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The tunneling process in a many-body system is a phenomenon
which lies at the very heart of quantum mechanics. It appears in
nature in the form of α-decay, fusion and fission in nuclear physics,
and photoassociation and photodissociation in biology and chem-
istry. A detailed theoretical description of the decay process in
these systems is a very cumbersome problem, either because of
very complicated or even unknown interparticle interactions or due
to a large number of constituent particles. In this work, we theo-
retically study the phenomenon of quantum many-body tunneling
in a transparent and controllable physical system, an ultracold
atomic gas. We analyze a full, numerically exact many-body solu-
tion of the Schrödinger equation of a one-dimensional systemwith
repulsive interactions tunneling to open space. We show how the
emitted particles dissociate or fragment from the trapped and
coherent source of bosons: The overall many-particle decay process
is a quantum interference of single-particle tunneling processes
emerging from sources with different particle numbers taking
place simultaneously. The close relation to atom lasers and ioniza-
tion processes allows us to unveil the great relevance of many-
body correlations between the emitted and trapped fractions of
the wave function in the respective processes.

coherence ∣ cold atoms ∣ many-body physics ∣ quantum dynamics ∣
fragmentation

The tunneling process has been a matter of discussion (1–3)
since the advent of quantum mechanics. In principle, it takes

place in all systems whose potential exhibits classically forbidden
but energetically allowed regions. See, for example, the overview
in ref. 4 and Fig. 1. When the potential is unbound in one direc-
tion, the quantum nature of the systems allows them to overcome
potential barriers for which they classically would not have suffi-
cient energy and, as a result, a fraction of the many-particle sys-
tem is emitted to open space. For example, in fusion, fission,
photoassociation, and photodissociation processes, the energetics
or life times are of primary interest (5–9). The physical analysis
was made under the assumption that the correlation between de-
cay products (i.e., between the remaining and emitted fractions of
particles) can be neglected. However, it has to be stressed first
that, at any finite decay time, the remaining and emitted particles
still constitute one total many-body wave function and, therefore,
can be correlated. Second, in contrast to the tunneling of an
isolated single particle into open space, which has been amply
studied and understood (4), nearly nothing is known about the
tunneling of a many-body system. In the present study, we de-
monstrate that the fundamental many-body aspects of quantum
tunneling can be studied by monitoring the correlations and
coherence in ultracold atomic gases. For this purpose, the initial
state of an ultracold atomic gas of bosons is prepared coherently
in a parabolic trapping potential which is subsequently trans-
formed to an open shape allowing for tunneling (Fig. 1, Upper).
In this tunneling system the correlation between the remaining
and emitted particles can be monitored by measuring deviations
from the initial coherence of the wave function. The close rela-
tion to atom lasers and ionization processes allows us to predict

coherence properties of atom lasers and to propose the study of
ionization processes with tunneling ultracold bosons.

In the past decade, Bose–Einstein condensates (BECs)
(10, 11) have become a toolbox to study theoretical predictions
and phenomena experimentally with a high level of precision and
control (12). BECs are experimentally tunable, the interparticle
interactions (13), trap potentials (14), number of particles (15),
their statistics (16) and even dimensionality (17–19) are under
experimental control. From the theoretical point of view, the
evolution of an ultracold atomic cloud is governed by the time-
dependent many-particle Schrödinger equation (TDSE) (20)
with a known Hamiltonian (Methods). To study the decay scenario
in Fig. 1, we solve the TDSE numerically for long propagation
times. For this purpose, we use the multiconfigurational time-
dependent Hartree method for bosons (MCTDHB) (for details
and literature see Methods). Our protocol to study the tunneling
process of an initially parabolically trapped system into open
space is schematically depicted in Fig. 1, Upper. We restrict our
study here to the one-dimensional case, which can be achieved
experimentally by adjusting the transverse confinement appropri-
ately. As a first step, we consider N ¼ 2; 4, or 101 weakly repul-
sive 87Rb atoms in the ground state of a parabolic trap (see
Methods for a detailed description of the considered experimental
parameters).

The initial one-particle density and trap profile are depicted in
Fig. 1, Upper. Next, the potential is abruptly switched to the open
formV ðx; t ≥ 0Þ indicated in this figure, allowing the many-boson
system to escape the trap by tunneling through the barrier
formed. Eventually, all the bosons escape by tunneling through
the barrier, because the potential supports no bound states.

