
which material should exert a torque on the planet (Crida et al.
2009). However, even the highest mass planets we consider do not
show any evidence for a circumplanetary disc around the planet
(see the bottom panels of Fig. 13), so this issue is of no concern
here.

We have kept the planet on a fixed circular orbit. Therefore,
we have neglected any distortion of the streamline topology due
to the radial movement of the planet. This can have some impact
on the corotation torque, especially for massive discs in which the
planet migrates fast enough, under influence of the type I torque
discussed in this paper, so that ṙp ∼ xs�p. Then one may expect
to see migration behaviour similar to type III. This has not been
considered so far.

It is important to note that type I migration will always be fast,
unless the background disc is close to the zero-torque lines in Fig. 7.
The torque predicted by equation (47) can indeed be much larger in
magnitude than the linear, isothermal type I torque (see equation 20).
Type I migration can be directed inwards or outwards, depending
on the background entropy gradient. Outward migration is always
limited, however, since inevitably the planet will enter a region of
the disc where the opacity is low enough to make cooling efficient,
pushing the planet back into the (locally) isothermal regime of
inward migration.

One scenario that permits slow migration only is the following.
If the thermodynamic state of the inner disc is such that it permits
outward type I migration, then there exists an equilibrium radius re

where the torque is zero (Paardekooper & Mellema 2008). A low-
mass planet will then tend to migrate towards re, either from the
outer disc or from the inner disc. This radius re will move inwards
when the disc is losing mass, either by accretion on to the star or
by evaporation, taking the planet along. This way, low-mass planets
can migrate slowly (on a time-scale comparable to the disc lifetime)
towards the central star.

8 C O N C L U S I O N S

We have presented a simple relation (equation 47) that governs
the migration speed and direction for low-mass planets. Since we
have considered unsaturated torques only, this law should apply
in regions of the disc where thermal and viscous diffusion act to
keep the corotation torque unsaturated. The total torque is found
to strongly depend on the presence of a radial entropy gradient in
the disc, with the possibility of outward migration in the case of
outward decreasing entropy.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, 1950–1964

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/401/3/1950/1097210 by guest on 15 D
ecem

ber 2020



1964 S.-J. Paardekooper et al.

AC K N OW L E D G M E N T S

SJP acknowledges support from STFC in the form of a postdoctoral
fellowship. This work was performed using the Darwin Supercom-
puter of the University of Cambridge High Performance Computing
Service (http://www.hpc.cam.ac.uk), provided by Dell Inc. using
Strategic Research Infrastructure Funding from the Higher Educa-
tion Funding Council for England.

REFER ENCES

Alibert Y., Mordasini C., Benz W., Winisdoerffer C., 2005, A&A, 434, 343
Artymowicz P., 1993, ApJ, 419, 155
Baruteau C., Masset F., 2008a, ApJ, 672, 1054
Baruteau C., Masset F., 2008b, ApJ, 678, 483
Bate M. R., Lubow S. H., Ogilvie G. I., Miller K. A., 2003, MNRAS, 341,

213
Boley A. C., 2009, ApJ, 695, L53
Boss A. P., 1997, Sci, 276, 1836
Crida A., Morbidelli A., Masset F., 2006, Icarus, 181, 587
Crida A., Baruteau C., Kley W., Masset F., 2009, A&A, 502, 679
D’Angelo G., Kley W., Henning T., 2003a, ApJ, 586, 540
D’Angelo G., Henning T., Kley W., 2003b, ApJ, 599, 548
de Val-Borro M. et al., 2006, MNRAS, 370, 529
de Val-Borro M., Artymowicz P., D’Angelo G., Peplinski A., 2007, A&A,

471, 1043
Eulderink F., Mellema G., 1995, A&AS, 110, 587
Goldreich P., Tremaine S., 1979, ApJ, 233, 857
Ida S., Lin D. N. C., 2008, ApJ, 673, 487
Jang-Condell H., Sasselov D. D., 2005, ApJ, 619, 1123
Klahr H., Kley W., 2006, A&A, 445, 747
Kley W., 1989, A&A, 208, 98
Kley W., 1999, MNRAS, 303, 696
Kley W., Crida A., 2008, A&A, 487, L9
Korycansky D. G., Pollack J. B., 1993, Icarus, 102, 150
Li H., Li S., Koller J., Wendroff B. B., Liska R., Orban C. M., Liang

E. P. T., Lin D. N. C., 2005, ApJ, 624, 1003

Lin D. N. C., Papaloizou J., 1986a, ApJ, 307, 395
Lin D. N. C., Papaloizou J., 1986b, ApJ, 309, 846
Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
Masset F. S., 2000a, A&AS, 141, 165
Masset F. S., 2000b, in Garzón G., Eiroa C., de Winter D., Mahoney T. J.,

eds, ASP Conf. Ser. Vol. 219, Disks, Planetesimals, and Planets. Astron.
Soc. Pac., San Francisco, p. 75

Masset F. S., Casoli J., 2009, ApJ, 703, 857
Masset F. S., Papaloizou J. C. B., 2003, ApJ, 588, 494
Masset F. S., D’Angelo G., Kley W., 2006, ApJ, 652, 730
Menou K., Goodman J., 2004, ApJ, 606, 520
Mordasini C., Alibert Y., Benz W., 2009, A&A, 501, 1139
Nelson R. P., Papaloizou J. C. B., 2004, MNRAS, 350, 849
Nelson R. P., Papaloizou J. C. B., Masset F., Kley W., 2000, MNRAS, 318,

18
Paardekooper S.-J., Mellema G., 2006a, A&A, 459, L17
Paardekooper S.-J., Mellema G., 2006b, A&A, 450, 1203
Paardekooper S.-J., Mellema G., 2008, A&A, 478, 245
Paardekooper S.-J., Papaloizou J. C. B., 2008, A&A, 485, 877
Paardekooper S.-J., Papaloizou J. C. B., 2009a, MNRAS, 394, 2283
Paardekooper S.-J., Papaloizou J. C. B., 2009b, MNRAS, 394, 2297
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