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Abstract This article addresses a particular realiza-

tion of a compact bistable nonlinear absorber based

on the concept of Nonlinear Energy Sink. The arti-

cle presents both a detailed description of the absorber

mechanics and an illustration of the targeted energy

transfer between the absorber and a linear system. The

experimental results are accompanied with the numer-

ical simulations. Beside practical improvements linked

to the features of absorber design, the obtained results

stay in line with those found for simpler realizations of

a bistable Nonlinear Energy Sinks.
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1 Introduction

The study of this article is dedicated to the dynamics

of a particular realization of bi-stable Nonlinear Energy

Sink introduced in [1]. In order to avoid any confusion

with other possible realizations, in what follows this

particular realization will be addressed as BNES. The

BNES consists of a concentrated mass attached to a

buckled beam, which possesses two equilibrium posi-

tions. To obtain a configuration that can be used as a

Nonlinear Energy Sink, the beam material is chosen to

provide low structural damping, while the overall mass

of the absorber makes only a few percent of that of the

primary system. This design was originally proposed as

a way to create a Nonlinear Energy Sink with a rela-
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tively low triggering threshold for the Targeted Energy

Transfer.

The Targeted Energy Transfer (TET), thematic star-

ted by Oleg Gendelman in 2001, nowadays corresponds

to a family of passive control solutions based on use

of a strongly nonlinear local attachment, that is called

Nonlinear Energy Sink (NES). In the first paper on the

topic [2] it was shown, that under certain conditions,

the transient dynamics of the coupled system, compris-

ing a NES and linear primary system, may contain a

considerable unilateral (targeted) energy transfer from

the primary linear system to the light attachment. The

scope of the studies was later enlarged to systems under

constant external excitation [3,4], where the same un-

derlying nonlinear nature of the interaction gives rise

to the Strongly Modulated Response (SMR)[5]. This

particular response is characterized by strong modula-

tions of the primary system vibrations containing two

different time scales: one coming from the external ex-

citation, while the other, much slower, coming from the

energy exchange between the primary system and the

NES. In both cases, SMR and transient response, the

NES concept was seen as an effective tool for passive

control of the primary system vibrations, with the main

benefit coming from its ability to work in a large range

of frequencies.

The primary description of the NES, based on a

cubic stiffening nonlinearity of the absorber, was further

modified as to include nonlinear damping [6] and other

types of nonlinearity, such as non-polynomial or non-

smooth stiffness [7,8], impacts [9] or the nonlinearities

arising in rotational systems [10]. A summary on this

first stage of the NES thematic’s development can be

found in [11].

An important case of SMR, a Chaotic Strongly Mod-

ulated Response (CSMR) was described in [12]. This

response, first observed for vibro-impact and rotational

NESs in [9]-[10], corresponds to the motion where one

of the two branches of the slow invariant manifold (see

[11]) is unstable. The corresponding vibration profiles of

the NESs mix periods of resonant motion during which

it recuperates energy from the primary system with es-

sentially chaotic vibrations.

The idea of bistable NES, which has both soften-

ing and stiffening nonlinearities, was first introduced

in [13]-[15]. While these first results considered mainly

the TET with a hardening type of nonlinearity, the fur-

ther development of analytic tools allowed to study a

lower energy TET, that is due to the softening non-

linearity, as well as to address a much more complex

chaotic behavior [16]-[18]. In these works the dominant

approach to obtain a bistable configuration was based

on the combination of a cubic nonlinearity with a neg-
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ative linear one producing a well-studied Duffing-type

oscillator that appears in multiple problems (see [19] for

the summary). The majority of corresponding experi-

mental studies were carried out using the transverse

vibrations of a buckled beam, that for low buckling

can be effectively described by a one-degree-of-freedom

model [20,21]. It is worth noting, that the considered

bi-stable nonlinear configuration can be obtained using

other physical approaches, as it was done, for example,

in [22], where a set of magnets was used.

The present study continues the research on the

BNES with a compact design that was introduced in

[1]. The primary goal is to investigate the supposed Tar-

geted Energy Transfer responsible for the apparent at-

tenuation provided by the absorber. An important issue

of this description is to address the real-life compact de-

sign, which allowed low amplitude vibration mitigation

at relatively high frequencies during the experiments.

To achieve this goal the study was organized in two

parts: the first one aimed at the internal BNES dynam-

ics, while the second one aimed at the Targeted Energy

Transfer between the BNES and a linear system.

As it will be shown, the imposed compactness of the

BNES design requires incorporation of multiple para-

metric constraints which makes its rigorous description

rather complex. Even though the proposed description

of the BNES inner dynamics was simplified at every

step, the complexity of the obtained model still does

not allow analytical treatment. To compensate this flaw

the paper offers some experimental and numerical in-

sights on the underlying physics to allow some parallels

with the 1DOF bi-stable NES described in [16]-[18].

The article is split into five sections. The first sec-

tion presents the BNES design and, based on an ana-

lytic model, gives an estimation of its linear resonances

which can be observed for low-amplitude vibrations.

The second section addresses a more complex prob-

lem of nonlinear vibrations and, using the Ritz-Galerkin

discretization, introduces a numerical model which de-

scribes the complete behavior of the damper. The third

section of the article is devoted to the experimental

validation of both parts of the model and discusses the

main issues for the BNES realization. The fourth sec-

tion presents the experimental observations of the TET

when coupling the BNES to a simple linear system,

showing its global efficiency and possible underlying

mechanisms; the last part addresses the same issues but

based on the results of corresponding simulations. The

conclusion of the article provides a summary of the re-

sults and the discussion on global damper performance

and presents its possible advantages and disadvantages.
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Fig. 1 The scheme of the BNES. The absorber is composed

of a thin steel beam with an attached concentrated mass.

The edges of a the beam are clamped by the absorber sup-

port. Giving the beam an initial deformation before clamping

its edges a buckled configuration is obtained. The buckling

provides a configuration possessing an essential geometrical

nonlinearity and two stable equilibrium positions.

2 Simulation of the absorber dynamics

The BNES design concept first proposed in [1] is based

on the use of the geometric nonlinearity of a buckled

beam (see the scheme in Fig. 1) and incorporation of

a concentrated mass which allows a better control on

the effective mass of the system. For this system, the

simplest description can be given by a modified Euler-

Bernoulli equation which accounts for the added mass

using an additional Dirac delta-term in the mass distri-

bution:

(m+ M̂δ(x̂− x̂0))
∂2ŵ

∂t̂2
+ EI

∂4ŵ

∂x̂4
+ P̂

∂2ŵ

∂x̂2
+ ĉ

∂ŵ

∂t̂

−EA

2l

∂2ŵ

∂x̂2

∫ l

0

(

∂ŵ

∂x̂

)2

dx̂ = F̂ (x̂, t̂), (1)

with the boundary conditions of a clamped-clamped

beam

ŵ = 0 and
∂ŵ

∂x̂
= 0 at x̂ = 0 and x̂ = l. (2)

Here m is the mass per unit length of the beam, ŵ(x̂, t̂)

is the transverse displacement of the beam at position

x̂ at time t̂, E is the Young’s modulus of the beam, A

and I are the area and the moment of inertia of the

cross section, respectively, l is the length of the non-

deformed beam, P̂ is the axial load, ĉ is the viscous

damping coefficient, F̂ (x̂, t̂) is the external force, M̂ is

the added mass and x̂0 is the point of its attachment.