The initial system, i.e., the source of the emitted bosons, is an
almost totally coherent state (21). The final state decays entirely
to open space to the right of the barrier, where the bosons
populate many many-body states, related to Lieb–Liniger states
(22–24), which are generally not coherent. It is instructive to ask
the following guiding questions: What happens in between these
two extremes of complete coherence and complete incoherence?
And how does the correlation (coherence) between the emitted
particles and the source evolve? By finding the answers to these
questions we will gain a deeper theoretical understanding of
many-body tunneling, which is of high relevance for future tech-
nologies and applied sciences. In particular, this knowledge will
allow us to determine whether the studied ultracold atomic
clouds qualify as candidates for atomic lasers (11, 25–27) or as
a toolbox for the study of ionization or decay processes (5–8).

Because the exact many-body wavefunctions are available at
any time in our numerical treatment, we can quantify and moni-
tor the evolution of the coherence and correlations of the whole
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system as well as between the constituting parts of the evolving
wave packets. In the further analysis we use the one-particle den-
sity in real ρðx; tÞ and momentum ρðk; tÞ spaces, their natural oc-
cupations ρNO

i ðtÞ and correlation functions gð1Þðk 0jk; tÞ (28–30).
We defer the details on these quantities to Methods. To study the
correlation between the source and emitted bosons we decom-
pose the one-dimensional space into the internal IN and external
OUT regions with respect to the top of the barrier, as illustrated
by the red line and arrows in Fig. 1, Lower. This decomposition of
the one-dimensional Hilbert space into subspaces allows us to
quantify the tunneling process by measuring the amount Px

not;ρðtÞ
of particles remaining in the internal region in real space as a
function of time. In Fig. 2 we depict the corresponding quantities
for N ¼ 2 and N ¼ 101 by the green dotted curve. A first main

observation is that the tunneling of bosonic systems to open space
resembles an exponential decay process.

The key features of the dynamics of quantum mechanical sys-
tems manifest themselves very often in characteristic momenta.
Therefore, it is worthwhile to compute and compare evolutions of
the momentum distributions ρðk; tÞ of our interacting bosonic
systems. Fig. 3 depicts ρðk; tÞ for N ¼ 2; 4; 101 bosons. At t ¼ 0

all the initial real space densities have Gaussian-shaped profiles
resting in the internal region (Fig. 1, Upper). Therefore, their
distributions in momentum space are also Gaussian-shaped and
centered around k ¼ 0. With time the bosons start to tunnel out
of the trap. This process manifests itself in the appearance of a
pronounced peak structure on top of the Gaussian-shaped back-
ground, see Fig. 3, Black Framed Upper. The peak structure is very
narrow (similar to a laser or an ionization process), the
bosons seem to be emitted with a very well-defined momentum.
For longer propagation times a larger fraction of bosons is
emitted and more intensity is transferred to the peak structure
from the Gaussian background. Thus, we can relate the growing
peak structures in the momentum distributions to the emitted
bosons and the Gaussian background to the bosons in the source.
We decompose each momentum distribution into a Gaussian
background and a peak structure to check the above relation
(Methods). The integrals over the Gaussian momentum back-
ground, Pk

not;ρðtÞ, are depicted in Fig. 2 as a function of time. The
close similarity of the Px

not;ρðtÞ, characterizing the amount of par-
ticles remaining in the internal region in real space, and Pk

not;ρðtÞ
confirms our association of the Gaussian-shaped background

Fig. 1. Protocol of the tunneling process. (Upper) Generic density ρðx; t < 0Þ
(blue line) is prepared as the ground state of a parabolic trap Vðx; t < 0Þ
(dashed black line). The trap is transformed to the open shape Vðx; t ≥ 0Þ
(black line), which allows the system to tunnel to open space. (Lower)
Sequential mean-field scheme to model the tunneling processes. The bosons
are ejected from IN to OUTsubspaces (indicated by the red line). The chemical
potential μi is converted to kinetic energy Ekin;i. All the momenta correspond-

ing to the chemical potentials ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin;i

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2mμi

p
; i ¼ N; N − 1;…; 1

appear in the momentum distribution, see Fig. 2. All quantities shown are
dimensionless.

Fig. 2. Many-body tunneling to open space is a fundamentally exponential
decay process. To confirm that the fraction of atoms remaining in the trap
decays exponentially with time, we depict the density-related nonescape
probabilities Px

not;ρðtÞ in real and Pk
not;ρðtÞ in momentum space, indicated by

the respective solid green symbols and red lines. All quantities shown are
dimensionless.

