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Vacuum fluctuations of quantum fields between physical objects depend on the shapes, positions,
and internal composition of the latter. For objects of arbitrary shapes, even made from idealized
materials, the calculation of the associated zero-point (Casimir) energy is an analytically intractable
challenge. We propose a new numerical approach to this problem based on machine-learning tech-
niques and illustrate the effectiveness of the method in a (2+1) dimensional scalar field theory.
The Casimir energy is first calculated numerically using a Monte-Carlo algorithm for a set of the
Dirichlet boundaries of various shapes. Then, a neural network is trained to compute this energy
given the Dirichlet domain, treating the latter as black-and-white pixelated images. We show that
after the learning phase, the neural network is able to quickly predict the Casimir energy for new
boundaries of general shapes with reasonable accuracy.

The presence of physical bodies in a quantum vacuum
affects the spectrum of zero-point fluctuations of quan-
tum fields and leads to the appearance of the forces acting
on the bodies. This phenomenon, known as “the Casimir
effect”, was first predicted in 1948 by Hendrik Casimir,
who has shown that two strictly parallel neutral metallic
plates should attract each other due to quantum fluc-
tuations of the electromagnetic field [1]. The Casimir
phenomenon generalizes the van der Waals interactions
between neutral bodies [2] and plays an essential role in
microelectromechanical and microfluidic systems at sub-
millimeter scales, where the zero-point forces induced by
the quantum fluctuations of electromagnetic fields be-
come significant [3–5].

Geometrical shapes and material composition of phys-
ical bodies affect the Casimir forces significantly. Ac-
curate analytical calculations work for a limited set of
relatively simple geometries, where the spectrum of vac-
uum fluctuations is precisely known. The approximate
proximity-force calculations [6] may access perturbations
around known configurations including near-planar ge-
ometries. The Casimir forces and associated energies
are also computed with the help of various numerical
and semi-analytical techniques [7], which include meth-
ods of the scattering theory [8, 9], factorization [10]
and discretization [11] approximations, worldline ap-
proaches [12], and lattice field theories [13, 14].

Experimentally, the Casimir force has been success-
fully measured with ever increasing precision in various
geometries [15–19].

In our paper, we propose to tackle the complicate prob-
lem of calculation of the Casimir energy in general geome-
tries using the Machine learning (ML) approach. The
ML technique is a collection of powerful programming
tools that allow the computer to find how to perform a
task without being explicitly programmed (see [20, 21]
for physicist reviews). In recent years, the ML has revo-

lutionized many fields of engineering and sciences thanks
to several breakthroughs, in particular in the design of
neural networks. While the neural networks may be
slow in training, their predictions are usually coming
very fast. Neural networks find increasingly important
implementation in the successful investigation of many
complex physical systems that involve a large number of
degrees of freedom. The non-exhaustive list of the rele-
vant examples includes open quantum systems with high-
dimensional Hilbert spaces [23–25], topological phases in
the context of topological band insulators [26] and field
theories [27, 28], as well as phase structure of many-body,
strongly-correlated and field systems in general [29–40].

We will use the so-called supervised learning proce-
dure, which – in a very general sense – consists of estab-
lishing a map from some inputs to some outputs by train-
ing a neural network on a broad set of known examples.
In our case, the inputs are the boundaries imposed on
quantum fields, and the outputs are the Casimir energy
of the quantum fields in the space with these boundaries.
Technically, we illustrate the effectiveness of the method
in a field theory with the simplest, Dirichlet boundary
conditions. We describe the Dirichlet boundary geome-
tries as black and white images, and then we employ
standard neural-network techniques used in the computer
vision [53] in order to “recognize” the correct Casimir en-
ergy for a particular shape of boundaries.

One of the simplest and, at the same time, practically
relevant realizations of the Casimir effect appears in pho-
todynamics, the theory of a single Abelian gauge field aµ
described by the Lagrangian:

LU(1) = −1

4
fµνf

µν , fµν = ∂µaν − ∂νaµ . (1)

The photodynamics respects U(1) gauge symmetry,
aµ(x)→ aµ(x) + ∂µω(x), and possesses, in (d+ 1) space-
time dimensions, d− 1 physical degrees of freedom.
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The Lagrangian (1) describes a very simple system of
a single non-interacting vector field. However, the non-
triviality of the Casimir effect comes from the boundary
conditions, namely, from a nontrivial dependence of the
(regularized) energy of the quantum fluctuations on the
shape of the boundaries of a physical object immersed
into the vacuum of the photons (1). It is the shape-
dependence which makes the problem difficult.

We address the problem of the shape-dependence of
the Casimir energy using a machine-learning approach.
Since we are concerned with the proof-of-principle result,
it is sufficient to work in two spatial dimensions which is
the lowest dimension appropriate for our purposes.

