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Abstract

This article is the continuation of our first work on the determination
of the cases where there is equality in Courant’s Nodal Domain theorem in
the case of a Robin boundary condition (with Robin parameter h). For the
square, our first paper focused on the case where h is large and extended
results that were obtained by Pleijel, Bérard-Helffer, for the problem with
a Dirichlet boundary condition. There, we also obtained some general
results about the behaviour of the nodal structure (for planar domains)
under a small deformation of h, where h is positive and not close to 0.
In this second paper, we extend results that were obtained by Helffer–
Persson-Sundqvist for the Neumann problem to the case where h > 0 is
small.
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1 Introduction

Consider a bounded, connected, open set Ω ⊂ Rm, m ≥ 2, with Lipschitz
boundary. Let h ∈ R, h ≥ 0. We consider the Robin eigenvalues of the Laplacian
on Ω with parameter h. That is the values λk,h(Ω) ∈ R, k ∈ N, such that there
exists a function uk ∈ H1(Ω) that satisfies

−∆uk(x) = λk,h(Ω)uk(x) , x ∈ Ω ,

∂

∂ν
uk(x) + huk(x) = 0 , x ∈ ∂Ω ,

where ν is the outward-pointing unit normal to ∂Ω.
We recall that the corresponding spectrum is monotonically increasing with

respect to h for h ∈ [0,+∞), by the minimax principle. In particular, the Robin
eigenvalues with h = 0 correspond to the Neumann eigenvalues, λNk (Ω), while
those with h = +∞ correspond to the Dirichlet eigenvalues λDk (Ω).

We consider the Courant-sharp Robin eigenvalues of Ω. That is, those Robin
eigenvalues λk,h(Ω) that have a corresponding eigenfunction which has exactly
k nodal domains, and hence achieves equality in Courant’s Nodal Domain the-
orem. As for the Dirichlet and Neumann eigenvalues, λ1,h(Ω) and λ2,h(Ω) are
Courant-sharp for all h ≥ 0.

The question that we first considered in [5] is whether it is possible to fol-
low the Courant-sharp (Neumann) eigenvalues with h = 0 to Courant-sharp
(Dirichlet) eigenvalues as h→ +∞. There we analysed the situation where h is
large. Our aim in this paper is to analyse the case where h is small.

As in [5], we consider the particular example where Ω is a square in R2 of
side-length π which we denote by S. There, we were able to treat the problem
asymptotically as h→ +∞, corresponding to the Dirichlet limit. Moreover, we
showed that for h large enough, the only Courant-sharp Robin eigenvalues are
for k = 1, 2, 4 (see also [8, 1] where the Dirichlet case was treated):

Theorem 1.1. There exists h1 > 0 such that for h ≥ h1, the Courant-sharp
cases for the Robin problem are the same as those for h = +∞ .

We also obtained the following h-independent result:

Theorem 1.2. Let h ≥ 0. If λk,h(S) is an eigenvalue of S with k ≥ 520, then
it is not Courant-sharp.

For the square with a Neumann boundary condition, it was shown in [6] that
the only Courant-sharp Neumann eigenvalues are for k = 1, 2, 4, 5, 9. Hence it
is natural to ask whether this result also holds for h ≥ 0 small. The goal of this
paper is to prove the following theorem which was conjectured in [5].

Theorem 1.3. There exists h0 > 0 such that for 0 < h ≤ h0, the Courant-
sharp cases for the Robin problem are the same, except the fifth one, as those
for h = 0 .

In [5], we showed that there exists h∗9 > 0 such that λ9,h is Courant-sharp
for h ≤ h∗9 and is not Courant-sharp for h > h∗9.

Here we show that the fifth Robin eigenvalue λ5,h is not Courant-sharp for
any h > 0. It is interesting that there is stability of the Courant-sharp property
under a small perturbation of h large, whereas for h > 0 small there is no
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stability for k = 5. We remark that we do not give any general information
about the Courant-sharp property for the Robin eigenvalues with h ∈ (h0, h1).

We now outline the strategy of the proof of Theorem 1.3. By making use
of the fact that h is small, we reduce the number of potential Courant-sharp
cases that have to be checked from k ≤ 519, as in [5], to k ≤ 208 as in [6] (see
Section 4).

The strategy of [6] is then to use symmetry properties of the Neumann
eigenfunctions and an argument due to Leydold to further reduce the potential
Courant-sharp candidates. Since the Robin eigenfunctions satisfy analogous
symmetry properties (see Section 2), corresponding arguments can be applied
to the Robin eigenfunctions when h is sufficiently small (see Section 5).

As in [6], there are some eigenvalues for which these symmetry arguments
do not allow us to conclude whether or not they are Courant-sharp. In the
Robin case, there are also some additional cases that cannot be treated by
these symmetry arguments. In order to deal with the remaining cases, we
develop some corresponding results to [5] for h small. In particular, under
certain hypotheses, we show that for h > 0 small, under a small perturbation of
h, the number of nodal domains cannot increase (see Section 7 and Section 8).
So if a Neumann eigenvalue is not Courant-sharp, then the corresponding Robin
eigenvalue is not Courant-sharp for h sufficiently small. We apply these results
in Section 9 to eliminate all but two of the remaining cases.

There are then two outstanding cases for which these arguments do not
apply and we have to do a detailed analysis. One of these cases is λ5,h as it
is Courant-sharp for h = 0 and so the fact that the number of nodal domains
does not increase for h small is not sufficient to show that this eigenvalue is not
Courant-sharp for h > 0 small. For the other outstanding case, we do not prove
that the number of nodal domains is decreasing but we show that this number
does not increase too much under a small perturbation of h. These remaining
cases are analysed in Section 10 and Section 11.

Acknowledgements:
We are very grateful to Thomas Hoffmann-Ostenhof for useful remarks, to
Mikael P. Sundqvist for his communication of figures, and to Alexander Weisse
for introducing us to the mathematics software system “SageMath” and helping
us to produce some graphs of the Robin eigenvalues of the square. KG acknowl-
edges support from the Max Planck Institute for Mathematics, Bonn, from
October 2017 to July 2018. BH acknowledges the support of the Mittag-Leffler
Institute, Djursholm, where part of this work has been achieved.

2 The eigenfunctions of the Robin Laplacian for
a square

2.1 The 1D case in (−π
2
, π

2
)

2.1.1 The case h ≥ 0

The eigenvalues are determined by the unique solution αn(h) in [nπ, (n + 1)π)
of

α tan
α

2
= h` , (2.1)
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for n even, and the unique solution αn(h) in [nπ, (n+ 1)π) of

α

h`
= − tan

α

2
, (2.2)

for n odd.
The corresponding eigenvalue is λn+1(h) = αn(h)2

π2 and a basis of corresponding
eigenfunctions is given for n even by

un,h(x) = cos

(
αn(h)x

π

)
,

and for n odd by

un,h(x) = sin

(
αn(h)x

π

)
.

Note that
αn(h) ≥ αn(0) .

Moreover, when h = 0, we have

αn(0) = nπ ,

and recover the standard basis

uNen (x) = cos(nx) for n even, and uNen (x) = sin(nx) for n odd.

of the Neumann problem. We recall that the eigenfunctions ui are alternately
symmetric and antisymmetric:

ui(−x) = (−1)iui(x) .

2.1.2 The case h < 0

For h < 0, |h| small enough and n ≥ 1, there are solutions αn of (2.1) or (2.2).
But for h < 0, the first Robin eigenvalue is negative (see (6) of [4]), so one
should also look for energies with a purely imaginary α = iβ and consider

β tanh
β

2
= −h` . (2.3)

The corresponding energy is −β2. This gives one additional solution with β > 0
corresponding to the ground state energy. This solution is unique and, for |h|
small enough, is the only negative eigenvalue. The ground state can be defined
by

u(x) = cosh

(
βx

π

)
,

with β defined by (2.3).

5



2.2 2D-case

For the square S = (−π2 ,
π
2 )2 , an orthonormal basis of eigenfunctions for the

Robin problem is given by

ui,j(x, y) = ui(x)uj(y)

where, for n ∈ N, un is the (n + 1)-st eigenfunction of the Robin problem in
(−π2 ,

π
2 ). We denote by λi,j the corresponding eigenvalue π−2(α2

i + α2
j ). Very

often, when i 6= j, we have to analyse the nodal set of the family

Φθ,i,j = cos θ ui(x)uj(y) + sin θ ui(y)uj(x) . (2.4)

When λi,j has exact multiplicity 2, this family generates all the corresponding
eigenspace.

We now observe that the following lemma holds.

Lemma 2.1. Let h ≥ 0. The number of nodal domains of Φθ,p,q is the same as
the number of nodal domains of Φπ

2−θ,p,q. If p+ q is odd, the number of nodal
domains of Φθ,p,q is the same as the number of nodal domains of Φπ−θ,p,q.

Proof. For the first statement, we observe that

Φπ
2−θ,p,q(x, y) = Φθ,p,q(y, x) = Φθ,q,p(x, y) . (2.5)

For the second statement, we can assume, without loss of generality, that p is
even and q is odd. Then the statement follows directly from the relation (for
any (x, y) ∈ (−π2 ,

π
2 )2):

Φπ−θ,p,q(x,−y) = Φθ,p,q(x, y) . (2.6)

Remark 2.2. When p + q is odd, this allows us to reduce the analysis to θ ∈
[0, π4 ].

In what follows, we consider h ≥ 0.

2.3 Particular cases k = 1, 2, 3, 4, 9

We recall from [5] that λ1,h, λ2,h and λ4,h are Courant-sharp for any h ∈
[0,+∞] . We have also proved the following proposition in [5].

Proposition 2.3. There exists h∗9 > 0 such that λ9,h is Courant-sharp for
0 ≤ h ≤ h∗9 and not Courant-sharp for h > h∗9.

Hence, from this point onwards, we are only interested in the remaining
eigenvalues, i.e. in the eigenvalues λn,h(S) with n > 4 and n 6= 9. Note that,
due to the monotonicity of the Robin eigenvalues with respect to h, we have for
n ≥ 4 ,

λn,h(S) ≥ λ4,h(S) ≥ λ4,0(S) = 2 .
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2.4 Symmetry properties

We recall the following symmetry properties of the Robin eigenfunctions from
[5, Section 2.3]. As was mentioned in [5], the use of such symmetries was fruitful
in the Neumann case, [6], by invoking an argument due to Leydold, [7].

In 2D, we consider the possible symmetries of a general eigenfunction asso-
ciated with the eigenvalues λn,h which reads,

u(x, y) =
∑

i,j:λn,h(S)=π−2(α2
i+α

2
j )

aij ui(x)uj(y) , (2.7)

where ui is the (i+ 1)-st eigenfunction of the h-Robin problem in (−π2 ,
π
2 ).

