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COLLUSIONS AND QUOTIENTS: GENERALIZING EQUIVALENCE

RELATIONS AND DEFINITIONS BY ABSTRACTION

JEAN-BAPTISTE JOINET

§1. Introduction. During the XIXth century, the increasing diffusion in math-
ematical practice of what the Peano school coined “definitions by abstraction”1

(i.e. Definitions which “allow us to talk about certain entities by defining what
their equality means even if we are not in a position to provide an explicit defini-
tion of the terms flanking the equality”, as P. Mancosu says) is attested through
various instances (see [1]). Among numerous examples, one may cite cardinal
numbers abstracted from bijectability between sets, a.k.a. Hume’s principle2;
directions abstracted from parallelism relation between lines; shapes abstracted
from topological homologies; von Helmholtz’s weights, brightness, pitch of tones
etc.

1.1. Historical overview on the theory of definitions by abstraction.
The Peano’s School (Peano, Burali-Forti, Vailati, Padoa, Pieri and others) seems
to have provided the first systematic focus on the theory of such definitions
(within a programme targeting a typology of mathematical definitions), includ-
ing their characterization as statements of the form: fR(x) = fR(y) ⇔ xRy
where fR is a newly introduced operator and xRy is a binary predicate satis-
fying the properties of what has been progressively called equivalence relations.
Their debates were partly definitional (determination of the relevant properties
of the relation R, discussions about the possible codomains for fR), epistemolog-
ical (discussions about the status for such statements as definitions, compared
in particular to nominal, stipulatory definitions and to implicit, axiomatic defi-
nitions) and ontological (how to relate the status for the abstracta to the status
of the objects with respect to which the later are induced).

In sensibly the same period, notably from his Grundlagen der Arithmetik (see
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1 Following P. Mancosu, the term definitions by abstraction appeared in print in 1894, but

it was used earlier by members of the Peano school at least from 1888.
2 In §63 of his Grundlagen, Frege cites Hume as an ancestor of this idea (meanwhile devel-

oped by Cantor). The terminology Hume’s principle comes from [3].
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2 JEAN-BAPTISTE JOINET

[17], section 6), Frege also investigated this kind of “definitions”, focusing specif-
ically on higher order abstraction, as tools for his logicist programme.

Early, some problematic epistemological aspects of “definitions by abstraction”
as definitions have been pointed out: statements of the form presented above
do not guarantee unicity nor existence for the definiendum fR, and they are
generally not eliminable. From 1902, invoking those defects, Russell pleads for
abandoning the terminology “definitions by abstraction” when describing state-
ments of the form presented above3. He instead qualifies them as “Abstraction
principles”, bringing out the role of the introduced operators fR as classifiers
mapping any element of the domain of R to its equivalence class, and advocating
for limiting abstraction principles to that interpretation4. The treatment pro-
posed by Russell in those years is centered on the nowadays standard remark
that an equivalence relation R over a set a induces a classification of all the
elements a into non empty disjoint subsets of a (or, as we would say nowadays,
that the set of equivalence classes induced by R forms a partition of a)5.

Even if Russell’s treatment reducing abstracta to equivalence classes clarified
the epistemological status of definitions by abstraction as well as the status of
abstracta henceforth set theoretically conceived (to such an extent that, later
on, Russell himself will concede that Abstraction principles are Occam’s razors
which “dispense with abstraction”, see [4], p. 326), this did not lead the debate
at its end.
Let us mention a first line, developed in particular by P. Lorenzen (see [10], [11]
and [12]), pointing out that the subtraction which accompanies abstraction (en-
tities “disappear” through the equalization induced by the quotientation) prop-
agates to predicates initially definable over the vanishing individuals: some of
those predicates cease afterwards to be distinguishable, in other terms they also
are equalized, and it is with respect to the “surviving” ones that the abstrac-
tion need to be justified. In particular, inasmuch equivalence classes are grasped
through particular representatives, the means required to define those ones may
be submitted to constructivity demands.
A second line, in particular in J. Vuillemin, stresses that, as the definiens of
equivalence classes includes definite descriptions (abstraction binders) not be-
longing to the original primitive language, their eliminability has in any case to
be justified (cf. J. Vuillemin [7] and [8]), especially as equivalence classes cannot
always be defined by separation (indeed, in bad cases, they are not sets, but
proper classes defined by comprehension, as in the case of the bijectability rela-
tion).