As it is supposed by the Euler-Bernoulli beam the-

ory, this approach is suitable only when considering suf-

ficiently thin beams, e.g. when the corresponding non-

dimensional parameter (inverse of share slenderness)

stays small so that:

EI

l2AG
≪ 1 (3)

where G is the shear modulus of the beam material (see

[23]); in the case of the proposed BNES this parameter

lays in the range of 10−7 − 10−5. Under this condi-

tion the Euler-Bernoulli model stays equivalent to the

Timoshenko model which takes into account the shear

deformations.

As it can be seen from Eq. (1), the model supposes

that the BNES is a subject to viscous damping. In re-

ality, this approximation is false, as the dissipation is

brought not only by the beam itself, but also by its

support, by interaction with the surrounding air and

probably by the glue that attaches the mass. Moreover,

as the dynamics of the BNES is essentially nonlinear
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during its snap-through vibrations the used damping

should probably account for the damping of all its vi-

brational modes. However, a thorough account for all

these effects would lead to an enormous complexifica-

tion of our approximate model. Thus it was decided to

oversimplify the damping mechanism and to compen-

sate for this partially by deducing the damping coeffi-

cient directly from the experiment data for low ampli-

tude vibrations of the BNES.

In order to create a simple numerical model for the

BNES dynamics description it was chosen to employ

the Ritz-Galerkin discretization of the Eq. 1 using the

linear modal shapes as the functional basis. While Ritz-

Galerkin method is not an optimal way to describe

the absorber (Harmonic Balance Method, for example,

would provide a much better description), it is appears

as best suited for the description of the energy exchange

between BNES and a coupled primary system.

3 Linear vibration modes of the absorber

The first step to obtain the linear modes is to rewrite

Eqs. (1) and (2) using the non-dimensional variables

(see [1])

x =
x̂

l
, x0 =

x̂0

l
, w =

ŵ

r
, t = t̂

√

EI

ml4
, Ω = Ω̂

√

ml4

EI
,

M =
M̂

ml
, (4)

where r =
√

I/A is the gyration radius of the beam

cross section. Denoting the non dimensional time and

space coordinate derivatives by dot and prime respec-

tively we obtain

(1 +Mδ(x− x0))ẅ + w′′′′ + Pw′′

−1

2
w′′

∫ 1

0

w′2dx = −cẇ + F (x, t), (5)

with w = 0 and w′ = 0 at x = 0 and x = 1 and the new

non-dimensional quantities

P =
P̂ l2

EI
, c =

ĉl2√
mEI

, F =
F̂ l4

rEI
.

It is easy to define the shape of the beam’s static de-

formation, since in our approximation there is no effect

of additional constraints due the added mass. Dropping

the dynamic terms we get:

w′′′′ + Pw′′ − 1

2
w′′

∫ 1

0

w′2dx = 0. (6)

The solutions of this equation subjected to correspond-

ing boundary conditions are

ws1 (x) = 0, (7)

wn
s2
(x) =

b

2
(1− cos 2πnx) , n ∈ {1, 2, 3, · · ·}, (8)

wk
s3
(x) = a

(

sin kx− k

2
cos kx− kx+

k

2

)

, (9)

where tank/2 = k/2. Here ws1(x) is the trivial solu-

tion, while wn
s2
(x) and wk

s3
(x) are the symmetric and

the anti-symmetric buckled configurations, respectively.

The beam stable equilibrium positions are defined by

the symmetric solution with n = 1.
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The equilibrium buckling level gives us a useful re-

lation between the unknown in our case axial load P̂

and the measurable mid-span deflection b̂ = rb:

P̂ =
Eπ2

4l2

(

16I +Ab̂2
)

. (10)

Taking into account that the linear vibrations occur

around one of the equilibrium positions, it is convenient

to change the reference position to one of them

w(x, t) =
b

2
(1− cos 2πx) + v(x, t). (11)

Using Eq. (11) and eliminating P in favor of non-

dimensional mid-span deflection b, Eq. (5) can be rewrit-

ten as

(1 +Mδ(x− x0))v̈ + v′′′′ + 4π2v′′

−2π3b2 cos 2πx

∫

1

0

v′ sin 2πxdx

= bπ2 cos 2πx

∫ 1

0

v′2dx+ bπv′′
∫ 1

0

v′ sin 2πxdx

+
v′

2

∫

1

0

v′′2dx− cv̇ + F (x, t), (12)

with v = 0 and v′ = 0 at x = 0 and x = 1.

When considering low amplitude vibrations around

the equilibrium position, the first three terms in the

right hand side of Eq. (12) can be neglected. We can fur-

ther drop the damping and the forcing terms to search

the solutions of these linear vibration v(x, t) in the har-

monic form v(x, t) = φ(x)eiωt. This way we will be left

only with the left hand side of Eq. (12) that will be

rewritten in the form:

−(1 +Mδ(x− x0))ω
2φ+ φ′′′′ + 4π2φ′′

−2b2π3 cos 2πx

∫

1

0

φ′ sin 2πxdx = 0, (13)

where φ = 0 and φ′ = 0 at x = 0 and x = 1.

The general solution of this equation at the limit of

M = 0 is already known:

φ0(x) = α sinλ1x+ β cosλ1x

+γ sinhλ2x+ η coshλ2x+ ζ cos 2πx. (14)

where

λ1 =

√

2π2 +
√

ω2 + 4π4,

λ2 =

√

−2π2 +
√

ω2 + 4π4. (15)

α, β, γ, η and ζ are to be determined using the bound-

ary conditions. It is easy to see that when M 6= 0, the

only term that can cancel the δ-function is the fourth

derivative of φ with respect to x. Thus the solution can

be found as a combination of two functions that de-

scribe separately the two parts of the beam divided by

the point-like mass satisfying the Eq. (13)

φ1(x) = α1 sinλ1x+ β1 cosλ1x.

+γ1 sinhλ2x+ η1 coshλ2x+ ζ1 cos 2πx.

φ2(x) = α2 sinλ1x+ β2 cosλ1x

+γ2 sinhλ2x+ η2 coshλ2x+ ζ2 cos 2πx. (16)

with the corresponding boundary conditions:

φ1(0) = 0, φ′

1(0) = 0, φ2(1) = 0, φ′

2(1) = 0, (17)

φ1(x0) = φ2(x0), φ′

1(x0) = φ′

2(x0), (18)

φ′′′

2 (x0)− φ′′′

1 (x0) = Mω2φ1(x0). (19)
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Here the conditions (18) represent the fact that the dis-

placement and the velocity should be continuous func-

tions of x, while the condition (19) assures that φ′′′′ will

produce the delta function that will cancel the one in

the mass term. To skip simple but lengthy calculations,

we can notice that the term that produces the required

singularity have to be of the form c1 sinλ1‖x − x0‖ +

c2 sinhλ2‖x− x0‖. The solution will take the form :

Φ(x) = φ0(x)+c1 sinλ1‖x−x0‖+c2 sinhλ2‖x−x0‖.(20)

where φ0(x) is a part of the solution that has the same

form as (14). Using conditions (18) and (19) we deter-

mine the unknown coefficients c1 and c2:

Φ(x) = φ0(x) + φ0(x0)∆(ω, x, x0), (21)

with

∆(ω, x, x0) =
ω2M

4
√
ω2 + 4π4

(

− 1

λ1

sinλ1‖x− x0‖+
1

λ2

sinhλ2‖x− x0‖
)

.