Fig. 3. The peak structures in the momentum distributions characterize
the physics of many-body tunneling to open space. The total momentum dis-
tributions ρðk; tÞ for N ¼ 101 (Black Framed Upper) and their peak structures
for N ¼ 2, N ¼ 4, N ¼ 101, and the respective Gross–Pitaevskii solutions, at
times t1 < t2 < t3 < t4. The broad Gaussian-shaped backgrounds correspond
to the bosons remaining in the trap, the sharp peaks with positive momenta
can be associated with the emitted bosons. For N ¼ 2 we find two peaks in
Lower (i), for N ¼ 4 we find three peaks and an emerging fourth peak at
longer times in Lower (ii). Lower (iv) we find three washed out peaks for
N ¼ 101. The corresponding GP dynamics reveals only a single peak for all
times in Lower (iii). The arrows in the plots mark the momenta obtained from
the model consideration. All quantities shown are dimensionless.
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with source bosons and the peak structure in the momentum dis-
tribution with emitted ones (Fig. 3, Black Framed Upper).

Now we are equipped to look into the mechanism of the many-
body physics in the tunneling process with a simplistic model.
When the first boson is emitted to open space one can estimate
its total energy as an energy difference, EN −EN−1, of source
systems made ofN andN − 1 particles. Assuming negligible cou-
pling between the trapped and emitted bosons the energy of the
outgoing boson reads:

EOUT ¼ EN −EN−1 ≡ μ1:

The quantity μ1 is simply the chemical potential of the parabo-
lically trapped source system. For noninteracting particles its va-
lue would be independent of the number of bosons inside the
well. Because the boson tunnels to open space where the trapping
potential is zero, it can be considered for the time being as a
free particle with all its available energy, μ1, converted to kinetic
energy Ekin

OUT ¼ k2

2m. We have to expect the first emitted boson to
have the momentum k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mμ1

p
. The value of the estimated

momentum agrees excellently with the position of the peak in
the computed exact momentum distributions, see the arrows
marked k1 in Fig. 3, Lower (i–iv)). This agreement allows us
to interpret the peak structures in ρðk; tÞ as the momenta of
the emitted bosons. As a striking feature, also other peaks with
smaller k appear in these spectra at later tunneling times (see
Fig. 3, Lower (i, ii, and iv)). We can use an analogous argumenta-
tion and associate the second peak with the emission of the sec-
ond boson and its chemical potential, μ2. Its kinetic energy and
the corresponding momentum, k2, can be estimated as the energy
difference μ2 ¼ EN−1 −EN−2 between the source subsystems
made of N − 1 and N − 2 bosons, under the assumption of zero
interaction between the emitted particles and the source. The
correctness of the applied logic can be verified from Fig. 3, Lower
(i and ii), where for the N ¼ 2 (N ¼ 4) particles the positions of
the estimated momenta k2 (k3, k4) of the second (third, fourth)
emitted boson fit well with the position of the second (third,
fourth) peak in the computed spectra. The momenta and details
on the calculation are collected in the SI Text. The momentum
spectrum for N ¼ 101 bosons shows a similar behavior—the
multipeak structures gradually develop with time starting from
a single-peak to two-peaks and so on, see Fig. 3, Lower (iv).
However, from this figure we see that the positions of the peaks’
maxima, and with them the momenta of the emitted bosons,
change with time. On the one hand we see that the considered
tunneling bosonic systems can not be utilized as an atomic laser:
The initially coherent bosonic source emits particles with differ-
ent, weakly time-dependent momenta. In optics such a source
would be called polychromatic. On the other hand we can associ-
ate the peaks with different channels of an ionization process
and their time-dependency with the channels’ coupling. Thus,
we conclude that it is possible to model and investigate ionization
processes with tunneling ultracold bosonic systems. We mention
that such processes can occur in the multielectron photoioniza-
tion dynamics of molecules in a laser field. Namely, several elec-
trons can be ionized by tunneling through a barrier, see the recent
experiment in ref. 31.