3 Cf. [5], §.110, p.114-115 and [19].
4 Following F. Consuegra, p.132 of [6], that view was already sensible or explicit in the Peano

School, with a priority accorded to Pieri by Peano himself. For Mancosu [1], the first explicit

reading of equivalence classes as being the defined “entities” − rather than what we would
call today a specific representant of the class or maybe a proper, independent entity − is also

made early by Frege, influenced in that matter by observations of Grassmann from 1844.
5 Following Mancosu, even if a systematic and complete exposition of the partition-

ing/quotienting discipline seems to occur only in the late twenties (maybe for the first

time in van der Waerdens Abstrakte Algebra [9], in the § 5, entitled “Klasseneinteilung.

Äquivalenzrelation”), “the technical details were already clear in the 1910s” (see [1], p. 20)
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A third line, has been extensively studied by the so called neo-fregean trend ini-
tiated by C. Wright in [13], properly giving a second life to the investigations on
Abstraction principles (see [14], [16]). Those works focus on the fact that higher
order principles (typically when the domain of the operator fR is the powerset of
the co-domain of fR) may induce an injection from the domain to the codomain,
hence contradicting Cantor’s theorem. The canonical example of this problem
is Frege’s Basic Law V, Ext(x) = Ext(y) ⇔ ∀z (z ∈ x ↔ z ∈ y) (the second
abstraction principle introduced in the Grungesetze with fatal consequences, be-
side to Hume’s principle), which assigns objects to concepts and is based on the
equi-membership relation. If the domain of concepts is the power-set of the first-
order codomain, then, as the operator Ext (for Extension) is then an injection
of concepts into objects, this enters in contradiction with Cantor’s theorem6.

1.2. Aim and structure of the article. The aim of our paper is to introduce
and investigate a generalization of definitions by abstraction7. In the § 1, we start
introducing a generalization of equivalence relations − collusion relations − able
to characterize the partitioning discipline. Indeed, to be an equivalence relation
is a sufficient but not necessary condition with that respect (the fact that one
can go from whatever equivalence relation to the partition it induces, and then
back from that partition to the original equivalence relation, sometimes misleads
into believing that the properties defining equivalence relations form a condition
not only sufficient but also necessary for partitioning − which is not the case).
The § 2 is devoted to show that the quotients induced by collusions (collusional
quotients) may be recovered as standard equi-quotients induced by equivalence
relations defined in terms of the original collusions. The § 3 focuses on the less fa-
miliar collusions, namely the non equivalence ones, and investigates in particular
whether any partition may be induced by a non equivalence collusion. The § 4,
concentrates on how to extend to collusions the theory of abstraction proposed
by the Peano’s school for equivalence relations. This requires a double shift: a
mathematical one and a philosophical one. Mathematically, a wider version of
“Abstraction principles” has to be formulated: indeed, under penalty of inconsis-
tency, introducing a classifier fR such that fR(x)=fR(y) ⇔ xRy requires that R
is an equivalence relation, so that one cannot just replace equivalence by collusion
in the formulation of “Abstraction Principles”. Philosophically, the “sameness
interpretation” of equivalence relations (a commonplace from Peano’s school to
Frege-Russell and further) has to be complementarily replaced by another in-
terpretation relavant for general (non equivalence) collusions. The point is not
so much to renounce to the conception that a definition by abstraction captures
some form of similarity (by abstracting, subtracting differences) and favours “a
change of scale” (the classes are higher order notions), than to abandon the idea
that the relation R itself expresses that sameness. To replace the “sameness in-
terpretation”, we will progressively present, along the various sections, an atypic

6 A short and good introduction to those problematics can be found at

www.bbk.ac.uk/philosophy/our-research/ppp/ConferenceAntonelli.pdf
7 In particular, we will leave for further works an evaluation of the impact of that general-

ization of “Abstraction principles” on the debates of the so called neo-fregean trend initiated

by [13], which gave a second life to the investigations on Abstraction principles (see [14], [16]).
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interpretation of quotientation and classes in terms of “coalitions”: the agonal
interpretation.

§2. Collusions and equivalences: partitioning.

Notations, terminology, conventions. By default, R will always denote
a binary relation on a non empty set a. When one has xRy and x′Ry (for some
x, x′, y ∈ a), one says that x and x′ do converge (on y). Whenever x ∈ a, the
subset of a, noted [x]R and defined by [x]R =def {y∈a ; xRy} is called the class
of x (for R). But, in the special case R is an equivalence relation, [x]R will be
sometimes called the equivalence class of x for R, as usual. If b ⊆ a is such that
b = [x]R, for some x∈a, one says that b is a class (for R). Let us recall that a set
P of subsets of a forms a partition of a, whenever the three following conditions
are satisfied:

• for any b, c∈P, (b 6= c ⇒ b ∩ c = ∅) (pairwise disjointness)
• for any b∈P , b 6= ∅ (non emptiness)
• a ⊆

⋃
P (exhaustivity).

