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Marseille, France

Abstract. This work addresses the development of a nonlinear absorber based on the concept of a Nonlinear Energy Sink
(NES) under different multi-stable configurations. The potential energy of the system can be written under a potential that
possesses two or more stable equilibrium positions separated by saddle points. The study of the dynamics at different time
scales leads to the computation of the Slow Invariant Manifold (SIM) where singular points indicate the possible occurrence
of Strongly Modulated Responses (SMR). It is shown that, compared to a bi-stable NES, the threshold activation of a
multistable NES can be significantly lowered with same dissipation ability.

Introduction

Since the seminal papers by Vakakis et al [1, 2], targeted energy transfer, or energy pumping, has become a
subject of growing interest. Despite highly efficient energy dissipation, the main drawback is that the higher the
frequency of the primary linear system to control, the higher the amplitude for activation of non linear passive
dissipation. Recent theoretical and numerical works by Manevitch et al [3], Romeo et al [4] and experimental
work by Mattei et al [5] showed that a bi-stable NES (B-NES) provides improved robustness in frequency and
amplitude range over existing NESs by lowering the activation threshold. We show that, by a proper shaping of
the system underlying Hamiltonian, the threshold activation of a tri-stable NES can be significantly lowered with
same dissipation ability.

Description of the model

The system under consideration is composed by a linear structure of unit mass and stiffness, damping λ1 whose
displacement is x(t) under sinusoidal forcing with amplitude F and angular frequency Ω. This system is coupled
to a strongly nonlinear oscillator of mass ϵ, damping λN and linear stiffness κN whose displacement is y(t) .
The nonlinear stiffness is described by a polynomial function FN (y(t)) whose degree and coefficients depend on
the problem under consideration. The barycentric coordinates v(t) = x(t) + ϵy(t) and w(t) = x(t) − y(t) are
solutions of:

v̈(t) + ϵλ1
v̇(t) + ϵẇ(t)

1 + ϵ
+
v(t) + ϵw(t)

1 + ϵ
= ϵF sin(Ωt), (1)

ẅ(t) + ϵλ1
v̇(t) + ϵẇ(t)

1 + ϵ
+
v(t) + ϵw(t)

1 + ϵ
+ λN (1 + ϵ)ẇ(t) + κN (1 + ϵ)F (−w(t)) = 0. (2)

Results

We consider the problem close the linear resonance: Ω = 1 + ϵσ, where σ is a detuning parameter. The mo-
tion of the system is analysed by using the complexification-averaging method of Manevitch under 1:1 reso-
nance. The complex variables of Manevitch are introduced under polar form Φ1(t) exp(ıΩt) = v̇(t)+ ıΩv(t) and
Φ2(t) exp(ıΩt) = ẇ(t)+ ıΩw(t). To save place, in the rest of the text, the time dependence of Φ1, Φ2, v and w is
cancelled. These representations are introduced into Eq. (1) and Eq. (2) and an averaging over the fast frequency is
done. For ϵ small, a multiple-scale expansion with fast time t0 = ϵ and slow time t1 = ϵt, d/dt = ∂/∂t0+ϵ∂/∂t1
and Φi = ϕi + ϵψi, i = 1, 2 gives to the leading order ϵ0:

∂ϕ1
∂t0

= 0,
∂ϕ2
∂t0

+
ı

2
(ϕ2 − ϕ1) +

λN
2
ϕ2 −

ıκN
2
ϕ2F (ϕ2) = 0, (3)

where F (ϕ2) is a nonlinear function that depends on the non-linearity of the NES. The first relation of system (3)
gives ϕ1 = ϕ1(t1, t2, · · · ). Introducing this result in the second relation of system (3) shows that the fixed points
of this equation depends only on slow time t1 and are given by

ı

2
(ϕ2 − ϕ1) +

λN
2
ϕ2 −

ıκN
2
ϕ2F (ϕ2) = 0 (4)

ϕ1 and ϕ2 are written under polar form ϕi = Ai exp(ıθi). Now to solve Eq. (4), the non-linearity shall be defined.
In a previous study [5], the bi-stable NES (B-NES) was described using a Helmholtz-Duffing nonlinear stiffness
given by FN (x) = x + 3/2x2 + 1/2x3. One can show that F(ϕ2) = exp(ıθi)(1 + 3/8|A2|2). Then Eq. (4)
becomes ıA1 exp(ıθ1) = (λNA2 − ı(1− κN (1 + 3/8|A2|2)A2)) exp(ıθ2).
By conjugation and side by side multiplication, one obtains the Slow Invariant Manifold (SIM) on the system. Let
us denote Z1 = A2

1 and Z2 = A2
2, the SIM is given by Z1 = λ2NZ2 + (1− κN (1 + 3/8Z2))

2Z2.