Inserting Eq. (21) into (13) together with the boundary

conditions (17) will define the resonances frequencies of

the linear modes Φi(x), which will correspond to the

zeros of the corresponding determinant. A similar so-

lution for an unbuckled simple clamped-clamped beam

with an attached point-like masses was obtained for the

Timoshenko beam in [24].

Defining the scalar product in the space of solutions

as

(f, g) =

∫ 1

0

f(x) (1 +Mδ(x− x0)) g(x)dx, (22)

Fig. 2 The dependence of the non-dimensional frequency

on the non-dimensional mid-span deflection for the first five

modes of the system in case of M = 3.87, x0 = 0.32.

the last unknown coefficient, representing the ampli-

tude of the mode, of the solution (21) will be defined

by setting

(Φα, Φβ) =

∫ 1

0

Φα(x) (1 +Mδ(x− x0))Φβ(x)dx

= δαβ . (23)

The four boundary conditions for Eq. 21 and the

Eq. 13 give together 5 equations on the coefficients for

the solutions which represent the linear modes of vibra-

tions around the equilibrium position.

Using these results it is possible to perform the ba-

sic parametric study of the linear vibration modes of

the system. For the non-dimensional problem the space

of parameters is reduced to three basic ones: M , x0 and

b. First of all, same as in the case of simple clamped-

clamped buckled beams, it was seen that with the rise

of buckling b the frequencies of modes become less de-

pendent on this parameter. In Fig. 2 an example of

the dependence of the mode frequencies on the varying

mid-span deflection is presented.
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(a)

(b)

Fig. 3 The dependence of the frequencies of the first two

linear modes of the system (a and b respectively) on M and

x0 in case of b = 322.

When considering the dependence on M and x0 the

modes show a stronger sensitivity, especially in case of

x0. In Fig. 3 the 3D plots of the frequency dependence

are presented. As it can be seen from the shown exam-

ple, even a small displacement of the mass placed in

the central part of the beam can significantly change

the frequency of its linear modes.

4 Numerical model of the absorber

When describing the high amplitude vibrations of the

beam it is required to take into account all the non-

linear terms thus the Ritz-Galerkin discretization has

to be performed for the complete Eq. (12). However, it

is better to carry out the calculations directly for the

Eq. (5) instead of Eq. (12), as it will assure the sym-

metry conservation for the two equilibrium positions.

Supposing that v(x, t) can be written as

v(x, t) =

Nabs
∑

i=1

φi(x)qi(t) (24)

where Nabs is the size of the basis used for the dis-

cretization and φi(x) - are the linear modes obtained

earlier, from (5) the following equation can be obtained

(1 +Mδ(x− x0))

Nabs
∑

i=1

φiq̈i +

Nabs
∑

i=1

φ′′′′

i qi + P

Nabs
∑

i=1

φ′′

i qi

−1

2

Nabs
∑

i=1

φ′′

i qi

∫

1

0

(

Nabs
∑

i=1

φ′

iqi

)2

dx

= −c

Nabs
∑

i=1

φiq̇i + F (x, t). (25)

Multiplying Eq. (25) with φk(x), integrating it over the

space domain and using the boundary conditions to

rewrite the expressions with space derivatives we ob-

tain Nabs equations:

q̈k +

Nabs
∑

i=1

Skiqi − P

Nabs
∑

i=1

Hkiqi

+
1

2

Nabs
∑

i,j,m=1

Hkiqi (qjHjmqm)

= −cΦkiq̇i + Fk, k = 1 · · ·Nabs (26)
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with the definitions Ski =
∫

1

0
φ′′

kφ
′′

i dx,Hki =
∫

1

0
φ′

kφ
′

idx,

Φki =
∫ 1

0
φkφidx and Fk =

∫ 1

0
φkF (x, t)dx. For the sim-

ulation purposes it is convenient to diagonalize the H

matrix using orthogonal transformations in the space of

q coordinates qi =
∑Nabs

m=1
O−1

imXm such that, if the Aj

are some positive real,
∑Nabs

k,i=1
O−1

jk HkiOim =
√

8Ajδjm,

that will finally provide a form

Ẍi − 2

Nabs
∑

k=1

BikXk + 4
√

AiXi

Nabs
∑

k=1

√

Ak(Xk)
2

= −
Nabs
∑

k=1

CikẊk + F̃i, (27)

where

Bik =
1

2

Nabs
∑

n,m=1

Oin(PHnm − Snm)O−1

mk,

Cik =
c

2

Nabs
∑

n,m=1

OinΦnmO−1

mk,

F̃i =

Nabs
∑

n=1

OinFn.

From (27) we see that the multi-mode description

of the system has a form that is very similar to that of

the 1DOF example, ẍ − bx+ ax3 = −cẋ+ f , with the

change of x to a N-dimensional vector X, and constant

coefficients
√
a, b and c to their matrix counterparts

√
Aδ, B and C.

At this point it is crucial to identify the number of

modes that has to be taken into account for a given ab-

sorber design. First of all, as it is seen from Eq. (5), the

shape of the equilibrium position was not imposed, thus

the size of the model basis should allow the model to

find this static solution using the dynamic mode shapes.

Secondly, the model should include the proper descrip-

tion of the saddle point as the corresponding energy

and deformation will define the change of the equilib-

rium position for the BNES. From this point of view, it

is important to address the critical loads of the beam,

which define the shape of the saddle point and the cor-

responding energy barrier.

To proceed further it is necessary to address the

range of BNES parameters under consideration. As it

is seen from Fig. 2, even when working with a mass at-

tached so that the precision on its placement and value

is less important, the mid-span deflection (the parame-

ter that is rather difficult to control for light (thin) and

long beams) plays an important role, especially for a

low-value region. Thus it is better to work with b > 4h

(h being the beam width), as to be able to predict at

least the frequencies of the first two linear modes. More-

over it is better to increase the buckling even further,

as to account for a pres-tress that usually exists in the

beam: a higher buckling will decrease its effect on the

absorber dynamics.

Fig. 4 displays the non-dimensional load as a func-

tion of the observed mid-span deflection indicating the

critical loads of static solutions. As it is seen from Fig. 4,

for a realistic mid-span deflection b = 10 h there exist 16

possible static solutions.While w1
s2

still corresponds to
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Fig. 4 The non-dimensional load as the function of the ob-

served mid-span deflection (solid line); the mid-span deflec-

tion is traced in the units of beam width. The thin and the

dashed horizontal lines represent the critical loads for two

families of solutions wn
s2
(x) and wk

s3
(x) respectively.

the globally stable equilibrium position, the existence

of the other ones affects the snap-through motion: the

potential energy of the unique trivial saddle point of

the case when P cr
1

< P < P cr
2
, ws1(x), is too high to

be considered as the saddle point ”responsible” for the

change of the equilibrium position. To illustrate this we

trace the potential energy of the first few static solu-

tions as a function of the mid-span deflection in Fig. 5.