Reformulated with the notations and terminology just introduced, the standard
observation recalled in our introduction and upon which Peano’s, Frege’s and
Russell’s approach of abstraction is based, is thus that in case R is an equiva-
lence relation, the set

{
[x]R

}
x∈a of classes form a partition of a.

We will now see that though sufficient to get a partition, this condition is how-
ever not necessary.

Definition 2.1. The relation R over a is:

• total, if ∀x∈a ∃y∈a xRy
• surjective, if ∀y∈a ∃x∈a xRy
• collusive, if ∀x∈a ∀x′∈a

(
∃y∈a (xRy ∧ x′Ry) ⇒ ∀y∈a (xRy ⇒ x′Ry)

)
• a collusion relation, if it is total, surjective and collusive

Remark 1. The meaning of the collusivity property is more salient (“convergence
somewhere entails convergence everywhere”) when one expresses it in the follow-
ing redondant form: ∀x∈a ∀x′∈a

(
∃y∈a (xRy∧x′Ry) ⇒ ∀y∈a (xRy ⇔ x′Ry)

)
.

Theorem 1. Let R be a binary relation on a.

R is an equivalence relation ⇔ R is collusive and reflexive

Proof.
⇒ Let us show that any symmetrical and transitive relation is collusive. Let

x, x′∈a. Let us assume that xRy and x′Ry for some y∈a and that xRy′ for
some y′∈a. If R is symmetrical, as xRy, one has yRx. So if R is transitive,
as x′Ry, one has x′Rx, and as xRy′, one has x′Ry′.

⇐ • Let us first show that any collusive and reflexive relation, is symmet-
rical. Let x, y ∈ a, such that xRy. If R is reflexive, yRy, so that x
and y do converge (on y). If R is collusive, x and y must have exactly
the same images by R. As xRx (R reflexive being assumed), one thus
must also have yRx.
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• Let us now show that any collusive and reflexive relation, is transitive.
Let x, y, z∈a, such that xRy and yRz. If R is reflexive, yRy. So that
x and y do converge (on y). Hence, if R is collusive, they must have
exactly the same images by R. So, as yRz, one must have xRz.

a

Remark 2. As any reflexive relation is evidently total and surjective, any equiv-
alence relation is a collusion. But in general, collusions are not equivalence
relations (actually, some non reflexive collusions are not symmetrical or not
transitive; some of them have none of these properties).

We now will see (see the three lemmas below) that collusivity, surjectivity and
totality (which, by the way, are completely independent properties) correspond
exactly and respectively to the three conditions which define partitions: pairwise
disjointness, exhaustivity, non emptiness. Consequently, the conjunction of those
three properties (which defines collusions) is a sufficient and necessary condition
to produce a partition of the set on which the relation is defined.

Theorem 2.
{

[x]R
}
x∈ais a partition of a ⇔ R is a collusion

Proof. By the lemmas 3, 4 and 5 which follow. a

Lemma 3. ∅ /∈
{

[x]R
}
x∈a ⇔ R is total

Proof.

⇒ If R is not total, then some x∈a has no image for R. But then [x]R = ∅.
⇐ Let b∈

{
[x]R

}
x∈a. Then b = [x]R for some x∈a. If R is total, there exists

y∈a, such that xRy. Thus y∈ [x]R, hence [x]R 6= ∅
a

Lemma 4. a ⊆
⋃
x∈a

{
[x]R

}
⇔ R is surjective

Proof.

⇒ If R is not surjective, then some y∈a has no antecedent for R. But then y
belongs to no b in

{
[x]R

}
x∈a. So again

{
[x]R

}
x∈a is not a partition of a.

⇐ Let y ∈ a. As R is surjective, xRy for some x∈ a, so that y ∈ [x]R, i.e. y
belongs to at least one class belonging to a/R.

a

Lemma 5.
(
∀b, b′∈

{
[x]R

}
x∈a(b ∩ b′ 6= ∅ ⇒ b = b′)

)
⇔ R is collusive

Proof.

