
HAL Id: hal-02369471
https://hal.science/hal-02369471

Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Robot Programming Network
Enric Cervera, Philippe Martinet, Raul Marin, Amine A Moughlbay, Angel P

del Pobil, Jaime Alemany, Roger Esteller, Gustavo Casañ

To cite this version:
Enric Cervera, Philippe Martinet, Raul Marin, Amine A Moughlbay, Angel P del Pobil, et al.. The
Robot Programming Network. Journal of Intelligent and Robotic Systems, 2016, 81 (1), pp.77-95.
�10.1007/s10846-015-0201-7�. �hal-02369471�

https://hal.science/hal-02369471
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

The Robot Programming Network

An Online Distributed System
for Practical Robotics Learning

Enric Cervera · Philippe Martinet ·
Raul Marin · Amine A. Moughlbay ·
Angel P. del Pobil · Jaime Alemany ·
Roger Esteller · Gustavo Casañ

Received: date / Accepted: date

Abstract The Robot Programming Network (RPN) is an initiative for cre-
ating a network of robotics education laboratories with remote programming
capabilities. It consists of both online open course materials and online servers
that are ready to execute and test the programs written by remote students.
Online materials include introductory course modules on robot programming,
mobile robotics and humanoids, aimed to learn from basic concepts in science,
technology, engineering, and mathematics (STEM) to more advanced program-
ming skills. The students have access to the online server hosts, where they
submit and run their programming code on the fly. The hosts run a variety of
robot simulation environments, and access to real robots can also be granted,
upon successful achievement of the course modules. The learning materials
provide step-by-step guidance for solving problems with increasing level of dif-
ficulty. Skill tests and challenges are given for checking the success, and online
competitions are scheduled for additional motivation and fun. Use of standard
robotics middleware (ROS) allows the system to be extended to a large num-
ber of robot platforms, and connected to other existing tele-laboratories for
building a large social network for online teaching of robotics.

Keywords Remote laboratories · Robot programming · Online learning

E. Cervera, R. Marin, A. P. del Pobil, J. Alemany, R. Esteller, G. Casañ
Robotic Intelligence Lab
Jaume-I University of Castelló
Spain
E-mail: ecervera@uji.es

P. Martinet, A. A. Moughlbay
IRCCyN
Ecole Centrale de Nantes
France



2 Enric Cervera et al.

1 Introduction

Remote laboratories and online robotic systems have been around for nearly
two decades, with considerable success [45]. With the advent of cross-platform
middleware [38] and the adoption of new powerful World Wide Web standards
[33], we may well be approaching a new golden era for web-based laboratories.

The availability of such platforms will surely increase the productivity of
the research community, yet they will become invaluable as educational re-
sources, for students and interested public. Sophisticated intelligent robotic
platforms could be made accessible worldwide, the only cost being an Internet
connection for the user.

Nowadays, there already exists a myriad of web-enabled intelligent systems,
ready to be remotely controlled, their sensors and outputs visualized. An awe-
some example is the PR2 Remote Lab [36], which enables a large community
of researchers to use a state-of-the-art yet expensive platform.

However, to our knowledge, most systems are built ad-hoc with their cus-
tomized solutions for management and development. The lack of a standard-
ized remote laboratory framework and the dilemma between offering capabil-
ities and maintaining security prevents the widespread extension of the access
to such systems. Usually, the interface only makes it possible to control the
elements of the robot. In some cases, scripting capabilities for executing a
limited set of commands are provided [28].

In this paper, we present a system that allows users of a Virtual Learning
Environment to seamlessly work with web-based laboratories consisting of
real robots or 2D/3D simulators. User programs consist of fully-functional
source code written on any of the supported programming languages (Python,
Lisp, Matlab). The code is executed in the remote laboratory, thus it can
access all the available information and services, without any additional remote
communication overhead during execution. Upon finishing, the output of the
process is returned back to the user’s browser, and the generated data is readily
available to download for further analysis.

The distributed nature of the framework is the key factor for its scalabil-
ity, allowing the extension to a large number of learning environments and
remote laboratories. Security is emphasized through user authentication ser-
vices, adequate Application Programming Interfaces (API) and the use of
Virtual Machines (VM) for the execution of the user’s code.

2 Motivation and Related Work

The RPN project (www.robotprogramming.net) aims to bring together three
components (robots, Internet, and programming), which, up to now, have
been grouped into pairs with considerable success. Our aim is to advance a
step further, combining the potential of all three technologies into a unique
learning framework (Fig. 1).



The Robot Programming Network 3

Fig. 1 The RPN concept: online programming of robotic systems.

2.1 Networked Robots

Practically from its conception between the late 1980s and early 1990s, the
Internet was realized to allow remote users to interact with and monitor robots
and autonomous systems [45].

With the major achievement of being online for over ten years, the Teler-
obot of the University of Western Australia (UWA) has become one of the
most popular remote laboratories, and similar systems have proliferated since
then [28,13,32,34,41,24,20,23].

The PR2 Remote Lab [36,34] represents a milestone in online robot sys-
tems. Previous attempts focused on simple experiments and online learning,
and did not build upon shared robot middleware frameworks. This laboratory
uses Robot Web Tools [3], a collection of open-source modules and tools for
building web-based robot apps, allowing web applications to interface with a
variety of robots running ROS.

Another milestone in the development of online robotics is the RoboEarth
project [47]: it is a more ambitious system, which consists of a network and
database repository where robots can share information and learn from each
other about their behavior and their environment.