We see that for the considered buckling levels the

saddle point with the lowest potential barrier corre-

sponds to the first anti-symmetric static solution w1
s3
,

thus it is essential that the obtained Ritz-Galerkin model

could properly describe it as, otherwise, the energy re-

quired for the equilibrium change will be highly overes-

timated.

Fig. 5 The potential barrier, ∆E = E(w) − E(w1

s2
(x)), for

the first two unstable anti-symmetric static solutions w1

s3
and

w2

s3
(solid line and dashed line with small spacement respec-

tively), the second symmetric solution w2

s2
(x) (dashed line

with larger spacement) and the trivial solution ws1
(x) (thin

solid).

To illustrate this issue from the numerical point of

view it is useful to look on the dependence of static

mode potential energies, observed in the numerical model,

on the number of modes taken into accountNabs: as the

corresponding energies depend on the precision with

which the static modes are described with the basis of

the dynamic modes, these energies as well as there ra-

tios will also depend on Nabs. Fig. 6 shows this depen-

dence for one particular configuration. As it can be seen

from the Fig. 6 , when taking Nabs < 30, the descrip-

tion of the w1
s3

stable equilibrium (dot-dashed curve) is

still overestimated (compare with the thin solid straight

line, that is predicted analytically) while the descrip-

tion of the saddle point w1

s2
(x) (dotted straight line)

has already converged. This difference brought by the

discretization creates a situation where the global mini-

mum of the potential energy for a given Nabs (traced by
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Fig. 6 The potential energy of the bistable absorber de-

scribed by the model as a function of Nabs (0 corresponds to

the potential energy of the trivial deflection). The thin solid

straight line corresponds to the equilibrium state ws2
(x, 1)

calculated analytically, dot-dashed line corresponds to the po-

tential energy of the ws2
(x, 1) projected on the basis of the

dynamical mode shapes, dotted straight line corresponds to

the potential energy of the w1
s3

projected on the same basis,

thick solid line shows the absolute minimum of the potential

energy of the model for given Nabs. The results are obtained

for b = 112, M = 4.43, x0 = 0.33.

a thick solid curve) corresponds to the saddle point of

the complete system (dotted line). Hence for the model

withNabs < 30 due to a low precision in the description,

the real saddle point becomes the stable equilibrium of

the reduced system, while the deformation that is close

to the real stable equilibrium becomes a saddle point of

the reduced system thus providing a completely wrong

description of the BNES.

Moreover, even though for Nabs > 30 the stable

equilibrium w1
s3

projected on the basis of the reduced

problem becomes the global minimum for the reduced

system, it needs at least 15-25 more modes for the en-

ergy to converge to its real value (thin solid straight

line obtained by the analytic calculations).

The final requirement for the model concerns the

precision on the frequencies of the linear vibrations around

the equilibrium position obtained in the numerical model

when compared to the analytic calculations. This com-

parison will indicate how precise the model is for the

low amplitude oscillations for the given Nabs. The re-

quired Nabs usually varies from 40 to 60, thus the vari-

ety of tools for the treatment of the problem becomes

extremely limited, containing only the basic numerical

tools such as time integration schemes.

5 Experimental validation of the model

To test the prediction capability of the proposed model

a test configuration of the absorber was created (see

Figs. 1 and 7 and the captions below). The attached

mass was placed at x0 = 0.33, in a zone where the

precision on its placement is less important. The mass

itself was made of two small blocks of tungsten and

allowed to work closer to a point-like mass approxi-

mation. The buckling level was raised so that to be

sure that the linear mode frequencies no longer depend

on the b parameter. The precise parameter values of

the BNES can be found in the captions to Fig. 7. In

order to study the forced response of the absorber it

was mounted on a shaker (see Fig. 8). Two non-contact
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displacement lasers traced the absorber beam displace-

ment, while the third laser measured the displacement

of the BNES support. A non-contact laser vibrometer

was used to measure the velocity of the absorber’s sup-

port.

Fig. 7 Photograph of the absorber used to test the model.

The parameters of the BNES were the following: the pro-

portions of the free part of the beam are 104mm × 5mm ×

0.105mm, added mass - 2 blocks of tungsten 8mm ×

3.29mm×1.95mm (0.96 g each), mass position - 33mm, mid-

span buckling - 1.06 cm. In the model these parameters cor-

respond to non-dimensional parameters b = 112, M = 4.43,

x0 = 0.33.

Fig. 8 The bistable absorber mounted on a shaker. The cen-

ter of the of the support is used as a point of attachment.

5.1 Linear vibrations

The first stage of the test was aimed on the study of

linear dynamics. In this case the two equilibrium po-

sitions were studied separately with the use of white

noise excitation. Using the transfer functions for the

beam displacements (the support velocity as the refer-

ence), the first two modes of the absorber predicted at

27Hz and 143Hz were studied. The frequency response

functions in case of both equilibrium positions as well as

the theoretical prediction for the resonance frequencies

are shown in Fig. 9.

The table (1) shows a comparison of the linear fre-

quencies measured, calculated analytically and obtained

in the model when using Nabs = 60.

Fig. 9 The frequency response of the absorber obtained ex-

perimentally for a white noise excitation provided by the

shaker. The black and the grey lines correspond to the first

and the second equilibrium positions, respectively. The grey

vertical lines indicate the mode frequencies predicted by the

model. The two smaller plots zoom the linear response around

the first and the second vibration modes.
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Mode number 1 2 3 4

Experiment, Hz 26.1-28.3 133-147 - -

Analytical, Hz 27.70 143.87 354.97 508.20

Numerical, Hz 25.58 138.53 349.24 501.6 4

Difference, % 7.65 3.71 1.61 1.29

Mode number 5 6 7 -

Experiment, Hz - - - -

Analytical, Hz 870.63 987.17 1398.4 -

Numerical, Hz 863.34 980.55 1391.4 -

Difference, % 0.83 0.67 0.49 -

Table 1 The frequencies of the BSA linear modes measured

(”Experiment”), calculated analytically (”Analytical”) and

obtained by the numerical model (”Numerical”), as well as

the relative error of the numerical description when compared

to analytical prediction.

As it can be seen, the asymmetry between the equi-

librium positions results in the difference of 7% for the

frequencies of the first mode and of 9% for the frequen-

cies of the second mode. Moreover, for one of the equi-

librium positions an additional resonance was observed

at 125Hz. This resonance was found to be a rotational

mode of the absorber, that could not be predicted by

the model. Overall, the theoretically predicted frequen-

cies have shown a good correspondence with the obser-

vations, giving a satisfying precision when compared to

the one accessible in the experiment.

The mode shapes, depicted in Fig. 10 were in good

qualitative correspondence with the observations per-

formed with non-contact laser probes (observed by a

Fig. 10 The calculated shapes of the first and the second

linear modes of the absorber vibrations around its equilibrium

position (solid and dashed respectively).

comparison of the nodes and the maximums of vibra-

tion).

The damping ratios of the absorber resonances were

identified as 0.23% for the the first resonance and 0.15%

for the second resonance (obtained as the parameters

of the best fitting linear response for the experimental

measurements). Since the damping is the free param-

eter of our model it was extracted from the first res-

onance of the absorber and injected into the complete

numerical model.