⇒ If R is not collusive, there exists x, x′, y, z∈a such that:
1. x and x′ do converge on y, which implies that [x]R ∩ [x′]R 6= ∅
2. xRz but x′�Rz, which implies that [x]R 6= [x′]R

⇐ Let b, b′∈
{

[x]R
}
x∈a such that b ∩ b′ 6= ∅. Let y ∈ b ∩ b′. By definition of{

[x]R
}
x∈a, we know that b = [x]R for some x ∈ a and that b′ = [x′]R for

some x′∈ a. As y ∈ [x]R, one has xRy and as y ∈ [x′]R, one has x′Ry. So
that x and x′ do converge on y. Now, R being collusive, we know that x
and x′ do converge on the same elements, so that [x]R = [x′]R, i.e. b = b′.
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a
Terminology and notation Because of theorem 2, in case R is a collu-
sion, we will continue to use the standard terminology (quotient) and notation
(a/R) for calling and noting

{
[x]R

}
x∈a. However, in situations where we wish to

underline that the collusion generating such or such quotient under consideration
is an equivalence relation, we will call it an equi-quotient.

§3. Collusional quotients as equi-quotients. As they introduce an equality,
“Abstraction principles” underpin the traditional philosophical interpretation of
equivalence relations in terms of sameness: following such a reading, the fact
that two elements are in such a relation suggests their similarity from a point
of view expressed by R, a similarity which becomes salient when one forms the
quotient, i.e. once one forgets all other points of view with respect to which
those elements elsewhere differ. Clearly, as some collusions are not equivalence
(and in particular not reflexive), such a reading cannot apply anymore ; and to
substitute to the sameness interpretation an adequate interpretation would be
welcome.
A rather intuitive and actually fruitful candidate is what we call the agonal in-
terpretation (from agôn i.e. fight in ancient greek), an interpretation which will
be clearer once the results ending the current section will be presented. To give
meanwhile a hint, let us stress that the word “collusion” has been chosen in the
line of that interpretation. If one reads xRy as x targets y (or as y is targeted by
x as well) or maybe, using a gorier but mnemonically efficient declination of the
same idea, as x is a predator for y (or y is a prey for x as well), the collusivity
property corresponds to situations where any two individuals having a common
target did collude: from then on, all the targets of one of them are targets of
the other one. As we will see, which such an interpretation in mind, the status
of “abstracta” induced by collusions, i.e. the classes belonging to the quotients
induced by them, receive a clear meaning: they are coalitions of individuals hav-
ing the same targets.

To start with, let us prove the following crucial property of collusions.

Lemma 6. Collusions are closed by converse: R collusion ⇒ R−1 collusion.

Proof.

• R collusive ⇒ R−1 collusive:
Let x, x′ ∈ a converging on some y ∈ a for R−1. Let now z ∈ a such that
xR−1z. As xR−1y and xR−1z, one has yRx and zRx, so that y and z do
converge (on x). So, if R is collusive, y and z have exactly the same images;
so, knowing that yRx′, one must also have zRx′. Hence x′R−1z. Hence R−1

is collusive.
• R total and surjective ⇒ R−1 surjective and total:

As the switching from R to R−1 inverts the role of images and antecedents,
it maps surjectivity on totality and conversely.

a
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Collusions being closed by converse, any collusion R over a actually induces two
partitions: a/R and a/R−1. They will be called the (two) collusional quotients
generated by R.

We will now see how the two collusional quotients generated by a collusion R can
be recovered as equi-quotients generated from two equivalence relations defined
in terms of R.

Definition 3.1. (equi-targeting relations) Let R any binary relation on a. The

two binary relations
td∼R and

tr∼R on a are defined as follows:

• x tr∼Rx′ ⇔def ∀y∈a (xRy ⇔ x′Ry)

When x
tr∼Rx′, one says that x, x′ are equi-targeters in R (or, when stressing

the agonal interpretation, that they are coalized for attack);

• x td∼Rx′ ⇔def ∀y∈a (yRx⇔ yRx′)

When x
td∼Rx′, one says that x, x′ are equi-targeted in R (or that they are

coalized for defence).

Remark 3.
td∼R and

tr∼R are (evidently) equivalence relations. By the way, they

could have been defined in terms of equality of classes as x
tr∼Rx′ ⇔ [x]R = [x′]R

and x
td∼Rx′ ⇔ [x]R−1 = [x′]R−1 .

Lemma 7.
td∼R =

tr∼R−1 and
tr∼R =

td∼R−1 .

Proof. For the first statement, the converse operation on binary relations
switches the first notion to the second one. The second one then follows from
the first, as the converse operation is involutive. a

Lemma 8. Let R be a collusive relation on a. If xRy, then:

1. [x]R = [y]td∼R
2. [y]R−1 = [x]tr∼R

Proof. Let us assume that xRy.