By considering the transformation (x, y) 7→ (−x,−y), we obtain

u(−x,−y) =
∑

i,j:λn,h(S)=π−2(α2
i+α

2
j )

aij (−1)i+jui(x)uj(y) . (2.8)

Remark 2.4. We note that if (i+j) is odd for any pair (i, j) such that λn,h(S) =
π−2(α2

i +α2
j ), then we get by (2.8), u(−x,−y) = −u(x, y) and as a consequence

u has an even number of nodal domains.

3 Former bounds for the number of Courant-
sharp Robin eigenvalues of a square

In this section, we recall the h-independent bounds from [5] and the correspond-
ing Neumann bounds from [6].

3.1 Lower bound for the Robin counting function

Recall that for λ > 0, the Robin counting function for the corresponding eigen-
values of Ω is defined as

NR,h
Ω (λ) := #{k ∈ N : λk,h(Ω) < λ}.

The Neumann counting function NNe
Ω (λ) corresponds to the case h = 0. We

recall that the Robin eigenvalues are monotone with respect to h ∈ [0,+∞)
When Ω = S, we have

π

4
λ+ 2b

√
λc+ 1 ≥ NNe

S (λ) >
π

4
λ , (3.1)

and by comparison with the Dirichlet problem, we also have, for λ ≥ 2,

NR,h
S (λ) >

π

4
λ− 2

√
λ+ 1 . (3.2)

With λ = λn,h > λn−1,h and Ψ an associated eigenfunction, (3.2) becomes

n >
π

4
λn,h − 2

√
λn,h + 2 . (3.3)

We now work analogously to the proof of Proposition 2.1 in [6] (see also
Section 3 of [5]). Denote by Ωinn the union of nodal domains of Ψ whose
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boundaries do not touch the boundary of Ω (except at isolated points), and
µinn(Ψ) the number of nodal domains of Ψ in Ωinn. Similarly denote by Ωout

the nodal domains in Ω \ Ωinn, and µout(Ψ) the number of nodal domains of Ψ
in Ωout. We have that

µinn(Ψ) = µ(Ψ)− µout(Ψ)

and we require an upper bound for µout(Ψ).
In the case, of the square, we have proven the following lemma in [5].

Lemma 3.1. Let λ be a Robin eigenvalue of S with h < +∞. If ψ is a Robin
eigenfunction associated to λ, then

µout(ψ) ≤ 4
√
λ .

3.2 Upper bound for Courant-sharp Robin eigenvalues of
a square

By Lemma 3.1, we have

µinn(Ψ) ≥ µ(Ψ)− 4
√
λn,h . (3.4)

Now, Ωinn =
⋃
i ω

inn
i is a finite union of nodal domains for Ψ. Assuming

that Ωinn is not empty, we get, on each ωinn
i , by Faber-Krahn (see [8]), that

A(ωinn
i )

πj2
≥ 1

λn,h
, (3.5)

where A(ωinn
i ) denotes the area of ωinn

i and j denotes the first positive zero of
the Bessel function J0. Adding, and invoking (3.4), we find

π

j2
=
A(S)

πj2
>
A(Ωinn)

πj2
≥ µinn(Ψ)

λn,h
≥
µ(Ψ)− 4

√
λn,h

λn,h
,

from which we extract
π

j2
≥
µ(Ψ)− 4

√
λn,h

λn,h
. (3.6)

Due to (3.4), this inequality is still true if Ωinn is empty.
So, similarly to [1] and [6, Proposition 2.1], we obtain the following.

Proposition 3.2. Any Courant-sharp Robin eigenvalue λn,h of S has n ≤ 519.

3.3 Recap of Helffer-Persson-Sundqvist for Neumann

We recall that in the Neumann case, [6], the proof goes as follows. Assume
that (λn,Ψn) is a Courant-sharp eigenpair. Courant’s Nodal Domain theorem
implies that λn > λn−1 and N(λn) = n − 1. Inserting this into (3.1) (which is
specific to Neumann) gives

λn <
4

π
(n− 1) .

Combining this with (3.6), we get

n = µ(Ψn) ≤
∣∣Ωinn

∣∣
πj2

λn + 4
√
λn <

4

j2
(n− 1) +

8√
π

√
n− 1 .
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A simple calculation shows that this inequality is false if n ≥ 209. Hence, in
the Neumann case, the analysis of the Courant-sharp situation is reduced to the
analysis of the first 208 eigenvalues.

4 First reductions

4.1 Analysis via small perturbation

Here the improvement in comparison with Section 3 will result in a better lower
bound for the counting function because we are close to the Neumann situation.

As h→ 0 , we have the following lemma.

Lemma 4.1. There exist C > 0 and h0 > 0 such that for h ∈ (0, h0] and for
each pair (i, j), we have

λi,j(0) ≤ λi,j(h) ≤ λi,j(0) + Ch . (4.1)

Proof. We come back to the computation of λi,j . To treat the case from
(2.1), we have to analyse the solutions of α tan(α2 ) = hπ.
When h = 0 the solutions are αk = 2kπ for k ∈ N.
If we denote by αk(h) the solution defined in Section 2, we aim to estimate
δk(h) = αk(h)− αk.
First, for k = 0, we have

δ0(h) tan

(
δ0(h)

2

)
= hπ ,

which implies the existence of c > 0 such that for h small,

δ0(h) ≤ c
√
h .

We get immediately
α0(h)2 ≤ c2h .

We now assume k > 0 .
This time we have

(2kπ + δk(h)) tan

(
δk(h)

2

)
= hπ .

Hence there exists h0 > 0 and c0 > 0 such that for any k > 0 and h ∈ (0, h0],

0 < δk(h) ≤ c0
h

k
.

This implies the existence of h0 > 0 and c̃ > 0 such that for h ∈ (0, h0],

αk(0)2 ≤ αk(h)2 ≤ αk(0)2 + 2αk(0)δk(h) + δk(h)2 ≤ αk(0)2 + c̃ h .

The other cases can be treated in a similar way.

We now have the following lemma.
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Lemma 4.2. There exists h0 > 0 and C > 0 such that for any h ∈ (0, h0], and
λ ≥ 2,

NR
S,h(λ) ≥ NR

S,h=0(λ− Ch) = NNe
S (λ− Ch) .

Indeed, (4.1) implies that for each pair (i, j) ∈ N2, we have

λi,j,h(S) ≤ i2 + j2 + Ch,

for h ∈ (0, h0]. So, for each (i, j) satisfying i2 +j2 < λ−Ch, we have λi,j,h(S) <
λ.
Finally we have the following lemma.

Lemma 4.3. Let N > 0. Then, there exists h0 > 0 and C > 0 such that for
any 0 < n ≤ N , h ∈ (0, h0],

λn,h ≤ λn,0 + Ch .

Proof. We give a proof for fixed n. With the notation of (2.7), we consider the
set In of the pairs (i, j) such that

i2 + j2 = π−2(αi(0)2 + αj(0)2) = λn,0 .

By continuity, for h small enough, we have

λn(h) ≤ sup
(i,j)∈In

λi,j,h .

We can then use Lemma 4.1 to obtain

sup
(i,j)∈In

λi,j,h ≤ λn,0 + Ch .

4.2 Improvement of Theorem 1.2 as h→ 0

If we now come back to the Pleijel-type proof (see Section 3), instead of (3.2)
we can use

NR
S,h(λ) ≥ NNe

S (λ− Ch) >
π

4
(λ− Ch) .

So, assuming that λ is Courant-sharp and following the same steps as above,
we first get that

n >
π

4
(λ− Ch) + 1 ,

instead of (3.3). Following what is done in Subsection 3.3, we obtain that there
exists C̃ such that

n <
4

j2
(n− 1) +

8√
π

√
n− 1 + C̃ h .

Hence, for h small enough, we get the following proposition as for the Neumann
case.

Proposition 4.4. There exists h0 > 0 such that, if h ∈ [0, h0] and λn,h is an
eigenvalue with n ≥ 209, then it is not Courant-sharp.

In this way we see that as h→ 0, the number of cases to look at is close to the
number obtained for the Neumann case (see Proposition 2.1 of [6]). It remains
to follow, as h → 0, the other arguments used in [6] to reduce the number of
cases to analyse. We do this in Subsection 4.3, Section 5 and Section 6.
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4.3 Multiplicity, labelling and application

Following the steps of [6], we now try to eliminate more eigenvalues for n <
209, taking advantage of h small enough. We are now analysing a finite h-
independent number of cases, and for each case, we will show the existence of
h0 > 0 such that the eigenvalue under consideration is not Courant-sharp for
h ∈ (0, h0]. For the final proof of the main results, we should of course take the
infimum of all the h0’s appearing in the case-by-case analysis.

From (3.4) and using that µout(Ψ) is an integer, we have that the analogous
result to Lemma 2.2 of [6] holds in the Robin case.
Summing (3.5) over all inner nodal domains gives that

µinn(Ψ) ≤ πλn,h(S)/j2 ,

so that
µ(Ψ) ≤ π

j2
λn,h(S) + µout(Ψ).

In addition, with

jn(h) := sup{q : αp(h)2 + αq(h)2 = π2λn,h(S), p, q ∈ N},

the analogous result to Lemma 2.3 of [6] holds in the Courant-sharp situation

n = µ(Ψ) ≤ π

j2
λn,h(S) + max(4jn(h), 1) . (4.2)

We wish to compare the right-hand side of (4.2) to the Neumann situation by
using that h is small. We first recall the main result regarding crossings which
was proven in [5].

Proposition 4.5. For distinct pairs (p, q) and (p′, q′), with p ≤ q and p′ ≤ q′,
there is at most one value of h in [0,+∞) such that λp,q,h(S) = λp′,q′,h(S).
Moreover, if p < p′ ≤ q′ < q and λp,q,h∗ = λp′,q′,h∗ for some h∗ ≥ 0, then
h 7→ π−2(αp′(h)2+αq′(h)2−αp(h)2−αq(h)2) is increasing for h > h∗. In partic-
ular the curve h 7→ π−2(αp(h)2 + αq(h)2) is below the curve
h 7→ π−2(αp′(h)2 + αq′(h)2) for h > h∗.

We then have the following lemma.

Lemma 4.6. The multiplicity of λn,h computed for h = 0 can only decay as h
increases for h small enough.

Proof. We first show that for h small enough, curves corresponding to λp,q,h
with λp,q,0 6= λn,0 do not intersect curves corresponding to λn,h.

Consider λk,h where λk,0 < λn,0 and k is largest possible. Then by Lemma 4.3,
λk,h ≤ λk,0 + Ch < λn,0 for h small enough.

Similarly, consider λ`,h where λn,0 < λ`,0 and ` is smallest possible. Then
by Lemma 4.3, λn,h ≤ λn,0 + Ch < λ`,0 for h small enough.

Hence, we need only consider the curves corresponding to λp,q,h that satisfy
λp,q,0 = λn,0.