5.2 Nonlinear vibrations

The second stage was carried out to study the nonlinear

response of the BNES. We opted for the monochromatic

excitation for the characterization of the absorber’s re-

sponse. The excitation was applied in a consequent way:

for every measurement the shaker was providing the

monochromatic forcing of a constant amplitude, while

the changes of the excitation amplitude and frequency
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from one measurement to another allowed to create a

map of the absorber response. Every measurement con-

sisted of 20 seconds of excitation followed by 15 seconds

of free vibrations of the absorber. The RMS of the ab-

sorber displacement during the last 10 seconds of forced

vibrations divided by the amplitude of the excitation

was used to visualize its dynamics.

A similar experiment was simulated using the pre-

sented numerical model of the absorber and a time inte-

gration scheme provided by the adaptive package ND-

Solve of Wolfram Mathematica [25].

The simulated absorber response map is shown in

Fig. 11 back to back with the map obtained experimen-

tally. As it can be seen, we did not simulate the whole

map of the response, stopping shortly after discover-

ing the chaotic regime. The time integration scheme

of NDSolve package of Mathematica was very time-

consuming in the case where the absorber changes its

equilibrium position (more than 40 minutes for one

3.5GHz machine core for every simulation due to the

high stiffness of the system). Since the exact dynamics

description in this case was of no interest the simula-

tion proceeded with the search of the border between

the in-well and cross-well dynamics. For this purpose a

relatively fast simulation that identified the border was

performed. The summary of this simulation is compared

with the experimental data in Fig. 12. The curves plot-

(a)

(b)

Fig. 11 The response maps obtained experimentally (a) and

via simulation (b). The R function was defined as R =

20 log
10

Xabs/Vshaker , where Xabs is the absorber displace-

ment, while Vshaker is the velocity of its support during the

excitation.

ted in Fig. 12 obtained during the simulation separate

two regions: lower, where there is no equilibrium change

for the absorber, and the upper one where there is a

cross well dynamics (thus obtaining a curve similar to

the one provided by the Melnikov analysis for a 1DOF

bi-stable absorber that can be found, for example, in
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Fig. 12 The summary that illustrates the equilibrium

changes during the experiment and the simulation. Every dot

correspond to a measurement with a given frequency and ac-

celeration of the excitation provided by the shaker. If the

absorber stays around the first (second) equilibrium position

then the measurement is depicted by a small black (grey)

point. If during the measurement the absorber changed its

equilibrium position, then the measurement is depicted by

a big black point. The plotted curves, obtained by the sim-

ulation of the BNES dynamics, separate two regions: lower,

where there is no equilibrium change for the absorber, and the

upper one where there is a cross well dynamics. The dashed

curve supposes an immediate application of the force, while

the solid curve accounts for the linear rise of the force pro-

vided by the shaker during the first 0.5 seconds.

[19]). The difference between the two simulated curves

is due to different excitation profile during the first 0.5

seconds of the excitation. The dashed curve was calcu-

lated in case of an immediate application of the force,

while the solid curve took into account the linear rise

of the force provided by the shaker during the first 0.5

seconds. As it can be seen, even though these 0.5 sec-

ond is a comparatively small period of time, the proper

description of the transient dynamics is very important

when looking for the cross-well dynamics.

Of course, the simulation could not describe all the

features of the BNES dynamics, since the model sup-

poses that the two equilibrium positions are completely

identical. This obstacle cannot be overcome without a

proper description of the asymmetry that arises from

the imperfect boundary conditions and the pre-stress

that exists in the absorber beam. Beside these observed

differences, it can be noted that the results of numerical

simulation were in a good accordance with the observed

absorber dynamics.

6 Experimental study of TET

To study the targeted energy transfer, the absorber,

introduced in section 5 was coupled to a simple lin-

ear system represented by a cantilever beam (see the

scheme in Fig. 13 and the photo of the actual set-up in

Fig. 14). The absorber was mounted on a free part of

the beam with the help of its 3D-printed plastic support

(see the photo of the experimental setup). The second

edge of the beam was rigidly clamped by a vise. The free

part of the steel beam (E = 200GPa, ρ = 7621 kg/m3)

possessed a length of 34.5 cm (24mm× 5mm in cross-

section) and a mass of m0 = 315 g. The absorber sup-

port with total mass of 25 g was attached to the beam

in 6.5 cm from the beam free edge. A shaker, put in con-
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Fig. 13 The scheme of the experimental setup for the mea-

surements with a steel beam as a primary system.

Fig. 14 The setup of the experiments.

tact with the beam in 5 cm from the opposite clamped

edge, provided the excitation of the beam vibrations.

The dynamics of the system was traced with non-

contact laser sensors: one displacement laser pointed

on the mass attached to the absorber beam, another

displacement laser measured the displacement of the

support at the point of its attachment to the beam while

a non-contact laser vibrometer measured the velocity of

the absorber support.

The first mode of the complete system with the

blocked absorber (Fig. 15) was measured at 34.4Hz

(damping ratio of ν = 0.2%) being well separated from

Fig. 15 First three modes of the beam. The red point de-

notes the point of the forcing application, while the black

point shows the point of the absorber attachment.

the higher modes (second mode observed at 230Hz).

This first mode, chosen to represent the 1DOF system,

was slightly higher in frequency than the first BNES

mode and well separated from the higher BNES modes

(second BNES mode observed in the region of 150Hz).

These gaps in frequencies assured that the behavior of

the considered system is close to the one, composed of

the BNES coupled to the 1DOF system.

When addressing the effective 1DOF representation

of the beam, the mode shape of its first mode provided

the effective modal mass of 86 g that corresponds to the

mass ratio between the effective mass of the absorber

and the modal mass of the beam µ = 2.4%.

The absorber support allowed to change easily the

buckling level without affecting the other parameters,

such as length and attached mass position. The set

of experimental measurements was performed for four

different configurations of buckling b: 5.3 mm, 3.4mm,

2.1mm and 1.4mm. For each of these configurations of

the absorber the linear frequencies were measured using
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the response to a low amplitude white noise excitation

provided by a shaker.

To study the nonlinear system dynamics of the sys-

tem, the vibrations of the beam were excited with a

monochromatic constant amplitude excitation. The ex-

citation frequency varied around the first linear mode

of the system (from 25Hz to 36Hz applying a step

of 0.1Hz). The complete measurement was 25 seconds

long: the first 10 seconds were used to allow a proper

decay of the transients, while the last 10 recorded sec-

onds were used for the dynamics analysis. The response

of the primary system was characterized by a global pa-

rameter

R = 20 log10 VRMS/TRMS ,

where VRMS is the root mean square of the velocity of

the beam measured by the vibrometer and TRMS is a

root mean square of the voltage sent on the shaker.

The choice of the BNES configurations which dif-

fered only in their buckling level was based on two as-

pects. First of all, this changes of buckling allowed to

explore the effect of the change of the triggering thresh-

olds for the TET, as they changed the potential energy

barrier between the two equilibrium positions of the ab-

sorber. This second aspect laid in the range of the cho-

sen values: for relatively high buckling levels (more than

3 times the thickness of the BNES beam) the change

of the buckling value did not affect the frequencies of

the BNES first modes. Thus, while possessing different

triggering thresholds for the TET, the obtained con-

figurations of the BNES were very close in their linear

properties. Even though, the experiments showed that

the change of the buckling did slightly change the lin-

ear frequencies of the absorber, this effect is negligible

when comparing the performance of the configurations.