Robot benchmarking also benefits from the availability of common online
platforms for the development and testing of algorithms [6]. To do so, easy
means of executing robot programs should be available. A REST-based ar-
chitecture has been proposed in [17] and demonstrated in [18] with remote
experiments on visual servoing.



4 Enric Cervera et al.

While most existing remote laboratories have proven highly successful and
invaluable for spreading the use and knowledge of online robots, in our opinion
a gap has not yet been filled: the need for providing a simple, seamless, and
secure way of executing real programs for users of a remote laboratory.

2.2 Robot Programming

With the advent of cheap robot kits, teaching with robots has become increas-
ingly popular not only in universities but in high schools, and it has raised
a large interest among the educational community to assess its benefits and
drawbacks. Robots have been used to ease the learning process of introductory
programming courses [12]. Inexpensive robot kits are claimed as a cost- and
time-effective means of reinforcing behavioral robotics principles to students of
different disciplines (computer science, engineering, psychology) with limited
programming skills [21].

With robotic design contests becoming increasingly common, it is claimed
[31] that competitions can be an important tool for fostering intellectual ma-
turity, as defined by the Perry Model [35]. A competition involves a clearly
defined yet open-ended problem, with many possible solutions. Students are
encouraged to work collaboratively in teams, and the goals provide the con-
textual aspect of applying knowledge.

Using robots in the introductory computer science curriculum has attracted
lots of attention in recent years [26] [48]. This approach is meaning to challenge
the Computer Science teaching community to move from the premise that
computation is calculation to the idea that computation is interaction. Robots
provide entry level programming students with a physical model to visually
demonstrate concepts or ideas traditionally taught using abstractions.

Robots may add another benefit, since they could become an attractor to
Computer Science studies. Number of undergraduates declaring a computer
science major is dropping steadily in the last years [27]. Women, always a
minority in the field, have become even scarcer than before. Use of robots
in introductory computer science has been proposed as a means to fight the
enrollment decline [5]. Some experiences report that student enrollment has
grown over 2 fold since the introduction of robots [48].

2.3 Networked Programming

In recent years there has been a proliferation of educational websites focus-
ing on interactive online programming. Some of them are MOOCs (massive
open online courses) like those of the companies Coursera (coursera.org) and
Udacity (udacity.com). Others come without university partnerships or cer-
tification processes, like Codecademy (codecademy.com) ot Khan Academy
(www.khanacademy.org/cs).

The use of Internet and multimedia has brought new opportunities for
learning programming. Either replacing or in addition to classroom lessons, it



The Robot Programming Network 5

offers the use of learning material with interactive simulations, and the use of
applications for self-checking of the acquisition of knowledge [14].

Online programming environments work directly in the user’s browser,
without the need of downloading and installing a compiler. The choice of
programming language offers a wide range including full-featured Javascript,
Ruby, or Python [37], and simpler languages targeted to young students like
Logo (turtleacademy.com) or graphical languages like Scratch (scratch.mit.edu)
[40].

Most environments require the use of a PC or laptop to write code, but
recent initiatives are directed towards computer programming being done di-
rectly on the mobile devices [44].

Other proposals make use of new technologies such as three-dimensional
virtual worlds, for better effectiveness in the learning of programming [19].

3 The RPN Framework

Our approach aims to bring together the advantages of online programming
and networked robots: the appeal of using robots makes learning programming
more attractive, while, on the other hand, the possibility of programming the
robot provides deeper knowledge about its functioning. The widespread avail-
ability of networked robots, through Internet or an academic private network,
allow the students to share resources, thus lowering equipment and mainte-
nance costs.

3.1 Hardware and Software Architecture

The overall architecture of RPN is shown in Fig. 2. It is built upon two net-
works: the Internet (or a local academic network) for the students to access,
and a local ROS network which connects the robot systems (either simulators
or real robots) and other devices like video cameras.

ROS (Robot Operating System - www.ros.org) [38] is a framework for
robot software, consisting of tools, libraries and conventions for a wide variety
of robotic platforms. By choosing ROS as the core component of RPN, we gain
access not only to a number of different robots, simulators, and vision systems,
but also to a large library of robot behaviors which can be readily used for
providing high-level functionality to the user, or running in the background
for monitoring, data logging or security purposes.

There is a bridge between both networks, consisting of a module which
translates the information from and two different languages: ROS topics and
services on the robot side, and web data structures on the student side. This
module, called rosbridge [3], can both read ROS topics and publish them
through the web, and write ROS topics with information provided by the web
clients [33].

Though the ROS network is accessible at Internet through rosbridge, access
must be authenticated and authorized by the system, centralized in a Learning



6 Enric Cervera et al.

Fig. 2 Overall architecture of the Robot Programming Network: the user is connected to
Internet via a browser, and is granted access to the LMS server. The user’s code is run on
a Virtual Machine, where it uses a secure API for interacting with the ROS modules of the
network, through the available ROS topics and services.

Management Server (LMS). The user must first sign in with a recognized user
account, or log into the system with an identification provided by other web
service (e.g. Gmail or Facebook).

The following list explains the thorough steps from the moment the student
types the password until the robot moves:

1. The student is first authenticated and a secure session is started in Moodle.
2. Some courses are freely available to enroll; in others, access is granted by

teachers upon request.
3. Once enrolled in a course, the student browses through the Moodle pages,

where links to the robots and simulators are shown.
4. When the student clicks on such a link, the server connects to a Moodle

External Tool, which allows the user to interact with IMS LTI-compliant
learning resources and activities [8].