It was shown in [6] that for n ≤ 208, the Neumann eigenvalues of S have
multiplicity 1, 2, 3 or 4.
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If the multiplicity of λp,q,0 is 1 or 2, then it remains constant as h increases
(for h small enough). The first case corresponds indeed to p = q and the second
case to p 6= q.

If the multiplicity of λp,q,0 is 3 or 4, then λp,q,0 = λp′,q′,0 = λn,0 with
p < p′ ≤ q′ < q. The first case corresponds indeed to p′ = q′ and the second
case to p′ < q′. By Proposition 4.5, the curves corresponding to (p, q) and
(p′, q′) do not intersect for h > 0, and the curve corresponding to (p, q) is below
that corresponding to (p′, q′). In this case, the multiplicity decreases.

Remark 4.7. We remark that the above proof also shows that if λn,0 has mul-
tiplicity 4 such that λp,q,0 = λq,p,0 = λp′,q′,0 = λq′,p′,0 with p < p′ < q′ < q,
then for h small enough, λp,q,h = λq,p,h < λp′,q′,h = λq′,p′,h. Similarly, if λn,0
has multiplicity 3 such that λp,q,0 = λq,p,0 = λp′,p′,0 with p < p′ < q, then for h
small enough, λp,q,h = λq,p,h < λp′,p′,h.

As a consequence of Lemma 4.6, we get the following lemma.

Lemma 4.8. For any N > 0, there exists h0 > 0, such that if n ≤ N , h ∈ [0, h0]
then

jn(h) ≤ jn(0) .

This immediately leads to the following lemma.

Lemma 4.9. There exists h0 > 0 and C > 0 such that if n ≤ 208, h ∈ [0, h0],
and λn,h is Courant-sharp then

n ≤ π

j2
λn,0(S) + max(4jn(0), 1) + Ch . (4.3)

We can now use the same computations as in Corollary 2.4 of [6] to eliminate,
for h small enough, the same cases as for the Neumann problem.

Proposition 4.10. There exists h0 > 0 such that, if h ∈ [0, h0] and λn,h is
an eigenvalue where n is one of 86, 95–96, 99–100, 103–104, 113, 118–119,
120–121, 128–142, 147–208, then it is not Courant-sharp.

Proof. The numerical calculation performed in [6] shows that

π

j2
λn,0 + 4jn(0) < n ,

for the n mentioned in the statement, in contradiction with (4.3) for h small
enough.

5 On the use of symmetries

In this section, we further reduce the potential candidates for Courant-sharp
Robin eigenvalues of the square when h is small by using symmetry properties.
This leads us to push the argument due to Leydold further as developed in [6].
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5.1 Antisymmetric eigenvalues

Similarly to [6], let LARot denote the Robin Laplacian restricted to the antisym-
metric space

HARot = {ψ | ψ(−x,−y) = −ψ(x, y)} .

The spectrum of the Robin Laplacian is given by π−2(αp(h)2 + αq(h)2) with
p + q odd. We denote the sequence of eigenvalues of LARot by (λARot

n,h )+∞
n=1,

counted with multiplicity. Then each antisymmetric λn,h equals λARot
m,h for some

m. The following lemma is an analogue of Courant’s Nodal Domain theorem in
this subspace, and is proven in [6] for the Neumann case.

Lemma 5.1. Assume that (λn,h,Ψn,h) is an eigenpair of the Robin Laplacian
with parameter h, with λn,h antisymmetric, and let m be such that λn,h = λARot

m,h .
Then µ(Ψn,h) is even, and

µ(Ψn,h) ≤ 2m.

Proposition 5.2. There exists h0 > 0 such that for h ∈ (0, h0], the eigenvalues
λ7,h = λ8,h, λ23,h = λ24,h, λ25,h = λ26,h, λ29,h = λ30,h, λ36,h = λ37,h, λ40,h =
λ41,h, λ51,h = λ52,h, λ55,h = λ56,h, λ59,h = λ60,h, λ61,h = λ62,h, λ72,h = λ73,h,
λ76,h = λ77,h, λ91,h = λ92,h, λ97,h = λ98,h, λ99,h = λ100,h, λ103,h = λ104,h,
λ109,h = λ110,h, λ111,h = λ112,h, λ120 = λ121, λ124,h = λ125,h, λ132,h = λ133,h,
λ143,h = λ144,h, and λ145,h = λ146,h, are not Courant-sharp.

This was established for h = 0 in [6] by verifying case by case that 2m < n.
Note that many cases can be more directly obtained by the following lemma.

Lemma 5.3. Let 0 ≤ h < +∞. Suppose that λn,h(S) is a Robin eigenvalue with
corresponding eigenfunction defined in (2.7). Suppose that n is odd and that the
conditions of Remark 2.4 are satisfied. Then λn,h(S) is not Courant-sharp.

The property goes through when the eigenvalue has multiplicity 2 for h = 0,
see Lemma 4.6. We have to be more careful in the case where the multiplicity
is higher.
Let us first look at the perturbation of λ23,0 = λ24,0 = λ25,0 = λ26,0. By
Remark 4.7, for h small enough, we have λ23,h = λ24,h < λ25,h = λ26,h corre-
sponding to the pairs (5, 0), (4, 3) respectively. So Lemma 5.3 shows that the
eigenvalue cannot be Courant-sharp.
The same argument works for the perturbation of λ59,0 = λ60,0 = λ61,h = λ62,0,
λ109,0 = λ110,0 = λ111,0 = λ112,0, λ143,0 = λ144,0 = λ145,0 = λ146,0.
Let us finally look at the perturbation of λ76,0 = λ77,0 = λ78,0 = λ79,0. As
proven in [6], we have 2 × 37 < 76 where λ76,0 = λARot37,0 . By Proposition 4.5
and Remark 4.7, for h small enough we have λ76,h = λ77,h < λ78,h = λ79,h. We
have λ76,h = λARotm,h and λ78,h = λARotm+2,h, so λ76,h is not Courant-sharp but we
cannot conclude for λ78,h because 2(m+ 2) = 78. The same problem occurs for
the perturbation of λ124,0 = λ125,0 = λ126,0 = λ127,0.

5.2 Symmetric eigenvalues

Similarly to [6], let LSRot denote the Robin Laplacian restricted to the symmetric
space

HSRot = {ψ | ψ(−x,−y) = ψ(x, y)} .
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The spectrum of this Laplacian is given by π−2(αp(h)2+αq(h)2) with p+q even.
We denote the sequence of eigenvalues of LSRot by (λSRot

m,h )+∞
m=1, counted with

multiplicity. Each symmetric λn,h equals λSRot
m,h for some m. The following is an

analogue of Courant’s Nodal Domain theorem in this subspace, and is proven
in [6] for the Neumann case.

Lemma 5.4. Let (λn,h,Ψn,h) be an eigenpair of the Robin Laplacian with pa-
rameter h, with symmetric λn,h, and let m be such that λn,h = λSRot

m,h . Then

µ(Ψn,h) ≤ 2m.

Proposition 5.5. There exists h0 > 0 such that for h ∈ (0, h0], the eigenvalues
λ27,h = λ28,h, λ46,h = λ47,h, λ63,h = λ64,h, λ82,h = λ83,h, λ86,h, λ87,h = λ88,h,
λ107,h = λ108,h, λ113,,h, λ114,h = λ115,h, and λ138,h = λ139,h are not Courant-
sharp.

Proof. As in the previous proposition, the cases where the multiplicity is 2
follow from what was done in [6] for the Neumann case. We just detail the
situation where for h = 0, the multiplicity is larger than 2. In the case of
λ46,0 = λ47,0 = λ48,0, we have m = 24.

For h > 0 small enough, we have λ46,h = λ47,h < λ48,h by Remark 4.7 so we
cannot conclude for λ48,h as λ46,0 = λSRot22,0 . This case, will be treated later.
In the case, λ87,0 = λ88,0 = λ89,0 = λ90,0, we have to consider the situation
when λ87,h = λ88,h < λ89,h = λ90,h. We know from [6] that λ87,0 = λSRot43,0

(m = 43). Hence we cannot conclude for λ89,h for h > 0. Finally, in the
case λ114,0 = λ115,0 = λ116,0 = λ117,0, we know from [6] that λ114,0 = λSRot56,0

(m = 56) and we cannot conclude for λ116,h for h > 0 (Note that λ114,h =
λ115,h < λ116,h = λ117,h).

In comparison with the case h = 0, we have “lost” the treatment of two
eigenvalues: λ89,h and λ116,h.

5.3 Other symmetries

Next, similarly to [6], let LAMir denote the Robin Laplacian restricted to the
doubly anti-symmetric space

HAMir = {ψ | ψ(−x, y) = −ψ(x, y), ψ(x,−y) = −ψ(x, y)} .

The spectrum of this Laplacian is given by π−2(αp(h)2 + αq(h)2) with p and q
odd. We denote the sequence of eigenvalues of LAMir by (λAMir

m,h )+∞
m=1, counted

with multiplicity. The following lemma is an analogue of Courant’s Nodal Do-
main theorem in this subspace, and is proven in [6] for the Neumann case.

Lemma 5.6. Assume that (λn,h,Ψn,h) is an eigenpair of the Robin Laplacian
with parameter h, with λn,h symmetric and Ψn,h ∈ HAMir. Then

µ(Ψn,h) ≤ 4m,

for m such that λn,h = λAMir
m,h . Moreover, µ(Ψn,h) is divisible by 4.
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Remark 5.7. If, for all pairs (p, q) of non-negative integers such that

π−2(αp(h)2 + αq(h)2) = λn,h ,

it holds that p and q are odd, then there exists an m such that λn,h = λAMir
m,h .

Proposition 5.8. The eigenvalues λ12,h = λ13,h, λ20,h, λ27,h = λ28,h, λ32,h =
λ33,h, λ46,h = λ47,h < λ48,h λ53,h = λ54,h, λ68,h = λ69,h, λ74,h = λ75,h, λ80,h =
λ81,h, λ86,h, λ95,h = λ96,h, λ107,h = λ108,h, λ114,h = λ115,h, λ128,h = λ129,h, and
λ140,h are not Courant-sharp.

Proof. As for the preceding propositions, the only cases where the situation can
change in comparison with h = 0 are the cases when the multiplicity is higher
than 2.
Looking at λ46,0 = λ47,0 = λ48,0, we have λ46,0 = λAMir

9,0 . For h > 0, we have

by Proposition 4.5 and Remark 4.7, λ46,h = λ47,h < λ48,h. Then λ48,h = λAMir
11,h

and we are done.
Looking at λ114,0 = λ115,0 = λ116,0 = λ117,0, we have λ114,0 = λAMir

27,0 . For h > 0,

we get λ116,h = λAMir
29,0 and we cannot conclude.