The underlying linear system corresponding to the

beam with blocked absorber was the same for all 4 ex-

periments, so its complete response map was measured

only once. The resulting ridge surface is presented in

Fig. 16. As it can be seen, even for a case of blocked

absorber the system showed a small stiffening nonlin-

earity. This effect starts to be pronounced when the

reference voltage rises to 1.3V, resulting in a 2dB de-

crease of the vibration response when compared to the

one expected for a linear system. This was the major

limitation that did not allow a proper observation of

the higher limit of effective attenuation zone in case of

a previous experimental study presented in [1].

As it was mentioned before, the results of the ex-

periments are presented in two steps: first of all global

attenuation performance of the configurations is pre-

sented; further, a more detailed illustration of the sys-

tem dynamics is provided using the recorded signals.
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Fig. 16 The experimental response map of the beam with

a blocked BNES. Every mesh line denotes a change of the

response level by 5 dB.

6.1 The attenuation performance of the absorbers

The first tested configuration was the BNES configu-

ration with b = 5.3mm (the one used to validate the

BNES numerical model). The equilibrium position that

corresponded to the first linear frequency of 28.2Hz was

chosen as a departure position for the absorber. To cre-

ate the response map, the amplitude was changed from

in a range of 0.1V to 2.1V (depending on the amplitude

of the beam vibrations), while for every given excitation

amplitude the frequency was changed step by step from

lower to higher values. The equilibrium position was

fixed only in the beginning of the set of measurements,

thus the final position of the absorber in measurement

n was defining the starting position for the measure-

ment n + 1. The response map and the corresponding

ridge curve (created as a line of highest system’s re-

sponse for each amplitude of excitation) are shown in

Fig. 17 (a). As it can be seen from the plots, the higher

limit of the attenuation zone was not measured as it

corresponded to the beam dynamics that was nonlin-

ear even with a blocked absorber, thus wouldn’t have

a representative reference. The ridge curve shows that

even at low excitation level the absorber is responsible

for the attenuation of 2 dB. This effect can be explained

as a regime where the BNES acts as a non-tuned TMD

coupled to a poorly damped system (note the charac-

teristic drop in the vibration level and an emergence of

an additional peak around 28Hz in Fig. 17 (a) at low

amplitudes of vibrations).

To obtain the other three configurations the buck-

ling level of the absorber beam was consequently changed

to lower values. The table (2) lists the buckling levels b

along with the measured values for the first linear reso-

nance frequency (two values corresponding to two equi-

librium positions). It is very important to highlight the

fact that the change of the buckling was acting in a very

asymmetrical way on the two equilibrium positions of

the absorber: while the one that possessed higher reso-

nance frequency was roughly stable, the second one was

varying a lot without any particular pattern. This cor-

responds well to the assumption that the asymmetry in

the boundary conditions affects mainly one of the po-
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tential wells making it ”softer” thus more vulnerable to

other existing effects such as mass gluing imperfections

and prestress in the absorber beam.

Configuration a b c d

Mean buckling level b, mm 5.3 3.4 2.1 1.4

I equilibrium, Hz 28.2 28.4 27.8 31.0

II equilibrium, Hz 26.0 21.7 15.08 20.7

Table 2 The buckling levels for the BNES configurations

with the corresponding frequencies of the first linear mode

for both equilibrium positions.

In order to obtain more stable measurements, the

first equilibrium position was used as the departure

point for the whole set of experiments, thus the afore-

mentioned effects could change only the nonlinear re-

gion of dynamics where the absorber changes its equi-

librium position. Figs. 17 (b), (c) and (d) present the

measurements for these three configurations with lower

buckling. From the ridge curves, it is clear that the

decrease of the buckling shifts the attenuation regions

towards lower amplitudes. However, the range of the

amplitudes in which the provided attenuation is effec-

tive shrinks proportional. This effect is rather general

and was previously observed for other types of NESs

[11].

6.2 Mechanisms of the energy transfer

To illustrate the mechanism of the energy transfer; the

time series for the system dynamics were addressed.

The three measurements that were chosen to represent

different mechanisms of the energy transfer are denoted

respectively by the black point in Fig. 17 (a), the grey

point and the grey point with a black center in Fig. 17

(c).

The first showcase measurement, denoted by a black

point in Fig. 17 (a) illustrates the low energy nonlin-

ear behavior of the coupled system. The correspond-

ing velocity of the beam and the BNES displacement

are shown in Fig. 18. As it is seen from the signals,

two types of types of motion are mixed in the mea-

surements: the nonlinear beats with the absorber os-

cillating in one of the potential wells (zone I) and the

snap-through dynamics of the absorber which are more

frequent during the transients (zone II).

In the first regime the absorber vibrates nonlinearly

extracting the energy from the primary system due to

the 1:2 internal resonance in the system, so that the

resonance frequency of the beam f0 is two times bigger

than the instantaneous frequency of the absorber vi-

brations fNES (see the wavelet analysis in Fig. 19 (a)).

Theoretically, this secondary internal resonance could

lead to the energy pumping with a Strongly Modu-
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(a) (b)

(c) (d)

Fig. 17 The experimental ridge surfaces and the ridge curves of the beam dynamics when attached to the absorbers in

configurations a,b,c and d (a,b,c and d pictures respectively). The mesh lines on the 3D plots are the same as in Fig. 16, while

the ridge curves are showing the provided attenuation when compared to the response of the system with the blocked absorber.
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(a) The velocity of the beam.

(b) The absorber displacement.

Fig. 18 The response of the system for the measurement

denoted by a black point on the experimental response map 17

(a) (0.7V and 34.5Hz for the excitation).

lated Response, however, the observations presented in

Fig. 20 show that the modulations are relatively small

and the motion is closer to Weakly Modulated Reso-

nance (WMR), that is a limit case where the param-

eters of the system are slightly out of the appropriate

range for SMR dynamics.

In many cases, this first regime of nonlinear beats

was mixed with snap-through jumps. For lower ampli-

tudes of the excitation these jumps could be associated

to the transient dynamics, but with the rise of the am-

plitude, they were becoming more frequent similarly to

the case of chaotic vibrations of a 1DOF BNES de-

scribed earlier in [16]-[18]. The observed mix of chaotic

and in-well resonant responses of the BNES is very in-

teresting as it may signify that there is a way to employ

this feature in order to perform the Targeted Energy

Transfer similar to that observed in [10]

As it can be seen from the wavelet analysis presented

in Fig. 19 (b) of zone II, if the jumps become more fre-

quent, the wavelet analysis for the BNES displacement

becomes almost useless, as the periods of in-well vibra-

tions are too short and have a much lower amplitude of

vibrations when compared to the snap-through motion.

Another regime that was observed for all four con-

figurations is illustrated by Figs. 21 (a-c). This regime,

denoted by the gray point with a black center, also

mixes modulated and a chaotic dynamics of the ab-

sorber, but in a different manner: the non-regular vi-

brations of the absorber around the two equilibrium

positions are mixed with its more regular snap-through

vibrations with the frequency close to the one of the pri-

mary system (1:1 internal resonance). The short periods

of this synchronization between the BNES vibrations

and the vibrations of the primary system correspond a

very effective attenuation performance provided by the

BNES. In this case the system dynamics can be associ-

ated with the CSMR similar to the vibro-impact NES

[9]. While the authors cannot provide a clear theoretical

proof that the observed motion is linked to CSMR the

signal profiles suggest that it is a most probable expla-

nation: the BNES vibrations a mostly non-regular in-
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/cross-well vibrations with some irregular bursts which

are responsible for the attenuation; the modulations of

the primary system vibrations (with high variations in

amplitude and length) are also closer to those observed

for the vibro-impact NES than those of a cubic one.