Let us now investigate the coherence of the tunneling process
itself. In the above analysis of the momentum spectra we relied on
the exact numerical solutions of the TDSE for N ¼ 2; 4; 101
bosons. We remind the reader that in the context of ultracold
atoms the Gross–Pitaevskii (GP) theory is a popular and widely
used mean-field approximation describing systems under the
assumption that they stay fully coherent for all times. In our case
the GP approximation assumes that the ultracold atomic cloud
coherently emits the bosons to open space and keeps the source
and emitted bosons coherent all the time. To learn about the
coherence properties of the ongoing dynamics it is instructive

to compare exact many-body solutions of the TDSE with the
idealized GP results, see Fig. 3, Lower (iii). The strengths of
the interboson repulsion have deliberately been chosen such that
the GP gives identical dynamics for allN studied. It is clearly seen
that for short initial propagation times the dynamics are indeed
coherent. The respective momentum spectra obtained at the
many-body and GP levels are very similar, see Fig. 3, Lower
(i–iv) for ρðk; t1 ¼ 100Þ. At longer propagation times (t > t1),
however, the spectra become considerably different. This differ-
ence means that with time, the process of emission of bosons
becomes less coherent.

Next, to quantify the coherence and correlations between the
source and emitted bosons we compute and plot the momentum
correlation functions jgð1Þðk 0; kjtÞj2 in Fig. 4 (Left) for N ¼ 101
(for N ¼ 2; 4 they look almost the same). Let us stress here that
the proper correlation properties cannot be accounted for by ap-
proximate methods. For example the GP solution of the problem
gives jgð1Þj2 ¼ 1, i.e., full coherence for all times. For the exact
solution we also obtain that at t ¼ 0 the system is fully coherent,
and thus jgð1Þðk 0jk; t ¼ 0Þj2 ¼ 1. Hence, Fig. 4, Upper Left is also
a plot for the GP time evolution. However, during the tunneling
process the many-body evolution of the system becomes incoher-
ent, i.e., jgð1Þj2 → 0. The coherence is lost only in the momentum-
space domain where the momentum distributions are peaked,
the k-region associated with the emitted bosons (Fig. 4, Left).
In the remainder of k-space the wave function stays coherent
for all times. We conclude that the trapped bosons within the
source remain coherent. The emitted bosons become incoherent
with their source and among each other. Therefore, the coher-
ence between the source and the emitted bosons is lost. A com-
plementary argumentation with the normalized real-space
correlation functions is deferred to SI Text.

In the spirit of the seminal work of Penrose and Onsager on
reduced density matrices (29), we tackle the following question:
how strong is the loss of coherence in many-body systems? The
natural occupation numbers, ρNO

i ðtÞ, obtained by diagonalizing
the reduced one-body density (Methods) define how much the
system can be described by single, two, or more quantummechan-
ical one-particle states. The system is condensed and coherent
when only one natural occupation is macroscopic and it is frag-
mented when several of the ρNO

i ðtÞ are macroscopic. In Fig. 4
(Right) we plot the evolution of the natural occupation numbers
for the studied systems as a function of propagation time. The
initial system is totally coherent—all the bosons reside in one
natural orbital. However, when some fraction of the bosons is
emitted, a second natural orbital gradually becomes occupied.

Fig. 4. Monitoring the coherence of the system. (Left) The first-order corre-
lation functions in momentum space jgð1Þðk 0 jk; tÞj2 for N ¼ 101 are plotted at
t ¼ 0, 400, 600, 700. At t ¼ 0 the system is totally coherent, i.e., jgð1Þj2 ¼ 1. At
times t > 0, the system remains coherent everywhere in k-space apart from
the region around k ¼ 1, where we find peaks in the momentum distribu-
tions. The loss of coherence, jgð1Þj2 ≈ 0 only in these regions allows us to con-
clude that the source (trapped) bosons remain coherent at all times whereas
the emitted ones are incoherent. (Right) The time evolution of the first few
natural occupation numbers ρNO

i ðtÞ for N ¼ 2 (red lines), N ¼ 4 (green lines),
andN ¼ 101 (blue lines) bosons. The coherence in the systems is gradually lost
with time. The systems fragment because more and more natural orbitals
become populated. All quantities shown are dimensionless.
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The decaying systems lose their coherence and become twofold
fragmented. For longer propagation times more natural orbitals
start to be populated, indicating that the decaying systems be-
come even more fragmented, i.e., less coherent. In the few-boson
cases, N ¼ 2 and N ¼ 4, one can observe several stages of the
development of fragmentation (32, 33)—beginning with a single
condensate and evolving toward the limiting form ofN entangled
fragments in the end which means a full fermionization of the
emitted particles. In this fermionization-like case each particle
will propagate with its own momentum. For larger N the number
of fragments also increases with tunneling time. The details of the
evolution depend on the strength of the interparticle interaction
and number of particles. By resolving the peak structure in the
momentum spectra of the tunneling systems at different times
we can directly detect and quantify the evolution of coherence,
correlations, and fragmentation.