Hence, in comparison with h = 0, we do not know at the moment if the
eigenvalue λ116,h is Courant-sharp or not for h > 0.

5.4 Reflection in the coordinate axes

In the case where h is sufficiently small and p and q are even, we consider the
analogue of Lemma 3.8 from [6]. We recall that Φθ,p,q was introduced in (2.4).

Lemma 5.9. Assume that p and q are even and that the equation Φθ,p,q(
π
2 , y) =

0 has at least k solutions for −π2 < y < π
2 (k ≥ 0) and the equation Φθθ,p,q(x,

π
2 ) =

0 has at least ` solutions (` ≥ 0) for −π2 < x < π
2 . Then

µ(Φθ,2p,2q) ≤ 4µ(Φθ,p,q)− (2(k + `) + 3) .

Proof. The function Φθ,2p,2q is even in the lines x = 0 and y = 0. For h small
enough, we can bound µ(Φθ,2p,2q) from above by 4µ(Φθ,p,q). We note that for
each zero described in the statement (except the biggest one), we count each
nodal domain of Φθ,2p,2q twice. The nodal domain in the middle is subtracted
three times if Φθ,p,q(

π
2 ,

π
2 ) 6= 0.

We observe that by Sturm’s Theorem (see [2, 9]) we can take k = ` =
min{p, q} in Lemma 5.9 above. We use this observation below.

Proposition 5.10. There exists h0 > 0, such that for h ∈ [0, h0), the eigenval-
ues λ38,h = λ39,h and λ93,h = λ94,h are not Courant-sharp.

Proof. For λ38,0 we have p = 2 and q = 6 and the labelling is preserved for h
small enough. Note that λ1,3,h=0 has the labelling 12. But we have proven just
above that λ12,h is not Courant-sharp, hence by the above lemma, we get:

µ(Φθ,2,6) ≤ 4µ(Φθ,1,3)− (4 + 3) ≤ 4× 11− 7 = 32 .
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For λ93,0 we have p = 2 and q = 10 and the labelling is preserved for h small
enough. Note that λ1,5,0 has the labelling 27. But we have proven just above
that λ27,h is not Courant-sharp, hence by the lemma, we get:

µ(Φθ,2,10) ≤ 4µ(Φθ,1,5)− (4 + 3) ≤ 4× 26− 7 = 97 .

This is not enough, but if in addition we use Lemma 5.6, we get µ(Φθ,1,5) ≤ 24
and

µ(Φθ,2,10) ≤ 4µ(Φθ,1,5)− (4 + 3) ≤ 4× 24− 7 = 89 < 93 .

In summary, this leaves open the analysis for h > 0 of the cases λ78,h, λ89,h,
λ116,h, and λ126,h, which were not Courant-sharp for h = 0 and for which the
previous arguments fail. We treat λ116,h (h > 0) in Section 11. To deal with
the three other cases, in Sections 7 and 8, we develop a similar argument to
that of [5] but for small h > 0.

6 The case (p, p)

Corresponding to Lemma 4.4 of [6], we have the following proposition.

Proposition 6.1. If the eigenspace corresponding to λp,p,0 is one-dimensional
then, for h small enough and if Ψ is the eigenfunction associated with λp,p,h,
we have µ(Ψ) = (p+ 1)2.

Proof. The eigenspace is spanned by cos(αp(h)x/π) cos(αp(h)y/π) for p even,
and by sin(αp(h)x/π) sin(αp(h)y/π) for p odd. In each case, this is a prod-
uct of a function that depends on x and one that depends on y. For h small
enough, each of them has p zeros, and thus the number of nodal domains equals
(p+ 1)2.

Observing that the eigenvalues λ20,0, λ31,0, λ65,0, λ86,0, and λ113,0 are simple
and correspond to p = 3, 4, 6, 7 and 8, we get:

Corollary 6.2. There exists h0 > 0, such that, for 0 < h ≤ h0, the eigenvalues1

λ20,h, λ31,h, λ65,h, λ86,h and λ113,h, are not Courant-sharp.

We note that for p = 5, the argument does not work for h = 0 because of the
multiplicity 3, but could be modified by observing that the eigenvalue becomes
simple for h > 0. In any case, this was treated in Proposition 5.8 by another
argument. The cases p = 9 and p = 10 were already treated in Proposition 4.10.
We recall that in the case p = 2, we have Proposition 2.3.

7 Perturbation theory for nodal domains at the
boundary, the case h small

As in [6, 5], we make use of a result due to Leydold, [7], that for a C∞-family
of eigenfunctions, the number of nodal domains is constant unless there are sta-
tionary points in the interior or the cardinality of the boundary points changes.

1We have corrected two misprints concerning the labelling in Corollary 4.5 in [6]
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In [5], we have shown that the number of nodal domains cannot locally
increase around some interior point and at a regular point of the boundary by
considering a small perturbation of the Dirichlet case. The proof made use of
the Faber-Krahn inequality, hence cannot be applied for h close to zero for the
“boundary” nodal domains. Our aim here is to treat a small perturbation of
the Neumann case under stronger assumptions, but which could be generic (or
satisfied in many cases).

7.1 At the boundary far from the corners

We consider a C∞-family of eigenfunctions Φ(x, y, θ, h) depending on θ and h ∈
[0, h0), with corresponding eigenvalue λ(h), satisfying the h-Robin condition.
We assume that on one side of the square (say x = −π2 to fix the ideas) there is
a point y0 ∈ (−π2 ,

π
2 ) and some θ0 ∈ [0, π] such that the following condition is

satisfied, for z0 = (−π2 , y0),

Φ(z0, θ0, 0) = 0 ,
∂yΦ(z0, θ0, 0) = 0 ,
∂2
yΦ(z0, θ0, 0) 6= 0 ,
∂θΦ(z0, θ0, 0) 6= 0 .

(7.1)

We also assume that there exist positive constants ε1 and η1 such that in a
neighbourhood B(z0, ε1) of z0, and for |θ−θ0|+h ≤ η1 in R2, Φ(·, θ, h) satisfies;

−∆Φ(x, y, θ, h) = λ(h)Φ(x, y, θ, h) . (7.2)

Our aim is to prove the following proposition

Proposition 7.1. Under Assumptions (7.1) and (7.2), there exist positive con-
stants ε0 and η0 such that in B(z0, ε0) ∩ S the number of nodal domains of
Φ(·, θ, h) is 3 for (θ, h) = (θ0, 0) and is ≤ 3 for |θ − θ0|+ h ≤ η0.

We first give some consequences of (7.1).
We first observe that they imply the following

∇Φ(z0, θ0, 0) = 0 .

Hence, for (θ, h) = (θ0, 0), z0 is a critical point of Φ(·, θ0, 0) considered as a
function on R2.
The second consequence is that by differentiating the Neumann condition tan-
gentially, we obtain that

∂2
x,yΦ(z0, θ0, 0) = 0 .

Coming back to our assumptions, we can assume (w.l.o.g) that

Φ(z0, θ0, 0) = 0 ,
∂yΦ(z0, θ0, 0) = 0 ,
∂2
yyΦ(z0, θ0, 0) < 0 ,
∂θΦ(z0, θ0, 0) < 0 .

(7.3)

We can indeed always come back to this situation by replacing Φ by −Φ or θ
by −θ.
The third consequence of (7.3) and (7.2) is that

∂2
xxΦ(z0, θ0, 0) > 0 . (7.4)
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Hence, z0 is a zero critical point of Φ(·, θ0, 0) with non-degenerate Hessian
with signature (−,+). It then follows, using (7.2), the local structure of an
eigenfunction of the Laplacian in the neighbourhood of z0, and the Neumann
condition, that there exist positive constants ε0 < ε1 and η0 < η1 such that
in B(z0, ε0) ∩ S the nodal set of Φ(·, θ0, 0) consists of two half-lines emanating
from z0 separated by angle π

2 and making angle π
4 with x = −π2 and crossing

∂B(z0, ε0) ∩ S̄ transversally at exactly two points z1 and z2 in S, see Figure 1.
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Figure 1: Two nodal lines emanating from z0 separated by angle π
2 .

The fourth consequence (that follows from the first and last lines in (7.3))
is that there exists θ± such that

θ− < θ0 < θ+ ,
Φ(z0, θ−, 0) > 0 > Φ(z0, θ+, 0) ,
∂θΦ(z0, θ, 0) < 0 , for θ ∈ [θ−, θ+] .

(7.5)

We note that these properties are stable. There exist positive (possibly smaller)
ε0 and η0 such that, for |θ − θ0| + h ≤ η0 the zero set of Φ(·, θ, h) is crossing
∂B(z0, ε0) ∩ S̄ transversally at exactly two points z1(θ, h) and z2(θ, h) in S.
Moreover, we have

lim
(θ,h)→(θ0,0)

zj(θ, h) = zj for j = 1, 2 .

We now apply standard Morse theory for

ψ(y, θ, h) := Φ(−π
2
, y, θ, h) .

This is a Morse function for (θ, h) sufficiently close to (θ0, 0) and ψ(·, θ, h) admits
a unique critical point y(θ, h) close to y0:

∂yψ(y(θ, h), θ, h) = 0 .

We now look at the behaviour of the function χ which is defined by

χ(θ, h) := ψ(y(θ, h), θ, h) .

18



We note that ∂θχ is close to ∂θψ and using the stability of (7.5), we obtain the
existence of a (possibly smaller) η0 > 0 such that for 0 ≤ h ≤ η0 , there exists a
unique θ(h) ∈ (θ0 − η0, θ0 + η0) such that

χ(θ(h), h) = 0 and θ(0) = θ0 .

We now observe that, by construction, y(θ(h), h) satisfies

∂yψ(y(θ(h)), h), θ(h), h) = ψ(y(θ(h), h), θ(h), h) = 0 .

We would like to deduce that for θ < θ(h), ψ(y, θ, h) has two zeros y±(θ, h) such
that y−(θ, h) < y(θ, h) < y+(θ, h) and that, for θ > θ(h), ψ(y, θ, h) has no zero.
Using the Taylor expansion with integral remainder term, we can write

ψ(y, θ, h)− χ(θ, h) = c(y, θ, h)(y − y(θ, h))2 .

where c(y0, θ0, 0) < 0.
We make the change of variable:

y 7→ ỹ =
√
−c(y, θ, h)(y − y(θ, h))

and denote by ỹ 7→ y = ζ(ỹ, θ, h) its inverse map.
If y is a zero of ψ, we obtain:

χ(θ, h) = ỹ2 ,

Hence, if χ(θ, h) ≥ 0, we have two solutions

ỹ± = ±
√
χ(θ, h) .

Coming back to the initial coordinates, we get

y±(θ, h) = y(θ, h)±
√
χ(θ, h)√

−c(ζ(ỹ±, θ, h), θ, h)
.