It is important to stress that in the described cases

the vibration modes of the absorber for the aforemen-

tioned 1:2 and 1:1 resonances are completely different

thus cannot be described by the 1DOF model.

The grey point in Fig. 17 (c) shows the third regime

that is responsible for the reappearance of the response

peak at high excitation amplitudes (see Figs. 17 (c,d))

and corresponding to the end of the CSMR and de-

coupling of the two modes of the coupled system: one

having the frequency close to f0 and the second much

higher fNES = 56Hz (denoted by a grey solid line in

Fig. 22 (c)). As it is supposed for the stiffening CSMR,

the peak has reappeared at a slightly lower frequency

than that of the underlying linear system. Note that the

presented dynamics still contains traces of the chaos.

7 Simulation of the experiments

For the simulation of the described experiments we used

the beam model as a 3DOF system coupled to the

absorber using the approach described earlier. To do

so, the absorber, as well as its support, were approx-

imated to be point-like when mounted on the beam,

(a) Zoom in zone I.

(b) Zoom in zone II.

Fig. 19 The time-frequency representation of the absorber

displacement time series presented in Fig. 18 (b). The black

solid and dashed lines with dots correspond to the resonance

frequency of the beam f0 and its harmonic f0/2. The other

two dashed lines show the BNES linear resonances for the

first and the second equilibrium positions respectively.

Fig. 20 A zoom on the absorber displacement in the zone I

of Fig. 18 (b). Note the weak modulation of the signal.

and, as a consequence, the velocity of the support was

the same as of the beam at the point of its attachment.

The modes of the beam were calculated using the ana-
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(a) The velocity of the beam.

(b) The absorber displacement.

(c) The time-frequency representation of the absorber dis-

placement.

Fig. 21 The system response for the measurement denoted

by the gray point with a black center on the response map

Fig. 17 (c) (1.325V, 34Hz). The black solid and dashed lines

with dots in Fig. 17 (c) correspond to the resonance frequency

of the beam f0 and its harmonic f0/2. The other dashed lines

in the same figure show the BNES linear resonances for the

first and the second equilibrium positions respectively. The

intervals of energy transfer to the absorber are denoted by

black rectangles.

lytic model taken from [26]. The damping ratio for the

beam with an attached blocked absorber was identified

from the measured response for the first mode, while

(a) The velocity of the beam.

(b) The absorber displacement.

(c) The time-frequency representation of the absorber dis-

placement.

Fig. 22 The response of the system for the measurement

denoted by the grey point on the response map Fig. 17 (c)

(the end of the CSMR; 2.075 V, 32.8 Hz). The horizontal lines

depicted on the figure with wavelet analysis are the same as

in Fig. 21 with an extra black dashed line with dots and larger

spacing showing f0/3, while the additional grey line around

56Hz corresponds to the frequency that can be associated to

one of the decoupled nonlinear modes.

the damping of the BNES was supposed linear and was

identified from its response to a low-amplitude white

noise excitation.
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Similar to the experiment the monochromatic con-

stant amplitude forcing was applied to the beam to ex-

cite its first mode vibrations. In this regard the exci-

tation was taking into account the fact that in the ex-

periment the shaker was rising its level to the reference

one during the first 0.5 seconds. The excitation var-

ied in frequency from 31Hz to 33.5Hz with the step of

0.05Hz while the amplitude domain step was adapted

in every simulation in order to cover all regions of the

system dynamics studied in the experiment.

It was seen that the forcing provided by the shaker

was linearly dependent on the voltage, however the re-

lation depended on frequency. To trace the results us-

ing the same units as in section 6, the value of the

force was deduced from the voltage using the linear

behavior of the system with blocked BNES (at low

and medium excitation amplitudes). This way the map

Fexp = α(f)Vexp was constructed while the results are

presented using shaker voltage.

4 configurations of the BNES used in section 6 were

simulated using the procedure of section 4. As it was

discussed earlier the buckling was chosen in such a way

that the BNES first linear modes had a fixed frequency

(at least theoretically). As it can be seen from the ta-

ble below, the analytically calculated frequencies indeed

stays the same, but the numerical simulations which use

a reduced basis of absorber dynamic modes give a cer-

tain deviation that is observed to be higher in the case

of higher buckling.

Configuration 1 2 3 4

Analytical, Hz 27.70 27.69 27.66 27.61

Numerical (60 modes), Hz 25.58 27.33 27.62 27.59

Table 3 The frequencies of the first mode for the four con-

figurations calculated analytically and obtained from the nu-

merical model using the basis of 60 modes.

The results for all four configurations are presented

in Figs. 23-24 with a back to back comparison with the

results obtained experimentally.

As it can be seen from the ridge curves, the model

underestimates the maximal level of the attenuation,

but provides a close prediction for the efficiency region

of the absorber. This difference, most probably, is due

to the damping mechanism that cannot be properly de-

scribed by the viscous model in case of the snap-through

motion of the absorber.

Contrary to the experiment, in the simulation the

primary system stays linear and all the main regimes

can be observed properly even for the first configura-

tion. The complete ridge surface and the ridge curve for

the first absorber configuration is shown in Fig. 25.
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(a) (b)

(c) (d)

Fig. 23 The response maps and the ridge curves for the beam dynamics when attached to the absorber in configurations 1

(a - simulation, b - experiment) and 2 (c - simulation, d - experiment)
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(a) (b)

(c) (d)

Fig. 24 The response maps and the ridge curves for the beam dynamics when attached to the absorbers in configurations 3

(a - simulation, b - experiment) and 4 (c - simulation, d - experiment)
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(a) The response map of the beam (the same mesh as in the

experiment).

(b) The attenuation performance of the absorber.

Fig. 25 The simulated response of the system for the first

configuration of the absorber.

7.1 Mechanisms of the energy transfer

When it comes to the attenuation mechanism, the case

study of the time series is provided for three cases that

are, as earlier, denoted on the ridge surface in Fig. 25 by

the black point, the gray point and the gray point with

a black center. As in case of the experiment, the energy

transfer for low excitation amplitudes is composed of

Weakly Modulated Response due to the 1:2 resonance

and the snap-through jumps between the equilibrium

positions. Fig. 26 shows the beam and the absorber dy-

namics that is even clearer than in the experiment as

the two equilibrium positions are precisely the same.

Moreover, the simulation provides a more complete in-

formation, as it enables us to reconstruct the displace-

ment of the whole absorber beam. For the simplicity

the plotted displacement of the absorber corresponds

to the displacement of the mass glued on the buckled

beam.

The highest attenuation level, observed around the

gray point with a black center of Fig. 25 (a), corre-

sponds to the CSMR with a 1:1 resonance capture (see

Fig. 27). This chaotic resonance captures become more

and more frequent as the excitation rises. The shape of

the absorber mode that interacts in this 1:1 resonance

tends to a triangle form with the mass and the clapping

points being its vertices.