5. The Moodle External Tool provides the user account information to the
LTI-compliant module. After checking authentication, this module con-
nects to the ROS system of the robot or simulator through a secure ros-
bridge connection.

6. Once the connection is established, the student can use the browser to
control the ROS system. In our case, the student writes a program in a



The Robot Programming Network 7

text field, which is submitted to a server process that executes the code in
the robot or simulator.

7. The server receives the source code, and launches a new ROS process for
the execution of that code. The new process will publish the necessary
topics to make the robot move.

8. Both the output of the process and the message errors (if any) will be redi-
rected back to the student’s browser window, for monitoring and debugging
purposes.

9. Finally, when the student leaves the web page, the connection with the
ROS server is automatically closed.

There is no need to modify the Moodle platform for running our system,
since support for LTI-compliant materials is already included [4], but it is
necessary is to add some interfacing code in PHP, in order to build the bridge
with the ROS server. The current version only works in one direction (passing
the authentication information to ROS) but, since the LTI protocol is defined
in both ways, in the future we plan to add feedback to Moodle from ROS, e.g.
sending grades to Moodle assignment based on the performance of the robot
task.

3.2 Security

Security policies must be established, as in other web laboratories [9,29]: the
LMS server is also responsible of the access policy to the shared resources,
by storing a database of time slots, where users can book the facilities for a
determined amount of time. Only booked users have full access to the system,
while others can be monitoring or analyzing the system, in a read-only mode.

The student’s code (Python, Ruby, Lua, Matlab, and Lisp can be sup-
ported) is not executed directly in the real machines, but instead it runs on
a Virtual Machine (VM). Virtualization provides both safety and control of
resources. Malicious code has only access to the virtualized system, without
any possibility of intrusion into sensitive processes, like those controlling the
robot hardware or the RPN system itself. In addition, a VM is allowed to use
a fixed number of processors and a maximum amount of RAM memory, thus
preventing an overload of the system. In critical cases, the VM can be reset,
or directly deleted and restarted to a safe state.

In addition, the code is not allowed to publish directly to the topics that
control the robot hardware; instead, it is redirected to similar topics which are
filtered by background modules that monitor the state of the robot and either
retransmit or block the user commands depending on the safety conditions,
e.g. danger of collision. Fig. 3 depicts an example for a mobile robot: the user
code does not publish directly to the command velocity topic (cmd vel) of
the robot driver. Instead, the topic is read by the background monitor, which
reads also the information topics from the robot driver, consisting of the sonar
and infrared sensor data. Based on the sensor values, the monitor process
determines the safety of the commanded motion, and forwards the values to



8 Enric Cervera et al.

Fig. 3 Example of safety monitoring for a mobile robot.

Fig. 4 Layout of the user interface.

the robot driver. This monitoring process is transparent to the user, by using
the dynamic remapping capabilities of ROS.

3.3 Scalability

According to the statistics published in the Moodle home page [30], the largest
sites in the world currently have up to 1,000,000 users. So the scalability of
Moodle is not a problem at all, provided that the appropriate hardware (pro-
cessing power, bandwidth) is available. Our current system is experimental,
thus it runs on a single computer. When the number of user increases, we plan
to migrate to a Moodle cloud system. Of course a bottleneck is the number
of real robots available, but since our system can connect to ROS systems all
over the Internet, we aim to grow a distributed network community of robots,
thus the workload can be distributed among online robots on different remote
laboratories.

3.4 User Interface

The generic user interface is intentionally kept very simple for clarity and
ease of use (Fig. 4). It consists of four window areas: the top left side is the
visualization area, where the system displays the simulated setup, or video



The Robot Programming Network 9

Fig. 5 Turtle simulator.

feedback from live cameras; the top right side is the scripting area, where the
user types the source code of the program to be run into the system; the left
bottom side consists of a simple button panel, for running or stopping the
program; finally, to the right bottom side, there is another output area for
system messages (compilation errors, console output, etc).

Nevertheless this basic interface can be customized or expanded with addi-
tional components, depending on the available equipment of the remote system
(cameras) or the visualization needs (2D/3D).

In the following subsections, several examples of functioning user inter-
faces are throughly explained, each of them controlling a different robot setup,
namely the ROS Turtle and Stage simulators, the Syrotek mobile robot labo-
ratory [25], and the NAO humanoid robot.

3.4.1 Turtle Simulator

This is a simple 2D simulator without physics, initially designed for teaching
ROS concepts, but also suitable for teaching programming concepts or an
introduction to mobile robots. It resembles the Logo turtle [39], but the notion
of time (even simulated) makes a significant difference is: the velocity of the
turtle can be controlled, thus the execution of the code is not immediate, but
progressive.

In Fig. 5, the visualization area shows the turtle and the trail path that it
as followed. The web code is subscribed to the turtle position topics, and as it
moves, new position values are received and the trajectory and turtle position
on the browser window are updated.

The turtle moves with linear and angular velocities, allowing the user to
program curved trajectories. Additionally, the color of the path is selectable,
thus colorful patterns can be drawn.



10 Enric Cervera et al.

Fig. 6 Mobile Robot 2D Simulator.

A small piece of code is shown in the scripting area. The top five lines
are automatically added to include the API module and call an initialization
function; the user commands are written below.