1. [x]R = [y]td∼R
:

• Let y′∈ [x]R. This entails that xRy′. As we have also xRy, this means
that y and y′ do converge on x for R−1. Now, if R is collusive, so is
R−1 (by lemma 6). The fact that y and y′ do converge thus implies

that y
tr∼R−1 y′ or, equivalently, that y

td∼R y′. So that y′∈ [y]td∼R
. We thus

proved that [x]R ⊆ [y]td∼R
.

• Let y′∈ [y]td∼R
. One thus has y

td∼y′ and, as xRy, one must have xRy′, so

that y′ ∈ [x]R. We thus proved that [y]td∼R
⊆ [x]R (an inclusion by the

way valid even when R is not a collusion).
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2. [y]R−1 = [x]tr∼R
As xRy, one has yR−1x. As R is collusive, so is R−1 (by

lemma 6), so that item 1. applies, which means [y]R−1 = [x]td∼R−1

. So

[y]R−1 = [x]tr∼R
a

Proposition 9. Let R be a relation over a.

{[x]R}x∈a = a/
td∼R ⇔ R is a collusion

Proof.

⇒ As
td∼R is an equivalence, a/

td∼R is a partition of a. So, if a/
td∼R = {[x]R}x∈a,

then {[x]R}x∈a is also a partition of a. By theorem 2, this implies that R
is a collusion.

⇐ – a/
td∼R ⊆ a/R.

Let b∈a/td∼R. By definition of a/
td∼R, b = [y]td∼R

for some y∈a. If R is

a collusion, it is surjective and there exists x∈a such that xRy. Then
by lemma 8, one has [y]td∼R

= [x]R. So b∈a/R.

– a/R ⊆ a/
td∼R.

Let b∈ a/R. By definition of a/R, one has b = [x]R for some x∈ a. If
R is a collusion, it is total and one has xRy for some y ∈ a. Then by

lemma 8, one has [x]R = [y]td∼R
. So b∈a/td∼R.

a
Note that the “⇐” direction of this proposition gives us a second proof for the
“⇐” direction of our theorem 2, which states that {[x]R}x∈a is a partition of a,
inasmuch the relation R on a is a collusion.

Proposition 10. Let R be a relation over a.

{[x]R−1}x∈a = a/
tr∼R ⇔ R is a collusion

Proof.
R is a collusion ⇔ R−1 is a collusion (by lemma 6)

⇔ {[x]R−1}x∈a = a/
td∼R−1 (by proposition 9).

⇔ {[x]R−1}x∈a = a/
tr∼R (by lemma 7). a

Theorem 11. {[x]R}x∈a = a/
td∼R ⇔ R is a collusion ⇔ {[x]R−1}x∈a = a/

tr∼R
Proof. By propositions 9 and 10. a

To make this result more salient, we could rephrase it by abusively using the gen-
eralized quotientation notation (a priori potentially inappropriate for the first
⇒ and the second ⇐, as the notation a/R is well defined only for collusions −
even if it appears a posteriori non problematic):

Theorem 11. (reformulated):

a/R = a/
td∼R ⇔ R is a collusion ⇔ a/R−1 = a/

tr∼R
To conclude this section, let us go back to the agonal interpretation and introduce
a bit of terminology: when a subset b of a is made of individuals pairwise colluded
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for Defence (resp. for Attack), we will say that b is a D-coalition (resp. an A-
coalition).
In the same manner an equivalence class is made of pairwise equivalent elements
and is maximal for that property w.r.t. inclusion (a remark whose justification
is not given here, for sake of brevity), the status to the classes of the collusional
quotients can be described through the agonal interpretation in simple terms:
they are maximal coalitions.

§4. Focusing on non equivalence collusions. Among collusions, the non
reflexive ones (which thus are not equivalence relations) are likely unfamiliar
to most readers, and this section is devoted to make some observations on
them. We will in particular focus on irreflexive collusions8, i.e. the ones such
that ∀x∈a x�Rx.

If R is an irreflexive collusion, the picture for classes belonging to the induced
collusional quotient is orthogonal to the one for classes induced by equivalence
relations. Indeed, as shows the second lemma below, in the irreflexive case, no
one is related in R with someone inside a class (in agonal terms: the coalitions
are peaceful − nobody targets a member of its own coalition).

Lemma 12. Let R over a collusive, b a class for R and x∈b.