Finally, we tackle the intricate question whether the bosons
are emitted one by one or several at a time? By comparing the
momentum spectra ρðk; tÞ depicted in Fig. 3, Lower (i, ii, and iv)
at different times it becomes evident that the respective peaks
appear in the spectra sequentially with time, starting from the
most energetical one. If multiboson (two or more boson) tunnel-
ing processes would participate in the dynamics, they would give
spectral features with higher momenta which are not observed in
the computed spectra depicted in Fig. 3. A detailed discussion
and a model are given in SI Text. This model suggests that the
bosons tunnel out one by one. However, the fact that the peaks’
heights and positions evolve with time indicates that the indivi-
dual tunneling processes interfere, i.e., they are not independent.
The origin behind this interference is the interaction between
the bosons. We conclude that the overall decay by tunneling pro-
cess is of a many-body nature and is formed by the interference
of different single-particle tunneling processes taking place simul-
taneously.

We arrive at the following physical picture of the tunneling to
open space of an interacting, initially coherent bosonic cloud. The
emission from the bosonic source is a continuous, polychromatic
many-body process accompanied by a loss of coherence, i.e., frag-
mentation. The dynamics can be considered as a superposition of
individual single-particle tunneling processes of source systems
with different particle numbers. On the one hand, ultracold
weakly interacting bosonic clouds tunneling to open space can
serve as an atomic laser, i.e., emit bosons coherently, but only for
a short time. For longer tunneling times the emitted particles be-
come incoherent. They lose their coherence with the source and
among each other. On the other hand, we have shown the usage
of tunneling ultracold atoms to study the dynamics of ionization
processes. Each peak in the momentum spectrum is associated
with the single particle decay of a bosonic source made of N,
N − 1,N − 2, etc. particles—in close analogy to sequential single
ionization processes. TheseN discrete momenta comprise a total
spectrum—in close analogy to total ionization spectra.

We have focused here on the many-body tunneling process of
an initially coherent bosonic cloud. Nevertheless, it is interesting
to inquire whether the many-body tunneling mechanism would
change when the interaction between the bosons is increased,
e.g., by employing a Feshbach resonance. To this end, we have
repeated our studies for N ¼ 2; 4; 101 bosons with sevenfold
stronger interactions for which the initial state is still close to con-
densed, as well as for N ¼ 2; 4 200-fold stronger interacting
bosons, for which the initial state is already fermionized. The re-
sults are shown in SI Text. The tunneling mechanism is not altered
by the stronger interactions and our model predicts the positions
of the momentum peaks of the escaping bosons well.

As an experimental protocol for a straightforward detection of
the kinetic energy of the emitted particles one can use the pres-
ently available single-atom detection techniques on atom chips
(34) or the idea of mass spectrometry (see discussion in SI Text).

Summarizing, in many-particle systems decaying by tunneling to
open space the correlation dynamics between the source and
emitted parts lead to clearly observable spectral features which
are of great physical relevance.

Methods
Hamiltonian and Units. The one-dimensional N-boson Hamiltonian reads
as follows:

Ĥðx1;…; xNÞ ¼ ∑
N

j¼1

�
−
1

2

∂ 2

∂x2j
þ V ðxjÞ

�
þ∑

N

j<k

λ0δðxj − xkÞ:

Here λ0 > 0 is the repulsive interparticle interaction strength proportional to
the s-wave scattering length as of the bosons and xi is the coordinate of the
i-th boson. Throughout this work λ ¼ λ0ðN − 1Þ ¼ 0.3 for all considered N is
used (further results for N ¼ 2; 4; 101 bosons with sevenfold stronger inter-
action, λ ¼ 2.1, and for N ¼ 2; 4 bosons with 200-fold stronger interaction,
λ ¼ 60, are discussed at the end of the main text and SI Text). For convenience
we work with the dimensionless quantities defined by dividing the dimen-
sional Hamiltonian by ℏ2

mL2, where ℏ ¼ 1.05457 · 10−34 m2kg
sec is Planck’s constant,

m is the mass of a boson, and L is a chosen length scale. At t < 0 trap is para-
bolic Vðx; t < 0Þ ¼ 1