In the figure, the user calls the API function leftArc(a, r) which moves the
turtle during one second along an arc trajectory of a degrees and radius r. In-
ternally, the function computes the linear and angular velocities and publishes
them into the corresponding topics for moving the turtle.

The panel button consists of four buttons for running and stopping the
program, clearing the trajectory path, and resetting the turtle position to the
window center respectively. Each button triggers the corresponding action,
which communicates with the ROS system. For example, the run action reads
the code from the script area, and calls a ROS service in the network, which
analyzes the code and launches a new ROS node in a virtual machine to
execute the user code.

The user can abort the execution with the stop button. Otherwise, either
the code will end by itself, due to an error or to successful execution, or it
will be stopped by a timeout that can be set by the system administrator to
prevent excessive running times. It can also be aborted for security reasons, if
an unauthorized access to system resources is detected.

3.4.2 Mobile Robot 2D Simulator

A more powerful and realistic simulator for mobile robots is also available.
The Stage simulator is readily available in ROS and it has been integrated in



The Robot Programming Network 11

our framework. Fig. 6 depicts the user interface for this simulator: the visu-
alization area shows the environment and the robot, with optional displaying
of the robot’s trail path and the range sensors; the scripting area contains a
sample code for wall following. As in the previous setup, the first lines are au-
tomatically added, for including the API library, and starting the initial setup.
The rest of the code consists of arbitrary code (functions, variables, control
loops) for performing the task.

Most of the code is devoted to the wall following algorithm. Only two API
functions are used: move(v, w), which moves the robot with the given linear
and angular velocities, and getRanges(), which returns the current readings
of the range sensors. Both functions communicate with the underlying ROS
topics defined by the simulator module.

The button panel includes the buttons for starting and stopping the user
program, as well as some buttons for the main displaying options (grid, sensors,
trail).

Fig. 7 Syrotek mobile robot Internet laboratory. The source code in the script is imple-
menting a wandering behavior, using the range sensors for obstacle avoidance.



12 Enric Cervera et al.

3.5 Mobile robot laboratory

Besides simulation, the RPN system can be seamlessly integrated with ROS-
based robotic systems, even those which are already set up. Thus, we have
performed a successful connection with the Syrotek system [25]. The SyRoTek
(System for robotic e-learning) is an online laboratory set up at the Intelligent
and Mobile Robotics Division (IMR) of the Faculty of Electrical Engineer-
ing, Czech Technical University, which allows users to remotely (via internet)
control a multi-robot platform in a dynamic environment.

For the integration with RPN, we have adapted the existing camera widgets
to the visualization area of the user interface, as depicted in Fig. 7, and we
have developed a simple API, based on that of the mobile robot simulator, for
managing the topics that control the real robots.

As a result, a user can simply program a robot behavior with the script
interface. This is far simpler and more straightforward than the standard de-
velopment method, where the user must connect to a terminal of the Syrotek
server, upload the source code, and launch it. The provided API also con-
tributes to lowering the difficulty, since it hides some implementation details,
by providing the user with the same functions (e.g. move, getRanges) that
have already been presented in the simulator.

3.5.1 Humanoid Robot

Humanoid robots are also supported, both in simulation and real platforms.
Fig.8 depicts a snapshot of a realistic NAO humanoid 3D simulator based un
USARSim [1][2]. The humanoid executes the user’s code in the simulator and
feedback from the simulated cameras is provided.

The user interface for programming a real humanoid robot is shown in
Fig. 9. The robot is a NAO humanoid manufactured by Aldebaran Robotics
[22], a widespread platform for teaching and research.

Fig. 8 3D simulation of a humanoid robot.



The Robot Programming Network 13

Being a real robot, the visualization area is now endowed with live camera
images: the main image is the robot internal camera, and the three top images
are provided by external network cameras form different points of view in
the environment (a small-scale kitchen). In addition, remote audio from a
microphone is available through a stream server.

Landmarks (QR codes in filled black squares) have been added to the
environment to facilitate its perception by the robot, and its localization with
respect to the robot’s camera. Such landmarks are not intended to be processed
by the user program; instead, the background processes track the codes and
provide the system with a 3D pose of the landmark model with respect to the
(calibrated) camera [11].

As in previous examples, the API library is imported, and the starting
function is called, in the first lines of the code, which are added automatically.
Later, there are two API functions: moveHead(pitch, yaw), which moves the
head of the robot for the given angles, and talk(string), which calls the robot
speech synthesizer service for converting the text input to speech.

Fig. 9 Humanoid robot.



14 Enric Cervera et al.

Fig. 10 Main web page of a course in the LMS, with some introductory sections, each
consisting of four document pages and one assignment.

4 The Learning Management System

The Learning Management System (LMS) consists of the Moodle software
package (www.moodle.org) [15] for the administration, documentation, track-
ing, reporting and delivery of robotics courses. In this section, the LMS features
are described in the context of a simple course that has been carried out in
the RPN platform.

4.1 The Turtle Robot

This course is inspired in the Logo turtle [39]: it is targeted to young students
(12-14 years) and its aim is to learn the basic concepts of programming: state-
ments, variables, control flow, procedures and functions. It consists of seven
units with a few web documentation pages and assignment on each. A com-
petition is also included, where students are asked to program the robot to
describe a trajectory in a circuit in the fastest time without going off the path.

Fig.10 depicts the web interface and the structure of three sections, with
the inner documents. The sections are not numbered, but they are arranged
in increasing difficulty order.