Without the nonlinearity of the primary system it

was possible to study the end of the CSMR even for the

first configuration. The result of the mode decoupling

is clearly seen in the signals of the measurement de-

noted by a gray point on the response map (see Fig. 28).

As shows the time-frequency representation of the ab-

sorber displacement, its motion is not completely regu-

larized (as well as in the experiment) and for small pe-

riods of time it provides a certain attenuation of beam

vibrations, but the observed energy transfer is not suf-

ficient to control the primary system and the observed
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(a) The velocity of the beam.

(b) The absorber non-dimensional displacement.

(c) The time-frequency representation of the absorber dis-

placement.

Fig. 26 The system dynamics for the measurement denoted

on the map 25 by the black point (2V, 32.7Hz). As earlier

for the time-frequency representations of experimental sig-

nals, the black solid line with dots shows the frequency of the

first mode of the beam, the two dashed black lines with dots

show its 1/2 and 1/3 harmonics, while the other dashed line

corresponds to the BNES linear resonance frequency. The in-

tervals of the resonant energy exchange are denoted by black

rectangulars.

TET only prolongs the time interval of the transient

dynamics.

(a) The velocity of the beam.

(b) The absorber non-dimensional displacement.

(c) The wavelet transform of the absorber displacement.

Fig. 27 The system dynamics for the measurement denoted

on the map 25 by a grey point with a black center (4V,

32.4Hz). The notations of figure (c) are the same as in Fig. 26

(c). As earlier in the experimental data, the intervals of energy

transfer to the absorber are denoted by black rectangulars.

Summing up the results of experiments and simu-

lations presented above, the following dynamics of the

absorber was observed:

– linear vibrations of a coupled system

– the in-well Weakly Modulated Response due to the

1:2 resonance;

– the in-well Weakly Modulated Response mixed with

the chaotic cross-well dynamics;
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(a) The velocity of the beam.

(b) The absorber non-dimensional displacement.

(c) The wavelet transform of the absorber displacement.

Fig. 28 The system dynamics for the measurement denoted

on the map 25 by a grey point (5.2V, 32Hz). The notations

of figure (c) are the same as in Fig. 26 (c), while the grey line

highlights the frequency of the decoupled nonlinear mode.

– the snap-through Chaotic Strongly Modulated Re-

sponse due to the 1:1 resonance capture;

– the end of the Chaotic Strongly Modulated Response

due to the mode decoupling;

From the point of view of a practical application, the

in-well WMR itself is of little interest, however with an

appropriate change of BNES parameters the system can

be put in the case of a 1:1 internal resonance that will

provide an in-well SMR that has a much better attenu-

ation performance. It is also interesting to note, that for

a 1DOF bi-stable NES it is much easier to get a snap-

through SMR than a CSMR dynamics, that is, most

probably, due to the energy concentration in one single

degree of freedom that leads to a faster regularization

of the movement.

8 Summary

The numerical and experimental results presented in

the article provides an essential link between its atten-

uation performance and the Targeted Energy Transfer.

While there are some similarities between the BNES

and a 1-degree-of-freedom bi-stable NES described in

[16]-[18], the physics and the regimes of functioning of

the BNES appears to be more complex.

First of all, the provided simplified analytical de-

scription of the BNES shows that BNES dynamics is

essentially multi-modal. For example, the BNES modes

responsible for the attenuation at low and high ampli-

tudes of the primary system vibrations are completely

different, while the transition between the two regimes

involves a very complex dynamics involving tens of modes.

The multi-modal nature also leads to an entangled in-

teraction between modes of the primary system and

those of BNES with the effective damping becoming

highly nonlinear. The reason for this extra complexity

lays in the non-trivial saddle point deformation shape
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that separates two stable equilibrium positions for the

BNES. This way, while the design provides a useful

combination of high stiffening nonlinearity with a rel-

atively low threshold for the snap-through motion, it

does not allow a regular analytical approach for the

TET description.

Secondly, for the targeted energy transfer between

with the BNES snap-through motion, the recorded and

simulated vibration responses suggested that the ob-

served phenomenon is a Chaotic Strongly Modulated

Response. To authors best knowledge this results dif-

fers from those obtained for simpler bi-stable NESs

where the TET with snap-through motion identified as

a Strongly Modulated Response. In other terms, the

BNES in the snap-through dynamics regime appears to

be closer to the vibro-impact NES than to the cubic

NES, that is not of a great surprise taking into account

the apparent high stiffness for this regime.

Finally, the low amplitude vibrations also show some

signs that it can be used for the energy transfer. Even

though the observed responses showed only a weak mod-

ulation of the primary system vibrations with some

snap-through transitions for the BNES, the BNES pa-

rameters may probably be adapted to provide a CSMR.

It is worth noting that [16]-[18] described a possibility

of an SMR for a 1-degree-of-freedom bi-stable NES with

the in-well dynamics.

9 Conclusion

The work presented in this article is aimed at the de-

scription of the bi-stable Nonlinear Energy Sink (BNES)

introduced in [1]. As the previously proposed 1-degree-

of-freedom model could not be used for BNES tuning

and optimization, a more complex model was developed

to achieve this goal. This new description of the BNES

provided the essential information and allowed to iden-

tify the attenuation mechanisms as those linked to the

Targeted Energy Transfer (TET). However, the com-

plexity of the presented model did not allow a rigorous

theoretical description of the TET thus all conclusions

were based only on the empirical observations from ex-

periments and simulations.

When concerning tuning and optimization of the

BNES the provided model shows which parameters are

most important when fixing its frequency-amplitude

range of functioning. It explains the effects of the added

mass and importance of its proper positioning on the

beam. The account for the non-trivial saddle-point for

the equilibrium change also helped to explain compar-

atively low threshold for the Targeted Energy Transfer

observed in experiments of [1].

The experiments and simulations with the BNES

showed a variety of responses which can be employed

for the attenuation of linear system vibrations. One of
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the possible ways to improve current BNES design is

to make use of as many regimes as possible. Such at-

tempts to combine different regimes were already taken

in [27], where the authors tried to use a low-amplitude

linear regime of a bi-stable NES to create a Tuned Mass

Damper (TMD) effect for low amplitudes of the pri-

mary system vibrations, and the absorbers snap-through

motion to perform the Targeted Energy Transfer. How-

ever, this approach had an important limitation due

to the inconsistency of requirements for the NES and

TMD characteristics when considering their mass and

damping: an effective TMD needs a relatively high damp-

ing and mass ratio of 10% when compared with the pri-

mary system, while an effective NES needs a negligible

damping and much lower mass ratio (around 1%).

When considering a combination of two TET regimes

there is an important advantage of the BNES on the

one-degree-of-freedom NESs as the later is limited in

the number of available tuning parameters. To obtain

two tuned TET regimes it is needed to adapt three char-

acteristics - the thresholds for two TETs as well as the

frequency range in which the NES will function, how-

ever, there are only two coefficients available for the

tuning in the one-degree-of-freedom system (the ones

coming from the cubic and the negative linear terms).

Hence, the tuning of the two TET regimes is very diffi-

cult to achieve. In this context, as the presented BNES

possesses extra tuning parameters brought by the at-

tached mass the design can lead to a more efficient

Nonlinear Energy Sink.
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