2 x
2, the analytic form of Vðx; tÞ after the opening is given

in ref. 35.
In this work we consider 87Rb atoms for whichm ¼ 1.44316 · 10−25 kg and

as ¼ 90.4a0 without tuning by a Feshbach resonance, where a0 ¼
0.0529 · 10−9 m is Bohr’s radius. We emulate a quasi one-dimensional cigar-
shaped trap in which the transverse confinement isw⊥ ¼ 2; 291.25 Hz, which
is amenable to current experimental setups. Following ref. 36, the transverse
confinement renormalizes the interaction strength. Combining all the above,

the length scale is given by L ¼ ℏλ0
2mω⊥as

¼ 1.0 · 10−6 m, and the timescale by
mL2

ℏ ¼ 1.37 · 10−3 s. The relation between the (dimensionless) interaction
parameter λ0 and the (dimension-full) scattering length as is hence given

by λ0 ¼ 2mω⊥L
ℏ · as.

The Multiconfigurational Time-Dependent Hartree for Bosons Method. The
time-dependent many-boson wave function ΨðtÞ solving the many-boson
Schrödinger equation i ∂ΨðtÞ∂t ¼ ĤΨðtÞ is obtained by the MCTDHB, see refs. 37
and 38. Applications include unique intriguing many-boson physics such as
the death of attractive soliton trains (39), formation of fragmented many-
body states (40), and numerically exact double-well dynamics (41–43). Recent
optimizations of the MCTDHB, see, e.g., refs. 44 and 45, allow now for the
application of the algorithm to open systems with very large grids (here
216 ¼ 65;536 basis functions), a particle number of up to N ¼ 101, and an
arbitrary number of natural orbitals (here up to 14). We would like to stress
that even nowadays such kind of time-dependent computations are very
challenging.

The mean-field wave function is obtained by solving the time-dependent
Gross–Pitaevskii equation, which is contained as a special single-orbital case
in the MCTDHB equations of motion, see refs. 37 and 38. To ensure that the
tunneling wave packets do not reach the box borders for all presented
propagation times the simulations were done in a box ½−5; 7465�. In the
dimensional units we thus solve a quantum mechanical problem numerically
exactly in a spatial domain extending over 8.29 mm.

Many-Body Analysis of the Wave Function. With the many-boson wave func-
tion ΨðtÞ at hand the various quantities of interest are computed and utilized
to analyze the evolution in time of the Bose system. The reduced one-body
density matrix of the system is given by ρð1Þðxjx 0; tÞ ¼ hΨðtÞjΨ̂†ðx 0ÞΨ̂ðxÞjΨðtÞi,
where Ψ̂†ðxÞ is the usual bosonic field operator creating a boson at position x.
Diagonalizing ρð1Þðxjx 0; tÞ one gets the natural orbitals (eigenfunctions), ϕNO

i ,
and natural occupation numbers ρNO

i (eigenvalues) from the expression
ρð1Þðxjx 0; tÞ ¼ ∑M

i¼1 ρ
NO
i ðtÞðϕNO

i ðx 0; tÞÞ�ϕNO
i ðx; tÞ. The latter determine the

extent to which the system is condensed (one macroscopic eigenvalue)
or fragmented (two or more macroscopic eigenvalues) (32, 33, 46). The
diagonal part of the reduced one-body density matrix ρðx; tÞ ≡ ρð1Þðxjx 0; tÞ
is the system’s density. The first-order correlation function in coordinate

space gð1Þðx 0; x; tÞ ≡ ρ ð1Þðxjx 0 ;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx;tÞρðx 0 ;tÞ

p quantifies the degree of spatial coherence

of the interacting system (28, 30). The respective quantities in momentum
space, such as the momentum distribution ρðk; tÞ and the first-order
correlation function in momentum space gð1Þðk 0 jk; tÞ ≡ ρ ð1Þðkjk 0 ;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðk;tÞρðk 0 ;tÞ
p , are de-

rived from ρð1Þðxjx 0; tÞ via an application of a Fourier transform on its eigen-
functions.