A typical documentation page is shown in Fig.11. The main web page
contains the information about the task to solve and some instructions about
the solution. The user is asked to program the task on the simulator in the
pop-up window.

At the end of each section, an assignment is proposed to summarize the
presented contents. The student is asked to solve a programming problem,



The Robot Programming Network 15

Fig. 11 Documentation page of the Turtle Robot course; information is shown in the main
page, and the simulator is available in the pop-up window.

Fig. 12 Assignment page of the Turtle Robot course; the problem is presented, including
a figure for information.

and to submit the solution for the teacher to review. Fig. 12 depicts a typical
assignment page.

The course includes a competition challenge, in order to increase the mo-
tivation of the students. It consists of programming the turtle for completing
a circuit, in the minimum time, without going off the path. The web page for
the challenge is shown in Fig. 13



16 Enric Cervera et al.

Fig. 13 Challenge page of the Turtle Robot course; the competition is explained in the
main window, and the simulator arena is shown in the pop-up window.

A Hall of Fame with the best chronos is kept in the course, as depicted in
Fig. 14, which shows the result of the pilot experiment that will be presented
later.

5 Pilot Teaching Experience

In order to test the RPN platform in real conditions, a pilot study was carried
out. The subjects of the study were undergraduate first-year students from
engineering degrees (electrical, mechanical, chemistry). With none or little
previous experience in programming, they had followed an introductory course
in computer science, including the basics of programming in Matlab. Upon
completion of this course, they were presented the ”Turtle Robot” course on
the RPN platform, consisting of programming a simulated turtle-like robot.

The students were asked to solve different tasks and submit their code
to the site. The experiment was not compulsory, but some extra credit was
awarded, thus 23 students did take part in the experience. The activity was
presented at the end of the course period and it was scheduled for completion
during a month.



The Robot Programming Network 17

Fig. 14 Hall of Fame page of the Turtle Robot course.

Fig. 15 Number of accesses to the course web versus dates (left), and number of accesses
to the course web versus time of the day (right).

5.1 Course traffic analysis

The LMS logs all the student activity, thus allowing the teacher to view statis-
tics and analyze the trajectory of the whole group, or individual students.

The activity during the two first weeks was low. As seen in Fig. 15, which
depicts the number of accesses to the site, there are hardly 100 hits/day during
that period. A reminder was sent to the students, and its effect on the course
activity is significant, with 400 and 600 hits in the following days. Finally, the
’deadline’ effect produced a last significant peak in the activity, in the last
days of the period. The site remained open and active after the deadline, and
some hits were registered but only the assignments submitted in due time were
considered for the presented results.



18 Enric Cervera et al.

Fig. 16 Histogram of the number of accesses (left) and the number of completed tasks
(right) per student.

As for the time of the connections, they concentrated on the afternoon,
between 3pm and 7pm, as depicted in Fig. 15 (all the users were local students,
i.e. they were presumably working in the same time zone).

The course materials consisted on 26 document pages and 8 assignment
pages. The students could browse freely through the materials, but we assume
that most of them followed the logical order from the simple initial tasks to the
more complex tasks which followed. The number of accesses to the materials
ranged between 100 and 300 per student. Fig. 16 depicts the histogram of
the number of accesses, with a strong peak in 180 hits, and the histogram
of completed assignments. In the latter, most of the students completed 6 or
more tasks.

5.2 Data logging

The system recorded all the programs submitted by the students, and the
data generated during their execution. When a user logged into the simulator,
the system started to record the data. When the user disconnected, recording
was stopped. The total amount of recorded data during the pilot test was
approximately 2GB of uncompressed files (ROS bags) for 554 sessions. The
number of executed programs amounted for 4171 scripts. Of those executions,
syntax errors were detected in 728 scripts (17.45%).

The recorded log data can either be downloaded by the user, or analyzed
by the teacher. Fig. 17 depicts the recorded trajectories of the turtle robot
during one continuous session of a student. The session lasted for 50 minutes;
during that time the student run 106 scripts. In this session the robot was
programmed for traveling from the starting position to the finish line in the
minimum time, while keeping inside the green path.

The trajectories show the progressive adjustment of the trajectories for
completing the path with the given constraints. The velocity profile of the
robot can also be analyzed: Fig. 18 depicts the linear and angular velocity
of the robot during the session. In the first programs, velocities are lower,
and they are increased in further executions. The zoom on three selected runs
depicts the profile of a typical run, consisting of alternating translation and
rotation motions.



The Robot Programming Network 19

Fig. 17 Recorded trajectories of the turtle robot during a student’s session.

Fig. 18 Velocity profile (blue: linear, red: angular) of the turtle robot during a student’s
session: all the runs (left) and three selected runs (right).

5.3 Student’s Feedback

After the end of the activity, the students were asked to fill a questionnaire
about their experience with the robot programming system. The questions are
listed in Table 1 and they refer to the perceived differences in learning with
respect to traditional methods, the ease of use of the system, the quality of the
web, the suitability in learning concepts, and the overall satisfaction degree
[23].

The results of the questionnaire are very positive and encouraging. As seen
in Fig. 19, 88% of the students believed that the learning experience was better
or much better than traditional methods. An almost similar percentage (82%)
agreed that the system was suitable for leaning the presented concepts.