Using the Robin condition, we also obtain that

∂xΦ(−π/2, y(θ(h), h), θ(h), h) = hΦ(−π/2, y(θ(h), h), θ(h), h)

= h(ψ(y(θ(h), h), θ(h), h) = 0 .

Hence, for h small enough,

zc(h) := (−π/2, y(θ(h), h))

is a zero critical point of Φ(·, θ(h), h).

At this stage, we have achieved the analysis of the intersection of the zero
set at the boundary where we have distinguished three situations depending on
θ− θ(h): the intersection consists of two points, one double point and no point
in a fixed neighbourhood of z0 in the boundary (y0 − ε0, y0 + ε0).

In order to control the topology of the nodal set in B(z0, ε0) ∩ S̄, we now
analyse if Φ(·, θ, h) can have critical points in S ∩B(z0, ε0).
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As a function of (x, y), Φ(·, θ, h) is a Morse function for (θ, h) close to (θ0, 0).
Hence, there exists a unique critical point ẑ(θ, h) close to z0. Let us show that
if it is a zero critical point it has to be on the boundary. If there was such a
zero critical point, we would have, using the Taylor expansion of Φ(z, θ, h) at
ẑ(θ, h) and taking z = ž(θ, h) := (−π2 , y(θ, h)) ,

0 = Φ(ẑ(θ, h), θ, h)
= Φ(ž(θ, h), θ, h) +O(|ẑ(θ, h)− ž(θ, h)|2) .

We now observe that

ž(θ(h), h) = ẑ(θ(h), h) = zc(h)

by uniqueness of the critical point, hence

ẑ(θ, h)− ž(θ, h) = O(|θ − θ(h)|) .

This implies
0 = Φ(ž(θ, h), θ, h) +O(|θ − θ(h)|2) .

We now take the Taylor expansion of Φ(ž(θ, h), θ, h) at θ = θ(h) to obtain

Φ(ž(θ, h), θ, h) = ∂θΦ(ž(θ(h), h), θ(h), h)(θ − θ(h)) +O(|θ − θ(h)|2) .

Altogether, we have

∂θΦ(ž(θ(h), h), θ(h), h)(θ − θ(h)) = O(|θ − θ(h)2)

whose unique solution is θ = θ(h), observing that ∂θΦ(ž(θ(h), h), θ(h), h) 6= 0.
We conclude that ž(θ(h), h) = ẑ(θ(h), h) = zc(h) ∈ ∂S is the only possibility.

We now look at the topology of the nodal set in S̄ ∩ B̄(z0, ε0). If θ > θ(h),
we have no point at the boundary and the only possibility (having in mind that
we have no zero critical point) is an arc inside S joining z1(θ, h) and z2(h, θ).
In this case, we have two nodal sets in S̄ ∩ B̄(z0, ε0).
If θ = θ(h) the only possibility is that the nodal set consists of two arcs joining
zj(θ, h) (j = 1, 2) and ž(θ(h), h) at the boundary. In this case, we have three
nodal sets.
Finally if θ < θ(h), we can exclude the possibility that there is one arc joining
y−(θ, h) and y+(θ, h) and another joining z1(θ, h) and z2(h, θ). Of course they
cannot intersect because this would create a critical point. We observe that

Φ(ž(θ, h), θ, h) > 0 .

Now we have for x ≥ −π2 , taking the Taylor expansion of order 2 at the point
−π2 in the first variable,

Φ(x, y(θ, h), θ, h) = Φ(ž(θ, h), θ, h)+∂xΦ(ž(θ, h), θ, h)(x+
π

2
)+d(x, θ, h)(x+

π

2
)2 ,

with d(−π2 , θ0, 0) = ∂xxΦ(−π2 , y0, θ0, 0) > 0 (by (7.4)).
Using again the Robin condition and the non-negativity of h, we observe

that
∂xΦ(ž(θ, h), θ, h) = hΦ(ž(θ, h), θ, h) ≥ 0 .
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Hence the nodal set for h ≥ 0 does not meet the horizontal segment y = y(θ, h)
in B(z0, ε0). The only remaining possibility is consequently that the nodal set
consists of two non-intersecting arcs connecting two points of the boundary to
two points of ∂B(z0, ε0) ∩ S determining three nodal sets.
This achieves the proof of the proposition.

It remains to understand what can occur at the corners.

7.2 Analysis at the corner

We begin with the Neumann case and we work in Ŝ := (0, π)2 because on Ŝ
there is a unique expression for the eigenfunctions (this allows us to avoid a
discussion of four different cases below).
We are interested in the families (for say p < q)

Φ(x, y, θ, 0) = cos θ cos px cos qy + sin θ cos py cos qx .

We look at the situation at the corner (0, 0). The first question is to know if
there is a zero. We observe that

Φ(0, 0, θ) = (cos θ + sin θ).

Hence the only case is for θ0 = 3π
4 .

If we look at other corners we only meet the same θ or θ = π
4 depending on the

parities of p and q. Due to the Neumann condition, the corner z0 = (0, 0) is a
critical point. Looking at the second derivative, we observe that

∂2
xxΦ(0, 0, θ0, 0) = cos θ0(−p2) + sin θ0(−q2) = cos θ0(q2 − p2) < 0 .

Similarly
∂2
yyΦ(0, 0, θ0, 0) = − cos θ0(q2 − p2) > 0 .

with opposite sign, and
∂2
xyΦ(0, 0, θ0, 0) = 0 .

The zero set for θ = θ0 is simply x = y .
Finally, we note that

∂θΦ(0, 0, θ0) = 2 cos θ0 < 0 .

The guess is simply that this situation is stable for (θ, h) close to (θ0, 0).

Coming back to S and supposing that p and q are even to fix the ideas
(p = 2p̂ and q = 2q̂), we focus on z0 = (−π2 ,−

π
2 ). The family we are interested

in is

Φp,q(x, y, θ, h) := cos θ cos(αpx/π) cos(αqy/π) + sin θ cos(αpy/π) cos(αqx/π)

and we have

Φp,q(−π/2,−π/2, θ, h) := (cos θ + sin θ) cos(αp/2) cos(αq/2) ,

with
cos(αp/2) cos(αq/2) = (−1)p̂+q̂ +O(h) 6= 0 .
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The other cases are similar.

Hence, we consider a C∞-family of eigenfunctions Φ(x, y, θ, h) depending on
θ and h ∈ [0, h0), with corresponding eigenvalue λ(h), satisfying the h-Robin
condition and assume that at a corner z0 = (x0, x0), we have for some θ0 and
h0 > 0

Φ(x, x, θ0, h) = 0 , ∀h ∈ [0, h0]
∇Φ(z0, θ0, h) = 0 , ∀h ∈ [0, h0]
∂2
yΦ(z0, θ0, 0) 6= 0 ,
∂θΦ(z0, θ0, 0) 6= 0 .

(7.6)

We also assume that there exist positive constants ε1 and η1 such that in a
neighbourhood B(z0, ε1) of z0 and for |θ− θ0|+h ≤ η1 in R2, Φ(·, θ, h) satisfies;

−∆Φ(x, y, θ, h) = λ(h)Φ(x, y, θ, h) . (7.7)

If we are at a corner of the form (x0,−x0), we are in a similar situation with
the diagonal y = x replaced by the diagonal y = −x.

Our aim is to prove the following proposition

Proposition 7.2. Under Assumptions (7.6) and (7.7), there exist positive con-
stants ε0 and η0 such that in B(z0, ε0) ∩ S the number of nodal domains of
Φ(·, θ, h) is 2 for |θ − θ0|+ h ≤ η0.

The proof is rather close to that of the previous subsection, except that we
have the additional information that θ(h) = θ0 for each side. The intersection
of the nodal set with the boundary is a point z(θ, h) which moves from one side
to the next side. By assumption z(θ0, h) is the unique critical point of Φ(·, θ0, h)
and z(θ0, h) = z0.

The second step is to show that the only zero critical point is for θ = θ0 and
at the corner. We suppose that ẑ(θ, h) is a zero critical point of Φ(·, θ, h) and
as in the previous subsection we get

0 = Φ(ẑ(θ, h), θ, h) = Φ(z(θ, h), θ, h) +O(|ẑ(θ, h)− z(θ, h)|2) .

By uniqueness of the critical point, we have

ẑ(θ, h)− z(θ, h) = O(|θ − θ0|) .

On the other hand we have

Φ(z(θ, h), θ, h) = ∂θΦ(z0, θ0, h)(θ − θ0) +O(|θ − θ0|)2) .

Using ∂θΦ(z0, θ0, 0) 6= 0, we get θ = θ0 and that the critical point should be for
θ0 and equal to z0.

The last step is easier, we can only have a curve joining the corner and the
unique point on ∂B(z0, ε0) ∩ S which is actually quite close to the diagonal.

8 Zero critical points at the boundary

Note that in this section, the eigenfunctions are written on Ŝ := (0, π)2. The
advantage is that we have a unique expression for the eigenfunctions in the case
h = 0. Since the case where p = q was already treated in Section 6, we assume
that p 6= q in what follows.
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8.1 Analysis at the corner

We are only interested in families of eigenfunctions for the Neumann case in the
form

Φp,q(x, y, θ) = cos θ cos px cos qy + sin θ cos py cos qx .

It is not difficult to show that the corners (0, 0) and (π, π) only belong to the
nodal set when cos θ + sin θ = 0, hence for θ = 3π

4 . For the corners (0, π) and
(π, 0), we get cos θ+ sin θ(−1)p+q = 0 which leads to θ = π

4 or 3π
4 depending on

the parity of p+ q.
In each case, we observe that the diagonal arriving at the corner belongs to the
zero set. For h > 0, we observe that the same corners are zeros and critical for
the same value of θ ∈ {π4 ,

3π
4 }.

In order to apply Proposition 7.2, we have that equation (7.6) holds since
we consider the Robin eigenfunctions and the first two conditions of (7.7) are
satisfied, as observed above. It remains to verify whether the third and fourth
conditions of (7.7) are satisfied. We discuss this at the end of Subsection 8.2.

8.2 Analysis at the boundary outside the corners

The zero critical points of z 7→ Φp,q(z, θ) are determined by

cos θ cos px cos qy + sin θ cos py cos qx = 0 ,

p cos θ sin px cos qy + q sin θ cos py sin qx = 0 , and

q cos θ cos px sin qy + p sin θ sin py cos qx = 0 .

On Ŝ = (0, π)2, by the analogous results to (2.5) and (2.6), it suffices to consider
the boundary edge x = 0. If we are on the side x = 0, outside the corner, then,
for y ∈ (0, π), we get

cos θ cos qy + sin θ cos py = 0 ,

q cos θ sin qy + p sin θ sin py = 0 .

Remark 8.1. We note that, for a zero critical point (0, y) at the boundary
{x = 0}, we have necessarily θ 6= 0 and θ 6= π

2 and that cos py = 0 if and only
if cos qy = 0.