In real space the density-related nonescape probability is given by
Px
not;ρðtÞ ¼ ∫ INρðx; tÞdx (see ref. 35 for the non-Hermitian results). The

13524 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1201345109 Lode et al.
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momentum-density related nonescape probability Pk
not;ρðtÞ is obtained by

least-squares fitting a Gaussian function ρGaussðk; tÞ ¼ Ae−ðBxÞ2 to ρðk; tÞ in
the k-space domain ½−∞; 0�. A and B are the fit parameters. We then define
the momentum-density-related nonescape probability as

Pk
not;ρðtÞ ¼

Z
ρGaussðk; tÞdk:

ACKNOWLEDGMENTS. We thank Shachar Klaiman and Julian Grond for a
careful reading of the manuscript and comments as well as Lincoln Carr for
discussions. Computation time on the bwGRiD and the Cray XE6 cluster Hermit
at the High Performance Computing Center Stuttgart (HLRS), and financial
support by the Heidelberg Graduate School of Mathematical and Computa-
tional Methods for the Sciences (HGS MathComp) and the Deutsche For-
schungsgemeinschaft (DFG) also within the framework of the Enable fund
of the excellence initiative at Heidelberg university are greatly acknowledged.

1. Gurney RW, Condon EU (1928)Wavemechanics and radioactive disintegration.Nature
122:439.

2. Gurney RW, Condon EU (1929) Quantum mechanics and radioactive disintegration.
Phys Rev 33:127–140.

3. Kramers HA (1926) Wave mechanics and half-integral quantization. Z Phys A 39:828–
840 (in German).

4. Razavy M (2003) Quantum Theory of Tunneling (World Scientific, Singapore).
5. Gamow G (1928) On the quantum theory of the atomic nucleus. Z Phys 51:204–212.
6. Bhandari BS (1991) Resonant tunneling and the bimodal symmetric fission of 258Fm.

Phys Rev Lett 66:1034–1037.
7. Balantekin AB, Takigawa N (1998) Quantum tunneling in nuclear fusion. RevMod Phys

70:77–100.
8. Keller J, Weiner J (1984) Direct measurement of the potential-barrier height in the

B1Πu state of the sodium dimer. Phys Rev A 29:2943–2945.
9. Vatasescu M, et al. (2000) Multichannel tunneling in the Cs20−

g photoassociation
spectrum. Phys Rev A 61:044701.

10. Cornell EA, Wieman CE (2002) Nobel Lecture: Bose–Einstein condensation in a dilute
gas, the first 70 years and some recent experiments. Rev Mod Phys 74:875–893.

11. Ketterle W (2002) Nobel lecture: When atoms behave as waves: Bose–Einstein
condensation and the atom laser. Rev Mod Phys 74:1131–1151.

12. Dunningham J, Burnett K, Phillips WD (2005) Bose–Einstein condensates and precision
measurements. Phil Trans R Soc A 363:2165–2175.

13. Inouye S, et al. (1998) Observation of Feshbach resonances in a Bose–Einstein
condensate. Nature 392:151–154.

14. Henderson K, Ryu C, MacCormick C, BoshierMG (2009) Experimental demonstration of
painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J Phys
11:043030.

15. Dudarev AM, Raizen MG, Niu Q (2007) Quantum many-body culling: Production of a
definite number of ground-state atoms in a Bose–Einstein condensate. Phys Rev Lett
98:063001.

16. Bartenstein M, et al. (2004) Crossover from a molecular Bose–Einstein condensate to a
degenerate Fermi gas. Phys Rev Lett 92:120401.

17. Görlitz A, et al. (2001) Realization of Bose–Einstein condensates in lower dimensions.
Phys Rev Lett 87:130402.

18. Schreck F, et al. (2001) Quasipure Bose–Einstein condensate immersed in a Fermi sea.
Phys Rev Lett 87:080403.

19. Greiner M, et al. (2001) Exploring phase coherence in a 2D lattice of Bose–Einstein
condensates. Phys Rev Lett 87:160405.

20. Ullrich J, Shevelko VP (2003) Many-Particle Quantum Dynamics in Atomic and
Molecular Fragmentation (Springer, Berlin).

21. Pitaevskii LP, Stringari S (2003) Bose–Einstein Condensation (Oxford Univ Press,
Oxford).

22. Lieb EH, Liniger W (1963) Exact analysis of an interacting Bose gas. I. The general s
olution and the ground state. Phys Rev 130:1605–1616.