The ease of use of the system was confirmed by 91% of the students
(strongly agree or agree), but the quality of the experience needs to be im-
proved: though still 51% of the answers were positive (very good or good),
there is a significant amount of students (43% acceptable, 6% bad) who com-
plain about the quality of the web, and the response time. The minimalist
design of the user interface, as well as the use of plain 2D simulation, may
need an enrichment to provide the users with a more challenging experience.



20 Enric Cervera et al.

Table 1 Questionnaire for students’ feedback.

Learning compared with traditional methods
Did The Turtle Robot help you to visualize the theoretical concepts to be learned?
How would you rate the outcome of your learning using The Turtle Robot if compared
with ”traditional methods”?
Did The Turtle Robot enhance your ability to understand the theoretical concepts
about programming in a new way?

Ease of use
Did you find easy the use of The Turtle Robot?
Did you think that the course was well structured and organized?
Were you able to use The Turtle Robot by following the instructions provided?

Quality of the virtual robot
In which grade will you score to the quality of the virtual robot and its simulation?
In which grade will you score to the quality of the remote connection?
Was the response time of the remote laboratory suitable?

Suitability in learning of relevant concepts
Did the Turtle Robot help you for understanding the concepts of structured programming
(conditions, loops) of the lectures?
In which grade do you think that the Turtle Robot can be used for learning programming?

Satisfaction degree
In general, do you feel satisfied with the practical experiences through the Internet?

Overall, the satisfaction degree was complete, with 91% of the students
answering positively (strongly agree or agree).

6 Discussion and Future Roadmap

This paper has presented a recent initiative for robotics education, which aims
to the creation of a distributed network of robot programming laboratories and
their associated teaching materials.

Compared to existing robotic tele-laboratories, the user interface is simpli-
fied and tied to a Learning Management System, which guides the students
through lessons and practical exercises with progressive level of complexity.
Competitions and challenges can be designed and included in the framework.

The current system supports the Python programming language, but more
options are in the pipeline, since ROS supports client libraries in Lisp, Lua
and Ruby, and third party vendors provide additional languages like Matlab.

Support for compiled languages (C++, Java) could be considered, but an
analysis of benefits and costs needs to be carried out. The advantage of higher
speed may not outweigh the increased difficulties for compilation in the server,
nor the potential security issues of executing compiled instead of interpreted
code.

More promising seems the integration of graphical languages like Scratch
[40] for courses oriented to young students. This language is entirely browser-
based, and some implementations already communicate with real robots [46].



The Robot Programming Network 21

24% 

64% 

9% 

3% 0% 

Comparison with traditional 
methods 

Much better 

Better 

The same 

Less 

Much less 

18% 

64% 

14% 

4% 0% 

Suitability for learning concepts 

Strongly agree 

Agree 

Neutral 

Disagree 

Strongly disagree 

15% 

36% 
43% 

6% 

0% 

Quality of the virtual robot 

Very good 

Good 

Acceptable 

Bad 

Very bad 

42% 

49% 

9% 

0% 0% 

Ease of use 

Strongly agree 

Agree 

Neutral 

Disagree 

Strongly disagree 

36% 

55% 

9% 

0% 0% 

Satisfaction degree 

Strongly agree 

Agree 

Neutral 

Disagree 

Strongly disagree 

Fig. 19 Results of the questionnaire.

Several examples with simulators and real robots have been presented.
As seen with the Syrotek laboratory [25], the system can be extended with
any other ROS-based robotic system with Internet access. We are currently
working on the connection to the Wurzburg University Mobile Robot Tele
Experiments [42].

It would be also very interesting to be able to interact with different kind
of standard industrial robots with different standard programming languages.
The ROS Industrial framework [16] is a strong candidate for interfacing to such
manufacturing robots, and provide a seamless interface for online education
and training on industrial platforms.

The results of a pilot sample course have been presented. We plan to open
progressively the platform to the general public, and use the presented course
materials for teaching introductory courses to mobile robotics and humanoids.

Interconnection with realistic 3D simulators is feasible too: Gazebo, We-
bots, or USARSim are supported in ROS. However, there is a need for visu-
alization clients for browsers, an effort that is slowly but steadily progressing,
with the increasing adoption of the WebGL standard [10]. 3D simulation setups



22 Enric Cervera et al.

are increasingly popular for robot competitions like Robocup [43] or FIRST
[7]. The availability of an online setup would lower the level of difficulty for
newcomers, and increase the user base for potential new participants in the
real competitions.

We would like to encourage the robotics community to promote the use
of RPN by students and hobbyists. Access is free, and there is no need of
registration, when access is provided by other identification platforms (Gmail,
Facebook). New courses are being prepared, and prospective teachers are wel-
come to propose new ideas. All the materials in the site are open and can be
re-used for non-commercial purposes.

Existing ROS-based online robots are specially welcome to link to the
network, or to build similar sites in their own facilities. The source code of the
project is open and available. Non-ROS facilities could explore the possibility
of adding a ROS layer for opening new possibilities of user access.

Future versions of the RPN platform will be migrated to the cloud, for
serving a large number of users. We dream of connecting to any number of
ROS systems running on different laboratories all around the world, through
Internet. Such a distributed system would ensure robustness and availability,
since it would not depend on a centralized system. We would be very happy
to provide guidance and support for expanding such a network and creating a
worldwide infrastructure for learning robotics anywhere, at anytime.