If
cos py cos qy 6= 0 , (8.1)

we get
tan θ = − cos py/ cos qy ,

q tan qy = p tan py .

We first consider the particular cases (0, q) or (p, 0) (with p > 1 or q > 1).
In this case the above condition (8.1) is satisfied and we get

Lemma 8.2.

1. If p = 0 and q > 1, we have y = k πq for some k ∈ {1, . . . , q − 1} and

tan θ = (−1)k+1.
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2. If p > 1 and q = 0, we have y = k πp for some k ∈ {1, . . . , p − 1} and

tan θ = (−1)k+1.

Moreover this critical point is non-degenerate and satisfies the assumptions of
Proposition 7.1.

Proof. It is not difficult to check that the critical point is non-degenerate so we
only detail the last statement. Note that we have θ ∈ {π4 ,

3π
4 }.

In the first case, we just observe that at the critical point (0, k πq ), we have

|∂2
yyΦ0,q(0, k

π

q
)| = q2/

√
2 6= 0 .

The other condition reads

∂θΦ0,q(0, k
π

q
) = sin θ(−1)k+1 + cos θ = 2 sin θ(−1)k 6= 0 .

(Note that k even corresponds to θ = 3π
4 and k odd corresponds to θ = π

4 .)

We now consider the case when pq 6= 0 , p 6= q .

Analysis of (8.1)
We first assume that p and q are mutually prime.
Let us consider a solution of cos py = 0 and cos qy = 0 with y ∈ (0, π).
From the assumptions we get that

y =
(2m+ 1)π

2p
=

(2n+ 1)π

2q
, (8.2)

where m and n are non-negative integers, satisfying

(2m+ 1) < 2p and (2n+ 1) < 2q . (8.3)

(8.2) implies
(2m+ 1)q = (2n+ 1)p .

Since p and q are mutually prime, this implies the existence of a positive integer
` such that

(2m+ 1) = `p .

This would imply, by (8.3), ` = 1 and p = (2m+ 1) and q = (2n+ 1) and p+ q
even.
Hence neither cos py = 0 nor cos qy = 0 can occur if p+q is odd (see Remark 8.1).

Lemma 8.3. If p and q are mutually prime and p+ q is odd, then we can apply
Proposition 7.1 on the boundary x = 0 away from the corners.

Proof. Because cos qy cos py 6= 0, the critical points on the boundary x = 0 are
critical points of the function

y 7→ fp,q(y) =
cos py

cos qy
.
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We do not need to discuss the localisation or the existence of these zero critical
points, but we have only to verify if the assumptions of Proposition 7.1 are
satisfied at such a point.

The Hessian is given by

Hessian(Φp,q) =

(
cos py sin θ(p2 − q2) 0

0 cos py sin θ(q2 − p2)

)
Hence this Hessian is non-degenerate because p 6= q and θ 6= 0, π2 .
We also have that

∂θΦp,q(0, y) = − sin θ cos qy + cos θ cos py ,

and, since (0, y) belongs to the nodal set, that

cos qy = − sin θ cos py

cos θ
.

Hence we obtain
∂θΦp,q(0, y) =

cos py

cos θ
6= 0 .

So Proposition 7.1 can be applied when p, q are mutually prime and p + q is
odd.

Remark 8.4. Suppose p and q are mutually prime, p + q is even and (0, y)
is a critical point. If cos py 6= 0, then, by Remark 8.1, cos qy 6= 0 and so
Proposition 7.1 applies (as in the proof of Lemma 8.3).

If cos py = 0 , then, by Remark 8.1, cos qy = 0. As above we have p = 2m+1,
q = 2n+ 1 and y = π

2 . We have that ∂θΦp,q(0,
π
2 ) = 0 if and only if

tan θ =
q

p
(−1)m+n−1.

Hence for θ 6= arctan( qp (−1)m+n−1), Proposition 7.1 can be applied. The re-

maining case θ = arctan( qp (−1)m+n−1) must be checked.

When p and q are not prime, we will see how we can reduce to this situation
by looking at sub-squares. Indeed, in order to check whether conditions (7.1)
and the third and fourth conditions of (7.7) are satisfied, we need only consider
h = 0 for which the folding argument used in [6] holds. More precisely, suppose
that p = kp̃ and q = kq̃ with p̃ and q̃ mutually prime and p̃+ q̃ odd.
dividing (0, π)2 into k2 sub-squares, we can investigate whether the corners of
these sub-squares lying in x = 0 are in the zero set of Φp,q(·, θ) or not. We have
indeed at a point (0, `πk ),

Φp,q(0, `π/k, θ) = cos θ cos `q̃π + sin θ cos `p̃π = (cos θ − sin θ)(−1)`q̃ .

So we have a special case (that the point belongs to the nodal set) when θ = π
4 .

We now perform the change of variable y 7→ 1
k ỹ+ `π

k . In this new coordinate,

we have, for y ∈ ( `πk ,
(`+1)π
k )

Φp,q(0, y) = cos θ cos(`q̃π + q̃y) + sin θ cos(`p̃π + p̃y)
= (−1)`q̃(cos θ cos(q̃y)− sin θ cos(p̃y)) .
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We are again as in the previous case in the new variables (x̃, ỹ) except that
the left corners of the sub-squares (which could be zeros when θ = π

4 ) are
interior points of the boundary of the initial square. But the analysis there is
not difficult and has already been discussed above. Hence we can generalise the
previous lemma in the following way:

Lemma 8.5. If p = kp̃ and q = kq̃ with k ≥ 1, p̃ and q̃ mutually prime and
p̃+ q̃ odd, then we can apply Proposition 7.1 on the boundary x = 0 .

Remark 8.6. We remark that by the above, if p and q are mutually prime with
p+ q odd, then the third and fourth conditions of (7.7) are satisfied, and hence
Proposition 7.2 can be applied. If p and q are mutually prime with p + q even,
then the case θ = arctan( qp (−1)m+n−1 has to be checked by another approach,
otherwise Proposition 7.2 can be applied.

9 Application to non Courant-sharp situations

It is immediate to see that, due to the monotonicity of the Robin eigenvalues
with respect to h, the labelling of an eigenvalue corresponding to the pair (p, q)
can only increase when going from h = 0 to h > 0 .
Hence, starting with a Neumann eigenvalue that is not Courant-sharp, in order
to show that the corresponding Robin eigenvalue with h sufficiently small is not
Courant-sharp, it is enough to show that the number of nodal domains does not
increase as h (small) increases.
We now list the remaining cases, where the arguments of the previous subsec-
tions apply.

9.1 Treatment of the special cases in [6] for h > 0 small

In [6], there were certain Neumann eigenvalues for which the Courant-sharp
property could not be determined by the Pleijel-inspired strategy or by symme-
try arguments. To show that these eigenvalues are not Courant-sharp, a more
in-depth analysis was required. Below we consider these special cases and apply
the results of Section 8, together with the result for h = 0 of [6], to show that
the corresponding Robin eigenvalues are not Courant-sharp for h small enough.

1. The case λ7 = λ8 = 5 ((p, q) = (2, 1))
Because p and q are mutually prime and p+ q is odd, the general theory
of Section 8 applies.

2. The case λ21 = λ22 = 20 ((p, q) = (4, 2))
By dividing into four sub-squares, we obtain four copies of the previous
situation. So the results of Section 8 apply.

3. The case λ70 = λ71 = 80 ((p, q) = (8, 4))
Similarly, by dividing into sixteen sub-squares, we come back to the situ-
ation of item 1.

4. The case λ42 = λ43 = 45 ((p, q) = (6, 3))
By dividing into nine sub-squares, we come back to the situation of item 1.
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5. The case λ14 = λ15 = 13 ((p, q) = (3, 2))
Because p and q are mutually prime and (p+ q) is odd, the general theory
of Section 8 applies.

6. The case λ49 = λ50 = 52 ((p, q) = (6, 4))
We can come back to the previous situation by dividing into four sub-
squares.

7. The case λ18 = λ19 = 17 ((p, q) = (4, 1))
Because p and q are mutually prime and p+ q is odd, the general theory
of Section 8 applies.

8. The case λ66 = λ67 = 73 ((p, q) = (8, 3))
Because p and q are mutually prime and p+ q is odd, the general theory
of Section 8 applies.

9. The case λ84 = λ85 = 97 ((p, q) = (9, 4)).
Because p and q are mutually prime and p+ q is odd, the general theory
of Section 8 applies.

10. The case λ101 = λ102 = 116 ((p, q) = (10, 4)). By dividing into four sub-
squares, we come back to the analysis of (5, 2). Observing that 5+2 = 7 is
odd and that 2 and 5 are mutually prime, the general theory of Section 8
applies (see also Proposition 5.2).

9.2 Remaining cases

In Section 5, there were four cases for which we could not determine whether
the Courant-sharp property holds. This is due to the fact their multiplicity is
larger than 2 for h = 0. Three of these cases can be treated by the general
theory of Section 8 as we see below.

11. The case λ78,h = λ79,h (h > 0) corresponding to (p, q) = (6, 7). Because p
and q are mutually prime and p+ q is odd, the general theory of Section 8
applies.

12. The case λ126,h = λ127,h(h > 0) corresponding to (8, 9). Hence p and q are
mutually prime, p+ q is odd, and the general theory of Section 8 applies.

13. The case λ89,h = λ90,h (h > 0) corresponding to (6, 8) By dividing into
four sub-squares, we come back to the analysis of (3, 4) which can be
treated observing that 3 and 4 are mutually prime and that 3 + 4 is odd
(see also Proposition 5.2).

In all these cases, the multiplicity becomes 2 for h > 0 .

9.3 Discussion

We can treat the cases (0, p) for p > 2 by invoking Lemma 8.2 and the results of
[6] that the Neumann eigenvalues corresponding to these pairs are not Courant-
sharp. The case (0, 1) was already discussed in Subsection 2.3.
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We also recall that we have completely analysed the cases (p, p) for p ≥ 1 in
Section 6.

In conclusion, in order to achieve the proof of Theorem 1.3, it remains to
analyse the following two cases:

• The case (0, 2) where our previous analysis does not permit us to exclude
a possible Courant-sharp situation for h > 0.

• The case (p, q) = (7, 9) where p and q are mutually prime but p + q is
even.

For the latter, some special analysis has to be done for tan θ = 7
9 .

9.4 Numerical illustration of the case p = 3

We now illustrate and give a more detailed analysis of the typical case (0, p) in
the odd situation: p = 3. We recall that it was shown in [6] that the Neumann
eigenvalue λ10,0 corresponding to the pair (0, 3) is not Courant-sharp.
We set

Φ0,3(x, y, θ, h) := Φh,θ,0,3(x, y),

for (x, y) ∈ (0, π2 )2. Following the steps of the (0, p) analysis, we see that the
critical points only occur when θ = π

4 ,
3π
4 . Below we plot Φh,θ,0,3(x, y) for

various values of θ.