23. Lieb EH (1963) Exact analysis of an interacting Bose gas. II. The excitation spectrum.
Phys Rev 130:1616–1624.

24. Gaudin M (1971) Boundary energy of a Bose gas in one dimension. Phys Rev A
4:386–394.

25. Bloch I, Hänsch T, Esslinger T (1999) Atom laser with a cw output coupler. Phys Rev Lett
82:3008–3011.

26. Öttl A, Ritter S, Köhl M, Esslinger T (2005) Correlations and counting statistics of an
atom laser. Phys Rev Lett 95:090404.

27. Köhl M, Busch Th, Mølmer K, Hänsch TW, Esslinger T (2005) Observing the profile of an
atom laser beam. Phys Rev A 72:063618.

28. Glauber RJ (2007) Quantum Theory of Optical Coherence. Selected Papers and
Lectures (Wiley-VCH, Weinheim).

29. Penrose O, Onsager L (1956) Bose–Einstein condensation and liquid helium. Phys Rev
104:576–584.

30. Sakmann K, Streltsov AI, Alon OE, Cederbaum LS (2008) Reduced density matrices and
coherence of trapped interacting bosons. Phys Rev A 78:023615.

31. Wu J, et al. (2012) Multiorbital tunneling ionization of the CO molecule. Phys Rev Lett
108:183001.

32. Alon OE, Cederbaum LS (2005) Pathway from condensation via fragmentation to
fermionization of cold bosonic systems. Phys Rev Lett 95:140402.

33. Spekkens RW, Sipe JE (1999) Spatial fragmentation of a Bose–Einstein condensate in a
double-well potential. Phys Rev A 59:3868–3877.

34. Heine D, et al. (2010) A single-atom detector integrated on an atom chip: Fabrication,
characterization and application. New J Phys 12:095005.

35. Lode AUJ, Streltsov AI, Alon OE, Meyer H-D, Cederbaum LS (2009) Exact decay and
tunneling dynamics of interacting few boson systems. J Phys B 42:044018.

36. Olshanii M (1998) Atomic scattering in the presence of an external confinement and a
gas of impenetrable bosons. Phys Rev Lett 81:938–941.

37. Streltsov AI, Alon OE, Cederbaum LS (2007) Role of excited states in the splitting of a
trapped interacting Bose–Einstein condensate by a time-dependent barrier. Phys Rev
Lett 99:030402.

38. Alon OE, Streltsov AI, Cederbaum LS (2008) Multiconfigurational time-dependent
Hartree method for bosons: Many-body dynamics of bosonic systems. Phys Rev A
77:033613.

39. Streltsov AI, Alon OE, Cederbaum LS (2011) Swift loss of coherence of soliton trains in
attractive Bose–Einstein condensates. Phys Rev Lett 106:240401.

40. Streltsov AI, Alon OE, Cederbaum LS (2008) Formation and dynamics of many-boson
fragmented states in one-dimensional attractive ultracold gases. Phys Rev Lett
100:130401.

41. Sakmann K, Streltsov AI, Alon OE, Cederbaum LS (2009) Exact quantum dynamics of a
bosonic Josephson junction. Phys Rev Lett 103:220601.

42. Grond J, Schmiedmayer J, Hohenester U (2009) Optimizing number squeezing when
splitting a mesoscopic condensate. Phys Rev A 79:021603.

43. Grond J, von Winckel G, Schmiedmayer J, Hohenester U (2009) Optimal control of
number squeezing in trapped Bose–Einstein condensates. Phys Rev A 80:053625.

44. Streltsov AI, Sakmann K, Alon OE, Cederbaum LS (2011) Accurate multi-boson
longtime dynamics in triple-well periodic traps. Phys Rev A 83:043604.

45. Streltsov AI, Sakmann K, Lode AUJ, Alon OE, Cederbaum LS (2011) TheMulticonfigura-
tional Time-Dependent Hartree for Bosons Package (University of Heidelberg,
Heidelberg), Version 2.1. Available at http://MCTDHB.org.

46. Moiseyev N, Cederbaum LS (2005) Resonance solutions of the nonlinear Schrödinger
equation: Tunneling lifetime and fragmentation of trapped condensates. Phys Rev A
72:033605.

Lode et al. PNAS ∣ August 21, 2012 ∣ vol. 109 ∣ no. 34 ∣ 13525

PH
YS

IC
S

D
ow

nl
oa

de
d 

at
 B

ib
lio

th
ek

ss
ys

te
m

 U
ni

v 
F

re
ib

ur
g 

on
 N

ov
em

be
r 

19
, 2

01
9 