∃x′∈b xRx′ ⇒ ∀x′∈b xRx′

Proof. Let y ∈ a such that b = [y]R and let x′ ∈ b. One thus has yRx′. So, if
xRx′, then x and y do converge (on x′). So, as R is collusive, x has exactly the
same targets/images for R than y. Hence ∀x′∈b xRx′. a

Lemma 13. Let R be collusive relation on a. If R is irreflexive, then for any
targeting class b for R and any x, x′∈b, one has x�Rx

′.

Proof. One gets the contraposed implication by particularizing to x the uni-
versally quantified x′ in lemma 12. a
In the subsections below, we will now examine some peculiarities of non reflexive
collusions with respect to the partitioning discipline. It is well known that for
any partition P of a, there exists an equivalence relation R on a and a unique one,
such that P = a/R. As we will see now, the picture is very different (for existence
and for unicity as well) when one considers non reflexive collusions, instead of
equivalence relations: (a) some (actually rare and special) partitions cease to
be “reachable”, namely the degenerated ones, i.e. the ones with a unique class
(actually, these ones are the only non reachable ones); (b) all other partitions
are reachable, but a reachable partition appears to be reachable from different
collusions.

8 Through the agonal reading, there is nothing odd in considering auto-targeting elements,

i.e. elements x such that xRx: after all, logic knows about paradoxes (and life about suicide).
The important point is to observe that such situations generate special effects which do have
an agonal meaning: when the relation is a collusion, the two maximal coalitions (for Attack
and for Defence) to which such an auto-targeting element belongs are necessarily degenerated

coalitions, i.e. coalitions in which everybody targets everybody.
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4.1. Incompleteness of non reflexive collusions w.r.t. partitions.

Lemma 14. Let R a collusion. If a/R = {a}, then R is reflexive.

Proof. Let us assume that a/R = {a}. As a 6= ∅ (by a convention set in
section 2), there is some x∈ a. And as R is total, there exists x′ ∈ a such that
xRx′. Applying the lemma 12 to (the class) a, we deduce that ∀x, x′ ∈a xRx′.
In particular, ∀x∈a xRx. a
So, when they are non reflexive, and a fortiori irreflexive, collusions are so to
speak “incomplete w.r.t. partitions”: they cannot reach the degenerated one9.
We will now show that the degenerated partition is however the only missed one.

4.2. Irreflexive collusions are complete for non degenerated partitions.
In this subsection, whenever P is a partition of a and x ∈ a, we will note [x]P
(by a slight notational abuse) the unique b∈P such that x∈b.

Definition 4.1. Let P a partition of a and σ an application from P to P . The
binary relation Rσ over a is defined by:

xRσx
′ ⇔def σ([x]P ) = [x′]P

Lemma 15. Let P a partition of a and σ a permutation of a (i.e. a bijection
from P to P ). Then Rσ is a collusion on a. Moreover, if σ has no fix-points
(i.e. is such that for any b∈P , σ(b) 6= b), the collusion Rσ is irreflexive.

Proof.

• Rσ is total and surjective. Indeed, let x∈a. As σ is total (resp. surjective),
there exists b ∈ P such that σ([x]P ) = b (resp σ(b) = [x]P ). As P is a
partition, b is non empty, i.e. b = [x′]P for some x′∈b. As σ([x]P ) = [x′]P
(resp σ([x′]P ) = [x]P ), by σ’s definition, we have that xRσx

′ (resp. x′Rσx).
Hence, Rσ is total (resp. surjective).

• Rσ is collusive. Indeed, let x, y, x′, y′ ∈ a, such that xRσx
′, yRσx

′ and
xRσy

′. By Rσ’s definition, one thus has σ([x]P ) = [x′]P , σ([y]P ) = [x′]P
and σ([x]P ) = [y′]P . So [x]P = [y]P (as σ is injective) and [x′]P = [y′]P
(as σ is functional). So, as σ([x]P ) = [x′]P , one has σ([y]P ) = [y′]P . Thus
yRσy

′.
• Rσ is irreflexive. Indeed, one never has xRσx, since for any b∈P , σ(b) 6= b

a

Lemma 16. Let σ any application from P (a partition of a) to itself. For any
y∈σ([x]P ), one has [x]Rσ = [y]P .

Proof. Let y∈σ([x]P ). As [x]Rσ =
{
z ∈ a ; xRσz

}
=
{
z ∈ a ; σ([x]P ) = [z]P

}
,

it amounts to show that
{
z∈a ; σ([x]P )=[z]P

}
= [y]P

• For the ⊆ direction, let z∈a such that σ([x]P ) = [z]P . As we assumed that
y∈σ([x]P ), we have that y∈ [z]P . Hence [z]P = [y]P . So z∈ [y]P .