Figure 2: The eigenfunction Φh,θ,0,3(x, y) when h = 0 for θ = 0 (blue), θ = π
4

(magenta), θ = π
2 (red) and θ = 3π

4 (navy).

From Figure 2, we see that Φh,θ,0,3(x, y) has 4 nodal domains except for the
cases θ = π

4 ,
3π
4 when it has 8 nodal domains.

For h sufficiently small, we have to concentrate on values of θ close to π
4 and

to look at what happens in the neighbourhood of the boundary critical points.
By Remark 2.4, since p = 3 is odd, it is sufficient to consider θ = π

4 . For
the Neumann case with θ = π

4 , the critical points on the boundary are (π2 ,−
π
2 ),

(−π2 ,
π
2 ), (π6 ,

π
2 ), (π2 ,

π
6 ), (−π2 ,−

π
6 ), (−π6 ,−

π
2 ).

On the side x = π
2 , we have that Φh,θ,0,3(π2 , y) = 0 implies that

tan θ = −cos(α0/2) sin(α3y/π)

sin(α3/2) cos(α0y/π)
. (9.1)

Similarly, we have that
∂Φh,θ,0,3

∂y (π2 , y) = 0 implies that

tan θ =
α3 cos(α0/2) cos(α3y/π)

α0 sin(α3/2) cos(α0y/π)
. (9.2)
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(a) θ = 0 (blue), θ = θ(0.01) (orange).

(b) θ = 1
2

(θ(0.01) + π
4

) (purple), θ = π
4

(magenta).

Figure 3: The Robin eigenfunction Φh,θ,0,3 for h = 0.01 and various values of θ.
We note that θ(0.01) is given by Equation (9.4) with h = 0.01.

By equating (9.1) and (9.2), we obtain

α0 tan
(α0y

π

)
= α3 cot

(α3y

π

)
. (9.3)

Let yc denote a solution of (9.3) and set

θ(h) = arctan

(
−cos(α0/2) sin(α3yc/π)

sin(α3/2) cos(α0yc/π)

)
. (9.4)

Then for θ = θ(h), (π2 , yc) is a boundary critical point of Φh,θ,0,3(x, y).
For h=0.01, we compute numerically that yc ≈ 0.5236. Below we plot Φh,θ,0,3

for h = 0.01 and various values of θ in order to show the changes in the structure
of the nodal domains.

From Figure 3 and the above analysis, we see that Φh,θ,0,3 has
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• 0 interior critical points, 6 boundary critical points and 4 nodal domains
for θ ∈ [0, θ(0.01)),

• 0 interior critical points, 4 boundary critical points for θ = θ(0.01), and 4
nodal domains,

• 0 interior critical points, 2 boundary critical points for θ ∈ (θ(0.01), π4 ),
and 2 nodal domains,

• 2 interior critical points, 2 boundary critical points for θ = π
4 , and 4 nodal

domains.

10 The case (p, q) = (0, 2)

The difficulty is that for h = 0, we are in the Courant-sharp situation. We will
show that the number of nodal domains decreases as h > 0 (small) increases
(the labelling of the eigenvalue is constant in this case).

We want to analyse the zero set of

Φh,θ,0,2(x, y) := cos θ cos(α0(h)x/π) cos(α2(h)y/π)

+ sin θ cos(α2(h)x/π) cos(α0(h)y/π) .

We recall that the analysis for h large was obtained in [5], but we are interested
here with the case where h is small.
We note that for h = 0 this reads

Φ0,2(x, y, θ, 0) := cos θ cos(2y) + sin θ cos(2x) .

For this case, the only values of θ for which there are critical points are θ = π
4

and 3π
4 . For θ = π

4 , the critical points are only on the boundary at the middle of
each side, that is (±π2 , 0), (0,±π2 ). For θ = 3π

4 , there is one interior critical point
at (0, 0) and four boundary critical points at the corners (±π2 ,

π
2 ), (±π2 ,−

π
2 ). In

all these cases, we are in a Morse situation.
To analyse the situation for h small on the boundary x = −π2 , we observe

that we are still dealing with a Morse function Φh,θ,0,2 for (θ, h) close to (π4 , 0),
which admits a critical point zh,θ close to z0 = (−π2 , 0). Hence we still have to
consider the Morse picture and the corresponding zero-set.

Analysis at the boundary for θ close to π
4 and h ≥ 0 close to 0

Here we can analyse the situation at the boundary x = −π2 and compare it with
the situation on y = −π2 . We can also deduce from (2.5) that

Φ0,2

(
−π

2
, y, θ, h

)
= Φ0,2

(
y,−π

2
,
π

2
− θ, h

)
.

Note that the understanding of what is going on for θ < π
4 on the first side gives

the information of what is going on for θ > π
4 on the next side. In addition

Φ0,2 is symmetric with respect to the two axes. Hence, we can then use these
symmetries to understand the complete picture near the sides.

For h ≥ 0, we analyse the zeros of the restriction to x = −π2 of the eigen-
function which is given by

y 7→ ψ(y, θ, h) := Φh,θ,0,2(−π/2, y) .
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The case h = 0
For h = 0, this gives

ψ(y, θ, 0) = cos θ cos(2y)− sin θ = 0 ,

which takes the form
cos(2y) = tan θ . (10.1)

Note for later that
∂θψ(0, π/4, 0) = −

√
2 . (10.2)

When θ increases from 0 to π
4 , we get immediately from (10.1) that there is a

unique y(θ) decreasing from y = π
4 to 0 such that the zero set consists of ±y(θ).

For θ = π
4 , y(π4 ) is a non-degenerate critical point of y 7→ ψ(y, π4 , 0). For θ > π

4 ,
the eigenfunction has no zero on x = −π2 .

Application to the global nodal structure (h = 0)
Using the above symmetries (x, y, θ) 7→ (y, x, π2 − θ), (x, y) 7→ (x,−y) and
(x, y) 7→ (−x, y) and the fact that there are no critical points inside the square
for θ ≤ π

2 , we obtain that we start from 3 nodal domains for θ < π
4 , then get

5 nodal domains at θ = π
4 before obtaining 3 nodal domains for θ > π

4 . See
Figure 4. Hence we recall that we are in the Courant-sharp situation for θ = π

4 .

Figure 4: The fifth eigenfunction when h = 0 for θ = 0 (blue), θ = π
4 (magenta),

θ = π
2 (red) and θ = 3π

4 (navy).

The case h ≥ 0
For θ = π

4 and h = 0, y = 0 is a non-degenerate critical point of the Morse
function y 7→ ψ(y, π4 , 0). On the other hand y = 0 is always a critical point
of y 7→ ψ(y, θ, h). By the general properties of Morse functions depending on
parameters, y = 0 is locally the unique critical point for (θ, h) close to (π4 , 0)
and is also non-degenerate.
The determination of the zeros is related to the sign of ψ(0, θ, h): two solutions
±y(θ, h) if ψ(0, θ, h) > 0, of course one double solution y = 0 if ψ(0, θ, h) = 0
and no solution if ψ(0, θ, h) < 0 .
For y = 0 and x = −π2 , we get

ψ(0, θ, h) := cos θ cos(α0(h)/2) + sin θ cos(α2(h)/2) .

Hence (in the neighbourhood of (π4 , 0)), due to the negativity of ∂θψ (see (10.2)),
there is a unique θ(h) such that ψ(0, θ(h), h) = 0 and corresponding to a change
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of sign of θ 7→ ψ(0, θ, h). It remains to compute θ(h) for h ≥ 0 small.

ψ(0, θ, h) = 0 if and only if tan θ = − cos(α0(h)/2)/ cos(α2(h)/2) .

We expand the right-hand side and, using the expansions (deduced from (2.1))

α0(h) ∼
√

2πh , α2(h)− 2π ∼ h ,

we obtain

tan θ = 1− πh

4
+O(h2) ,

so

θ(h)− π

4
∼ −πh

8
,

and in particular θ(h) < π
4 for h > 0 . Hence, we get that for θ < θ(h), there are

two zeros on the left side x = −π2 of the square (and consequently the same on
the opposite side x = π

2 ), one double zero for θ = θ(h) and no zero for θ > θ(h).
Using the symmetry argument, we also get that on the two other sides there
are no zeros for θ < π

2 − θ(h) = π
4 + πh

8 +O(h2), a double zero for θ = π
2 − θ(h)

and two zeros for θ > π
2 − θ(h).

As soon as h > 0 is small enough, we have that

θ(h) <
π

2
− θ(h) .

Assuming that there are no critical points inside the square, we obtain by topo-
logical considerations that the number of nodal domains is 3 for 0 < θ ≤ θ(h),
2 for θ(h) < θ < π

2 − θ(h) and again 3 for π
2 − θ(h) ≤ θ < π

2 . In particu-
lar, observing that the labelling of the eigenvalue is five, we cannot be in the
Courant-sharp situation for h > 0 (h small enough).

Analysis at the corner for θ close to 3π
4 It remains to analyse the situa-

tion for θ close to 3π
4 and h ≥ 0. We note that the critical point (0, 0) is stable

and independent of h and θ and the corresponding critical value is cos θ+ sin θ.
Hence it only appears for θ = 3π

4 .

Considering the corners, say for example the corner (−π2 ,
π
2 ), we again ob-

serve that, for any h ≥ 0, this is a critical point for θ = 3π
4 . As we have

seen, there are no other values of θ close to 3π
4 such that we have a zero crit-

ical point. It is not difficult to show that Φh,θ,0,2(x, y) satisfies the conditions
(7.6) for z0 = (−π2 ,

π
2 ) and θ = 3π

4 . Hence Proposition 7.2 applies and in a
neighbourhood of the corner, there are exactly 2 nodal domains.

So the number of nodal domains for π
2 < θ < π is 3 or 4. In particular we

have proved:

Proposition 10.1. There exists h0 > 0 such that for h ∈ (0, h0) the eigenvalue
λ5,h is not Courant-sharp. In particular, there are three critical values θ∗j (h) ∈
[0, π) (j = 1, 2, 3) such that

θ∗1(h) = arctan

(
−cos(α0/2)

cos(α2/2)

)
, θ∗2(h) =

π

2
− θ∗1(h) , θ∗3 =

3π

4
,

and such that Φh,θ,0,2 has:
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(a) θ = 0 (blue), θ = θ∗1(0.01) (magenta), θ = π
4

(red).

(b) θ = θ∗2(0.01) (orange), θ = π
2

(lime), θ = 3π
4

(navy).

Figure 5: The Robin eigenfunction Φh,θ,0,2 for h = 0.01 and various values of θ.