As shown by Iurasov in is thesis [6], the B-NES most efficient energy dissipation is observed for an inter well
chaotic strongly modulated response under 1:1 resonance. This occurs for an excitation level sufficient to cross
the unstable saddle point limiting the wells. To lower this limit, one aims at lowering the amplitude of the unstable
saddle point. To do this, a new unstable saddle point is imposed to the potential function (see Fig. 1). This leads to
a tri-stable NES (T-NES) which nonlinear stiffness is given by FN (x) = x+9/2x2+13/2x3+15/4x4+3/4x5.
Let us denote by Y1 and Y2 the square of the amplitude of the fixed points of the system with a T-NES. The SIM
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Figure 1: Potential functions for the bi-stable (h2 = 1/8) and tri-stable (h3 = 1/54) NES.

is given by Y1 = λ2NY2 +
(
1− κN

(
1 + 39/8Y2 + 15/16 (Y2)

2
))2

Y2.

The two SIMs are strictly monotones for κn ≥ 1. For κn < 1 and λN < (1 − κN )/
√
3 for the B-NES and

λN / (1 − κN )/
√
3 for the T-NES both SIMs are composed of three branches separated by critical points.

These points are given, for the B-NES by Z1,2
2 = 8/(9κN )(2(1 − κN ) ∓

√
(1− κN )2 − 3λ2N ) and by Y 1

2 =

−39/25+
√

(400 + 4163κN )/κN/(5
√
3)+O(λ2N ) and Y 2

2 = −15/5+
√

(80 + 427κN )/κN/(5
√
3)+O(λ2N )

for the T-NES. The stability of the various branches is estimated by a linear perturbation analysis. The results are
presented in Fig. 2. Both topologies of SIM allow SMR and therefore efficient dissipation. The ratio of the first
critical point on each SIM is Z1

2/Y
1
2 ≈ 13, indicating that the lower threshold of the pumping is reduced by a

factor
√
Z1
2/Y

1
2 ≈ 3.6.
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Figure 2: SIM the B-NES (left) and T-NES (right). κN = 0.6 and λN = 0.1

Conclusions

Using analytical approximations, it has been shown that, by a proper shaping of the wells of the potential of the
underlying Hamiltonian of the system, the topology of the SIM of a T-NES is translated to a significantly lower
level that that of a B-NES. Then, compared to a B-NES, the threshold activation of a T-NES can be significantly
lowered with same dissipation ability.

References
[1] O. Gendelman, L.I. Manevitch, A.F. Vakakis, R.M. Closkey, Energy Pumping in Nonlinear Mechanical Oscillators: Part I–Dynamics

of the underlying Hamiltonian systems. ASME Journal of Applied Mechanics 68 (2011) 34-42. doi:10.1115/1.1345524.
[2] A.F. Vakakis, O.V. Gendelman, Energy Pumping in Nonlinear Mechanical Oscillators: Part II–Resonance Capture. ASME Journal of

Applied Mechanics 68 (2011) 42-48. doi:10.1115/1.1345525.
[3] L.I. Manevitch, G. Sigalov, F. Romeo, L.A. Bergman, A. Vakakis, Dynamics of a Linear Oscillator Coupled to a Bistable Light

Attachment: Analytical Study. ASME Journal of Applied Mechanics 81 (2014) 041011-1-9. doi:10.1115/1.4025150.
[4] F. Romeo, L.I. Manevitch, L.A. Bergman, A. Vakakis, Transient and chaotic low-energy transfers in a system with bistable nonlinear-

ity. Chaos 25 (2015) 053109. doi:10.1063/1.4921193.
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