9 As a corollary, observe that if a is a singleton, no irreflexive collusion exists over a. In
terms of the targeting interpretation: in a non suicidal world, one needs to be at least two to

fight.



COLLUSIONS AND QUOTIENTS 11

• For the ⊇ direction, let z ∈ [y]P . This entails [y]P = [z]P . But as we
assumed that y∈σ([x]P ), one has σ([x]P ) = [y]P . Hence σ([x]P ) = [z]P .

a

Lemma 17. For any b, b′∈P :

σ(b) = b′ ⇔ ∀x∈b∀x′∈b′ xRσx′

Proof.
⇒ Let us assume that σ(b) = b′, and let any x∈b and any x′∈b′. As b = [x]P

and b′ = [x′]P , one has σ([x]P ) = [x′]P , hence xRσx
′.

⇐ Let us assume that ∀x∈b∀x′∈b′ xRσx′, i.e. ∀x∈b∀x′∈b′ σ([x]P ) = [x′]P .
As b, b′ 6= ∅, one has for some x, x′ ∈ a that [x]P = b and [x′]P = b′. We
thus have σ([x]P ) = [x′]P , i.e. σ(b) = b′

a

Lemma 18. Let P a partition of a and σ an application from P to P . Then
σ([x]P ) = [x]Rσ

Proof.

• σ([x]P ) ⊆ [x]Rσ . Indeed, let y∈σ([x]P ). This implies that σ([x]P ) = [y]P .
By lemma 17, one has xRσy. So y∈ [x]Rσ .
• [x]Rσ ⊆ σ([x]P ). Indeed, let y ∈ [x]Rσ . By definition of classes, one has
xRσy. By definition of Rσ, one has σ([x]P ) = [z]P . Hence z∈σ([x]P ).

a

Proposition 19. Let P a partition of a and σ a bijection from P to P with no
fix-points. Then a/Rσ = P .

Proof.

1. a/Rσ ⊆ P . Indeed, let b ∈ a/Rσ. This means that, for some x ∈ a, one
has b = [x]Rσ . As b belongs to a/Rσ (which, by lemma 15 and theorem 2,
forms a partition of a), it is non empty. Let then y ∈ b. As y ∈ [x]Rσ ,
by definition of targeting classes, one has xRσy, which, by definition of
Rσ means that σ([x]P ) = [y]P . One thus has y ∈ σ([x]P ). Hence, by the
lemma 16, [x]Rσ = [y]P . Hence b∈P .

2. P ⊆ a/Rσ. Indeed, let b′∈P . Classes in a partition being non empty, there
exists x′ ∈ a such that b′ = [x′]P . As σ is a surjective, there exists b ∈ P
such that σ(b) = b′. Again, there exists x∈ a such that b = [x]P . Finally,
one has b′ = σ(b) = σ([x]P ) = [x]Rσ (by lemma 18). Finally, one thus has
b∈a/Rσ.

a

Theorem 20. Let P a non degenerated partition of a, i.e. with P 6= {a}.
There exists an irreflexive collusion such that the collusional quotient it induces
coincides with P 10.

10 A similar proof has been given independently by Paulo Veloso − private communication,
unpublished.
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Proof. Because of proposition 19, we just need to find a permutation σ of
P without fix points. While P is finite or denumerable, any “successor like”
relation with no endpoints (see below) would do the job. However, this being
not suitable for the non denumerable case, we treat the infinite case through
another strategy.

• in case P is finite, to get a permutation of P without fix points, we choose
for σ any circular permutation with a unique cycle including all the elements
of a, in other terms such that any element of P has any element of P in its
orbit (note that the no fix points condition is satisfiable if and only if the
cardinal of partition P is strictly greater than 1, i.e. when the partition is
non degenerated, as assumed);

• in case P is denumerable, σ could be the binary relation (on P ) which is
the image of the successor relation on Z through any bijection from Z to P .

• in case P is not denumerable (but that treatment applies also for a de-
numerable P ), let us consider any P1, P2 ⊆ P such that {P1, P2} is a
partition of P and ](P1) = ](P2). The existence of such a partition of P
is for instance proved in [18] (p. 184 and 287-288; Axiom of Choice used).
As ](P1) = ](P2), there exists a bijection β from P1 to P2. We then define
the binary relation σ on P as β ∪ β−1. As {P1, P2} is a partition of P ,
it is immediate, by construction, that σ is a permutation of P with no fix
points. a

Let us close this subsection by stressing an intentional refinement introduced by
non reflexive collusions.