• 3 nodal domains for θ ∈ [0, θ∗1(h)];

• 2 nodal domains for θ ∈ (θ∗1(h), θ∗2(h));

• 3 nodal domains for θ ∈ [θ∗2(h), θ∗3);

• 4 nodal domains for θ = θ∗3;

• 3 nodal domains for θ ∈ (θ∗3 , π).

We remark the preceding result is the analogue of Proposition 6.1 of [5] for
the case where h > 0 is large.

In Figure 5, for h = 0.01, we depict the transitions between the nodal par-
titions of Φh,θ,0,2(x, y) for (x, y) ∈ (−π2 ,

π
2 )2, as θ varies.

We observe that, by the preceding analysis, Φh,θ,0,2 has

• 0 interior critical points and 4 boundary critical points for θ ∈ [0, θ∗1(h)),

• 0 interior critical points and 2 boundary critical points for θ = θ∗1(h),

• 0 interior critical points and 0 boundary critical points for θ ∈ (θ∗1(h), θ∗2(h)),

• 0 interior critical points and 2 boundary critical points for θ = θ∗2(h),

• 0 interior critical points and 4 boundary critical points for θ ∈ (θ∗2(h), θ∗3),

• 1 interior critical point and 4 boundary critical points for θ = θ∗3 ,

• 0 interior critical points and 4 boundary critical points for θ ∈ (θ∗3 , π).
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11 The case (p, q) = (7, 9)

On Ŝ = (0, π)2, the Robin eigenfunction for h ≥ 0 corresponding to (p, q) =
(7, 9) is

Φ7,9,θ,h(x, y) = cos θ sin

(
α7(h)x

π
− α7(h)

2

)
sin

(
α9(h)y

π
− α9(h)

2

)
+ sin θ sin

(
α9(h)x

π
− α9(h)

2

)
sin

(
α7(h)y

π
− α7(h)

2

)
.

We focus on the value of θ for which tan θ = 7
9 as our preceding analysis

does not apply in this case (see Remark 8.4).
By Sturm’s theorem, on any boundary edge of Ŝ, Φ7,9,θ,h has at least 7

zeros and at most 9 zeros. In particular, for h = 0, we see that on a given
side, say y = π, there are 6 zeros where the nodal set meets the boundary ∂Ŝ
transversally (see the central figure in Figure 6). Standard Morse theory applies
in a neighbourhood of each of these zeros so each such critical point is isolated
under a small perturbation of h.

Figure 6: The nodal set of the Neumann eigenfunction corresponding to (p, q) =
(7, 9) for θ = 13π

64 (red curve), θ = arctan( 7
9 ) (blue curve) and θ = 14π

64 (green
curve).

For the point z0 = (π2 , 0), we must analyse how the nodal set in the neigh-
bourhood B(z0, ε0) changes under a small perturbation of h. As we increase
h > 0 (small), by Sturm’s theorem, we either obtain:

(i) 2 additional zero critical points on y = 0 ,

(ii) 1 additional zero critical point on y = 0 ,

(iii) no additional zero critical points on y = 0 .

We observe that x = π
2 belongs to the nodal set for any θ and y ∈ (0, π).

We also see that Φ7,9,θ,h(π − x, y) = −Φ7,9,θ,h(x, y). So if (x, y) belongs to the
nodal set of Φ7,9,θ,h(x, y) then so does (π−x, y). This eliminates possibility (ii).

We introduce the following notation to facilitate our discussion.
Let B̂(z0, ε0) = B(z0, ε0) ∩ Ŝ. Define ∂BB̂ := ∂B̂(z0, ε0) ∩ ∂Ŝ, which is an

interval, and ∂IB̂ := ∂B̂(z0, ε0) \ ∂BB̂(z0, ε0), which is a semi-circle.
By Lemma 5.3 of [5], we can choose ε0 small enough such that via a small

perturbation of h, it is not possible to obtain a nodal domain ω ⊂ B̂(z0, ε0)
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such that ∂ω∩∂BB̂ consists of at most finitely many points. We are not able to
exclude the possibility that via a small perturbation of h, a nodal domain ω is
obtained such that ∂ω ∩ ∂BB̂ is a non-trivial interval. This is because we start
from the Neumann case h = 0 for which Lemma 5.3 of [5] does not apply.

By the local structure of a Neumann eigenfunction, when h = 0 there are 3
distinct nodal lines emanating from z0 and intersecting ∂IB̂ in 3 distinct points.
This gives rise to 4 nodal domains. After a small perturbation of h, there are
still 3 points that belong to the intersection of the nodal set with ∂IB̂.

Let N denote the nodal set. If N ∩ ∂IB̂ contains 3 points and N ∩ ∂BB̂
contains 3 points, then B̂(z0, ε0) contains at most 6 nodal domains. In this
case, there are at most two nodal domains whose boundaries intersect ∂BB̂ on
a non-trivial interval and do not intersect ∂IB̂.

If N ∩ ∂IB̂ contains 3 points and N ∩ ∂BB̂ contains 1 point, then B̂(z0, ε0)
contains at most 4 nodal domains (there are no other possibilities in this case
since ε0 was chosen small enough above so that Lemma 5.3 of [5] applies).

Hence, after a small perturbation of h, we gain at most two additional nodal
domains in B̂(z0, ε0). Taking into account that we have two such boundary
critical points, the maximum number of additional nodal domains that we gain
under a small perturbation of h is 4.

For h = 0, Φ7,9,θ,0 has 32 nodal domains. So for h small, Φ7,9,θ,h has at
most 36 nodal domains. But the pair (7, 9) corresponds to λ116,h, so λ116,h is
not Courant-sharp for h sufficiently small.

In Figure 7 we plot the nodal set of Φ7,9,θ,h(x, y) for (x, y) in a neighbourhood
of (π2 , 0), h = 0.1 and θ = 13π

64 , arctan( 7
9 ), 14π

64 respectively. We see that for

h = 0.1, the number of nodal domains in B̂(z0, ε0) is at most 4 as θ close to
arctan( 7

9 ) varies.

Figure 7: The nodal set of the Robin eigenfunction corresponding to (p, q) =
(7, 9) with h = 0.1 for θ = 13π

64 (red curve), θ = arctan( 7
9 ) (blue curve) and

θ = 14π
64 (green curve). We are interested in the behaviour near the zero critical

point (π2 , 0).

In Figure 8, we focus on the case θ = arctan( 7
9 ). We see that for h = 0,

(π2 , 0) is a triple point, whereas for h = 0.1 we no longer have a triple point.

Figure 8: The nodal set of the Neumann eigenfunction (left), and the Robin
eigenfunction with h = 0.1 (right) corresponding to (p, q) = (7, 9) and θ =
arctan( 7

9 ).
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A First Neumann eigenvalues of a square

Neumann
m n m2 + n2 k
0 0 0 1
1 0 1 2,3
0 1 1 2,3
1 1 2 4
2 0 4 5,6
0 2 4 5,6
2 1 5 7,8
1 2 5 7,8
2 2 8 9
3 0 9 10,11
0 3 9 10,11
3 1 10 12,13
1 3 10 12,13
3 2 13 14,15
2 3 13 14,15
4 0 16 16,17
0 4 16 16,17
4 1 17 18,19
1 4 17 18,19
3 3 18 20
4 2 20 21,22
2 4 20 21,22
5 0 25 23,24,25,26
0 5 25 23,24,25,26
4 3 25 23,24,25,26
3 4 25 23,24,25,26
5 1 26 27,28
1 5 26 27,28
5 2 29 29,30
2 5 29 29,30
4 4 32 31
5 3 34 32,33
3 5 34 32,33
6 0 36 34,35
0 6 36 34,35
6 1 37 36,37
1 6 37 36,37
6 2 40 38,39
2 6 40 38,39
5 4 41 40,41
4 5 41 40,41
6 3 45 42,43
3 6 45 42,43
7 0 49 44,45
0 7 49 44,45

Neumann
m n m2 + n2 k
7 1 50 46,47,48
5 5 50 46,47,48
1 7 50 46,47,48
6 4 52 49,50
4 6 52 49,50
7 2 53 51,52
2 7 53 51,52
7 3 58 53,54
3 7 58 53,54
6 5 61 55,56
5 6 61 55,56
8 0 64 57,58
0 8 64 57,58
8 1 65 59,60,61,62
1 8 65 59,60,61,62
7 4 65 59,60,61,62
4 7 65 59,60,61,62
8 2 68 63,64
2 8 68 63,64
6 6 72 65
8 3 73 66,67
3 8 73 66,67
7 5 74 68,69
5 7 74 68,69
8 4 80 70,71
4 8 80 70,71
9 0 81 72,73
0 9 81 72,73
9 1 82 74,75
1 9 82 74,75
9 2 85 76,77,78,79
2 9 85 76,77,78,79
7 6 85 76,77,78,79
6 7 85 76,77,78,79
8 5 89 80,81
5 8 89 80,81
9 3 90 82,83
3 9 90 82,83
9 4 97 84,85
4 9 97 84,85
7 7 98 86
10 0 100 87,88,89,90
0 10 100 87,88,89,90
8 6 100 87,88,89,90
6 8 100 87,88,89,90
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Neumann
m n m2 + n2 k
10 1 101 91,92
1 10 101 91,92
10 2 104 93,94
2 10 104 93,94
9 5 106 95,96
5 9 106 95,96
10 3 109 97,98
3 10 109 97,98
8 7 113 99,100
7 8 113 99,100
10 4 116 101,102
4 10 116 101,102
9 6 117 103,104
6 9 117 103,104
11 0 121 105,106
0 11 121 105,106
11 1 122 107,108
1 11 122 107,108
11 2 125 109 - 112
2 11 125 109 - 112
10 5 125 109 - 112
5 10 125 109 - 112
8 8 128 113
11 3 130 114 - 117
3 11 130 114 - 117
9 7 130 114 - 117
7 9 130 114 - 117
10 6 136 118,119
6 10 136 118,119
11 4 137 120,121
4 11 137 120,121
12 0 144 122,123
0 12 144 122,123
12 1 145 124 - 127
9 8 145 124 - 127
8 9 145 124 - 127
1 12 145 124 - 127
11 5 146 128,129
5 11 146 128,129
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[4] P. Freitas, D. Krejčǐŕık. The first Robin eigenvalue with negative boundary
parameter. Advances in Mathematics 280 (2015), 322–339.

[5] K. Gittins, B. Helffer. Courant-sharp Robin eigenvalues for the square and
other planar domains. arXiv:1812.09344 [math.SP], 8 February 2019.

[6] B. Helffer, M. Persson Sundqvist. Nodal domains in the square—the Neu-
mann case. Mosc. Math. J. 15 (2015), 455–495.

[7] J. Leydold. Knotenlinien und Knotengebiete von Eigenfunktionen.
Diplom Arbeit, Universität Wien (1989), unpublished. Available at
http://othes.univie.ac.at/34443/.
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