Acknowledgements The authors thank Miroslav Kulich and Libor Přeučil for their help
in the integration with Syrotek. Support of IEEE RAS through the CEMRA program (Cre-
ation of Educational Material for Robotics and Automation) is gratefully acknowledged.
This paper describes research done at the Robotic Intelligence Laboratory. Support for
this laboratory is provided in part by Ministerio de Economia y Competitividad (DPI2011-
27846), by Generalitat Valenciana (PROMETEOII/2014/028) and by Universitat Jaume I
(P1-1B2011-54).

References

1. Alemany, J., Cervera, E.: Design of high quality, efficient simulation environments for
USARSim. In: Proceedings of the IASTED International Conference on Robotics, pp.
226–233 (2011)

2. Alemany, J., Cervera, E.: Appealing robots as a means to increase enrollment rates: a
case study. In: Proceedings of the 3rd International Conference on Robotics in Educa-
tion, pp. 15–19 (2012)

3. Alexander, B., Hsiao, K., Jenkins, C., Suay, B., Toris, R.: Robot Web Tools [ROS
topics]. Robotics & Automation Magazine, IEEE 19(4), 20–23 (2012)

4. Alier, M., Casañ, M.J., Piguillem, J.: Moodle 2.0: Shifting from a learning toolkit to a
open learning platform. In: Technology Enhanced Learning. Quality of Teaching and
Educational Reform, pp. 1–10. Springer (2010)

5. Bergin, J., Lister, R., Owens, B.B., McNally, M.: The first programming course: ideas
to end the enrollment decline. ACM SIGCSE Bulletin 38(3), 301–302 (2006)

6. Bonsignorio, F., Hallam, J., del Pobil, A.: Defining the requisites of a replicable robotics
experiment. In: RSS2009 Workshop on Good Experimental Methodologies in Robotics
(2009)

7. Buckhaults, C.: Increasing computer science participation in the first robotics compe-
tition with robot simulation. In: Proceedings of the 47th Annual Southeast Regional
Conference, p. 19. ACM (2009)



The Robot Programming Network 23

8. Caeiro-Rodŕıguez, M., Manso-Vázquez, M., Anido-Rifón, L.: Design of flexible and open
learning management systems using IMS specifications. the Game Tel experience. Jour-
nal of Research and Practice in Information Technology 44(2), 151 (2012)

9. Casini, M., Chinello, F., Prattichizzo, D., Vicino, A.: Ract: A remote lab for robotics
experiments. In: Proceedings of the 17th IFAC World Congress. Seoul (Korea) (2008)

10. Chen, B., Xu, Z.: A framework for browser-based multiplayer online games using webgl
and websocket. In: Multimedia Technology (ICMT), 2011 International Conference on,
pp. 471–474. IEEE (2011)

11. Comport, A.I., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless
tracking for augmented reality: the virtual visual servoing framework. Visualization
and Computer Graphics, IEEE Transactions on 12(4), 615–628 (2006)

12. Dagdilelis, V., Sartatzemi, M., Kagani, K.: Teaching (with) robots in secondary schools:
some new and not-so-new pedagogical problems. In: Advanced Learning Technologies,
2005. ICALT 2005. Fifth IEEE International Conference on, pp. 757–761 (2005)

13. Djalic, V., Maric, P., Kosic, D., Samuelsen, D., Thyberg, B., Graven, O.: Remote lab-
oratory for robotics and automation as a tool for remote access to learning content.
In: Interactive Collaborative Learning (ICL), 15th International Conference on, pp. 1–3
(2012). DOI 10.1109/ICL.2012.6402174

14. Djenic, S., Krneta, R., Mitic, J.: Blended learning of programming in the internet age.
Education, IEEE Transactions on 54(2), 247–254 (2011)

15. Dougiamas, M., Taylor, P.: Moodle: Using learning communities to create an open
source course management system. In: World conference on educational multimedia,
hypermedia and telecommunications, vol. 2003, pp. 171–178 (2003)

16. Edwards, S., Lewis, C.: Ros-industrial–applying the robot operating system (ros) to in-
dustrial applications. In: IEEE Int. Conference on Robotics and Automation, ECHORD
Workshop (2012)

17. Esteller-Curto, R., Cervera, E., Del Pobil, A.P., Marin, R.: Proposal of a REST-based
architecture server to control a robot. In: Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), IEEE International Conference on, pp. 708–710 (2012)

18. Esteller-Curto, R., Del Pobil, A.P., Cervera, E., Marin, R.: A test-bed Internet based
architecture proposal for benchmarking of visual servoing techniques. In: Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), IEEE International Con-
ference on, pp. 864–867 (2012)

19. Esteves, M., Fonseca, B., Morgado, L., Martins, P.: Improving teaching and learning of
computer programming through the use of the second life virtual world. British Journal
of Educational Technology 42(4), 624–637 (2011)

20. Furler, L., Malik, A.S., Meriaudeau, F., Nagrath, V.: An auto-operated telepresence
system for the NAO humanoid robot. In: Communication Systems and Network Tech-
nologies (CSNT), International Conference on, pp. 262–267 (2013)

21. Gage, A., Murphy, R.R.: Principles and experiences in using legos to teach behavioral
robotics. In: Frontiers in Education, 2003. FIE 2003 33rd Annual, vol. 2, pp. F4E–23.
IEEE (2003)

22. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier,
B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In: Robotics and
Automation (ICRA), IEEE International Conference on, pp. 769–774 (2009)

23. Jara, C.A., Candelas, F.A., Puente, S.T., Torres, F.: Hands-on experiences of under-
graduate students in automatics and robotics using a virtual and remote laboratory.
Computers & Education 57(4), 2451–2461 (2011)

24. Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., Preucil, L.: SyRoTek –
distance teaching of mobile robotics. Education, IEEE Transactions on 56(1), 18–23
(2013). DOI 10.1109/TE.2012.2224867

25. Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., Preucil, L.: Syrotekdistance
teaching of mobile robotics. Education, IEEE Transactions on 56(1), 18–23 (2013)

26. Lawhead, P.B., Duncan, M.E., Bland, C.G., Goldweber, M., Schep, M., Barnes, D.J.,
Hollingsworth, R.G.: A road map for teaching introductory programming using lego c©
mindstorms robots. ACM SIGCSE Bulletin 35(2), 191–201 (2003)

27. Lester, B.: Robots’ allure: can it remedy what ails computer science? Science (New
York, NY) 318(5853), 1086–1087 (2007)



24 Enric Cervera et al.

28. Maŕın, R., Sanz, P.J., Del Pobil, A.P.: The UJI online robot: An education and training
experience. Autonomous Robots 15(3), 283–297 (2003)

29. Matijevics, I.: Local and remote laboratories in the education of robot architectures. In:
Intelligent Engineering Systems and Computational Cybernetics, pp. 27–36. Springer
(2009)

30. Moodle.org: Moodle statistics. http://moodle.net/stats/. Accessed: 2014-09-18

31. Murphy, R.R.: competing for a robotics education. Robotics & Automation Magazine,
IEEE 8(2), 44–55 (2001)

32. Orduna, P., Rodriguez-Gil, L., Lopez-de Ipina, D., Garcia-Zubia, J.: Sharing the remote
laboratories among different institutions: A practical case. In: Remote Engineering and
Virtual Instrumentation (REV), 9th International Conference on, pp. 1–4 (2012). DOI
10.1109/REV.2012.6293178

33. Osentoski, S., Jay, G., Crick, C., Pitzer, B., DuHadway, C., Jenkins, O.C.: Robots as
web services: Reproducible experimentation and application development using rosjs.
In: Robotics and Automation (ICRA), IEEE International Conference on, pp. 6078–6083
(2011)

34. Osentoski, S., Pitzer, B., Crick, C., Jay, G., Dong, S., Grollman, D., Suay, H.B., Jenk-
ins, O.C.: Remote robotic laboratories for learning from demonstration. International
Journal of Social Robotics 4(4), 449–461 (2012)

35. Pavelich, M.J., Moore, W.: Measuring maturing rates of engineering students using
the perry model. In: Frontiers in Education Conference, 1993. Twenty-Third Annual
Conference.’Engineering Education: Renewing America’s Technology’, Proceedings., pp.
451–455. IEEE (1993)

36. Pitzer, B., Osentoski, S., Jay, G., Crick, C., Jenkins, O.C.: PR2 Remote Lab: An en-
vironment for remote development and experimentation. In: Robotics and Automation
(ICRA), IEEE International Conference on, pp. 3200–3205 (2012)

37. Pritchard, D., Vasiga, T.: Cs circles: an in-browser python course for beginners. In:
Proceeding of the 44th ACM technical symposium on Computer science education, pp.
591–596. ACM (2013)

38. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.Y.: ROS: An open-source robot operating system. In: ICRA Workshop on Open
Source Software, vol. 3 (2009)

39. Ratcliff, C.C., Anderson, S.E.: Reviving the turtle: Exploring the use of logo with stu-
dents with mild disabilities. Computers in the Schools 28(3), 241–255 (2011)

40. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch: programming
for all. Communications of the ACM 52(11), 60–67 (2009)

41. Santana, I., Ferre, M., Izaguirre, E., Aracil, R., Hernandez, L.: Remote laboratories for
education and research purposes in automatic control systems. Industrial Informatics,
IEEE Transactions on 9(1), 547–556 (2013). DOI 10.1109/TII.2011.2182518

42. Schilling, K., Roth, H., Rösch, O.J.: Mobile mini-robots for engineering education.
Global J. of Engng. Educ 6(1), 79–84 (2002)

43. Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto,
T., Takeuchi, K., Matsuno, F., Hatayama, M., et al.: The robocup-rescue project: A
robotic approach to the disaster mitigation problem. In: Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, vol. 4, pp. 4089–4094.
IEEE (2000)

44. Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M., Bishop, J., Samuel, A., Xie, T.:
The future of teaching programming is on mobile devices. In: Proceedings of the 17th
ACM annual conference on Innovation and technology in computer science education,
pp. 156–161. ACM (2012)

45. Trevelyan, J.: Lessons learned from 10 years experience with remote laboratories. In:
Engineering Education and Research (iNEER), International Conference on, pp. 1562–
3580 (2004)

46. Uludag, S., Karakus, M., Turner, S.W.: Implementing it0/cs0 with scratch, app inventor
forandroid, and lego mindstorms. In: Proceedings of the 2011 conference on Information
technology education, pp. 183–190. ACM (2011)



The Robot Programming Network 25

47. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Hausser-
mann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle,
O., van de Molengraft, R.: RoboEarth. Robotics Automation Magazine, IEEE 18(2),
69–82 (2011). DOI 10.1109/MRA.2011.941632

48. Wang, E.: Teaching freshmen design, creativity and programming with legos and lab-
view. In: Frontiers in Education Conference, 2001. 31st Annual, vol. 3, pp. F3G–11.
IEEE (2001)