Remark 4. Extensionally, there exists a unique equivalence relation generating
a given partition P (i.e., P being given, there is a unique reflexive collusion,
i.e. a unique equivalence relation, R on a such that P = a/R). Such an “exten-
sional collapse” does not happen when one also considers non reflexive collusions.
Then, indeed, a given partition P of a may generally well be generated through
different collusions on a (see the relations R1 and R2 over a = {α, β, γ, ρ} pic-
tured below as sagittal diagrams, where the partition induced by Ri is noted
under each diagram).'

&

$

%
R1

α // β

��
γ

OO

// ρ

OO

|αρ|β|γ|

'

&

$

%
R2

α // β

��
γ

OO

// ρoo

|αρ|β|γ|

§5. Generalizing Abstraction principles. In this final section, we come
back to “Abstraction Principles”:

fR(x)=fR(y) ⇔ xRy
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As introducing such a statement requires that R is an equivalence, one needs to
modify their formulation, inasmuch one wants to cover the (more general case
of) collusion relations.
Let R be any binary relation over a set a. We consider the two following “Gen-
eralized Abstraction Principles”, where R is a collusion relation:

1. d-Generalized Abstraction Principle: fR(x)=fR(y) ⇔ x
td∼R y

2. a-Generalized-Abstraction principle: fR(x)=fR(y) ⇔ x
tr∼R y

Let us note that the word “generalization” may seem odd in the current situation.

Indeed, as for any relation R, the relations
td∼R and

tr∼R are equivalence relations,
one could prefer to say that “Regular Abstraction principles” can be narrowed
to the particular case where the equivalence relation is of the form indicated in

these “Generalized” abstraction principles (
td∼R or

tr∼R). Because of theorem 11,
the word generalization is nevertheless relevant: inasmuch R is a collusion, one
can extend the solution proposed by Russell for determining the co-domain of fR
(i.e. fR(x) then denotes the class of x in the corresponding collusional quotient).
Let us finally observe that, because of the proposition below, in the particular
case R is an equivalence relation, both those Generalized Abstraction Princi-
ples collapse to the usual, regular “Abstraction principles”, i.e. they both are
equivalent to:

fR(x)=fR(y) ⇔ xR y

Proposition 21.

R is an equivalence relation on a ⇔ R =
tr∼R ⇔ R =

td∼R
Proof. The ⇒ directions amount to say that, when R is an equivalence rela-
tion, xRy ⇔ [x]R = [y]R (a standard observation, already made by Burali-Forti)

and xRy ⇔ [x]R−1 = [y]R−1 . The ⇐ directions are immediate as
td∼R and

tr∼R
are equivalence relations, whatever the relation R. a

§6. Conclusion and Future work. The generalization of equivalence rela-
tions that we introduced under the name collusions, characterizes the condition
needed for the quotientation of a set from a binary relation. It can thus be seen
as generalizing one of the standard tool for the theory of classification. The
renewed theory of classification which is at hand, appears no more based on a
primitive notion of similarity (as in the case of equivalence relations), but on a
(non primitive) notion of similarity induced by the primitive notion of interac-
tion with the context (agonality)11.
As pointed out by Thomas Seiller (currently collaborating with me on those
topics), the crucial fact that collusions are closed by converse invites to reformu-
late the resulting classification theory in terms of orthogonality (or equivalently
duality), this notion being here used with the precise meaning it has in the

11As an illustration of the usefulness of the agonal reading of collusions, let us observe that

it suggests for instance that, a given irreflexive collusion R being given, one could extend R
toward a larger collusion, in such a way that a given maximal coalition for R (i.e. a class in
the collusional quotient a/R) so to speak absorbs the ennemies of the ennemies of its members
(under the condition, of course, that the later ones are not themselves ennemies of members

of the initial coalition) − a processus rather frequent in the political life.
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proofs-as-programs paradigm, where it is employed to define the notion of type
(i.e. sets of processes closed by bi-orthogonal, for a dynamic dependent notion
of orthogonality between processes). In that framework, the words “reaction to
the context” receive a proper sense, linked with the dynamics of computation.
But as Seiller advocates, this notion of orthogonality may well be studied at an
abstract, time-independent level, considering directly axiomatic properties of the
relation with respect to which the orthogonality is defined
Independently of this general promising research programme, it would be useful
to uncover and investigate “concrete” models of non equivalence collusions. The
typical kind of applications we have in mind is algorithms separation12.
A last (but not least) kind of investigations for the future would be to reinvest,
through the notion of collusion, the philosophical and mathematical debates
about definitions by abstraction, in particular those based on higher order ab-
straction principles.
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