In two spatial dimensions, the photon has one physical
degree of freedom. Restricting ourselves to an idealized
case, one could consider an object made of a perfect elec-
tric conductor. At its boundary, the tangential compo-
nent of the electric field is vanishing:

εµαβnµ(x)fαβ(x)

∣∣∣∣
x∈S

= 0 , (2)

where nµ(x) is a vector normal to the boundary at the
point x of the (piecewise) one-dimensional boundary S,
and fαβ is given in Eq. (1). For two parallel static
straight wires separated by the distance R, the vacuum
fluctuations lead to an attractive potential [44]:

VCas(R) = − ζ(3)

16πR2
, (3)

where ζ(x) is the zeta function, ζ(3) ' 1.20206.
The problem may be simplified even further by consid-

ering the model of a free real-valued field φ:

L =
1

2
∂µφ∂

µφ. (4)

Similarly to photodynamics in two spatial dimensions,
this model has one degree of freedom. Instead of (2), the
boundary may be set by a simpler, Dirichlet condition:

φ(x)

∣∣∣∣
x∈S

= 0. (5)

We naturally recover the result (3) for the Casimir en-
ergy for two parallel wires with the boundaries (5). For
a general shape of the boundary, the Casimir problem
cannot be treated analytically.

In two spatial dimensions, any configuration of bound-
aries may be treated as a pixelated black-and-white im-
age, in which white pixels correspond to the free unoc-
cupied space while black pixels encode the positions of
the Dirichlet boundaries. The scalar field freely fluctu-
ates in the white spaces and vanishes at the black pixels
at which the Dirichlet condition (5) is imposed. We
consider pixel-thin static boundaries for which the parti-
cle creation is absent and the Casimir energy is a time-
independent quantity.

Given the simplicity of the model (4), and the com-
plexity of the Casimir problem, our approach exposes the
advantages of the sophisticated method of the machine-
learning approach in the best way. In more realistic
cases, the Casimir problem becomes evidently more com-
plicated. For example, the interaction of non-parallel sur-
face segments in (3 + 1)d photodynamics is affected by
a complex mixing of different photon modes that satisfy
distinct boundary conditions at the surfaces.

We numerically calculate the Casimir energy of the
wires of various shapes using the first-principles methods
of lattice gauge theory developed earlier in Refs. [14, 41,
42]. The discretized version of the scalar gauge theory (4)
is given by the partition function

Z =
∏
x

∫ +∞

−∞
dφx e

−S[φ]. (6)

The integration goes over the field φx ∈ R defined on the
sites x ≡ (x1, x2, x3) of the Euclidean cubic lattice L3

s

with periodic boundary conditions in all three directions
(0 6 xµ 6 Ls − 1). The spatial coordinates (x1 and x2)
as well as the Wick-rotated imaginary-time (x3 ≡ it) are
of the same length, corresponding to a zero temperature.

In the lattice action of the d+1 dimensional model (4),

S[φ] =
1

2

∑
x

d+1∑
µ=1

(φx+µ̂ − φx)
2
, (7)

the derivatives are represented by the finite differences.
Here µ̂ is a unit lattice step in the µth direction. A lattice
generalization of the Dirichlet boundary condition (5) is
straightforward.

The energy of vacuum fluctuations of the scalar field is
related to a local expectation value of its energy density,

T 00
M =

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂t

)2
]
, (8)

with the following Wick-rotated discretized counterpart:

T 00
E =

1

4

3∑
µ=1

ηµ

[
(φx+µ̂ − φx)

2
+ (φx − φx−µ̂)

2
]
, (9)

where η1 = η2 = +1 and η3 = −1.
The regularized energy density is formally given by

ES(x) =
〈
T 00
E (x)

〉
S −

〈
T 00
E (x)

〉
0

(10)

where the subscripts “0” and “S” indicate that the ex-
pectation value is taken, respectively, in the absence and
in the presence of the boundaries S of the physical ob-
jects. The ultraviolet divergences cancel in Eq. (10) so
that ES(x) provides us with a local finite quantity, the
Casimir energy density, which is equal to a change in
the energy density of the vacuum fluctuations due to the
presence of the boundaries S. The total Casimir energy
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is given by an integral of the energy density (10) over the
whole spatial volume.

We considered two types of boundary conditions:
closed non-self-intersecting lines and two quasi-parallel
nonintersecting lines that represent, respectively, de-
formed circles and corrugated wires. A related problem,
the Casimir energy of the scalar field in cavities of rect-
angular shapes, was discussed in details in Ref. [44]. We
would like to notice that the calculation of the Casimir
energy has certain important subtleties related to sur-
face counter-terms that regularize the infinite divergences
of idealized boundary conditions for closed boundaries.
This uncertainty does not affect the force between rigid
bodies as well as the Casimir energy of the real materi-
als. We refer the reader to Refs. [45–47] for further dis-
cussions on the important interpretation of the Casimir
energy in idealized as contrasted to real materials. In line
of the main aim of our paper we treat both closed and
quasi-parallel lines at the same footing. For uniformity
of our presentations, we call both these quantities the
“Casimir energy” having in mind the subtlety in their
physical meaning mentioned above.

To diversify our efforts, we also considered a techni-
cally similar and equally difficult problem of calculation
of the mean total action 〈S〉 in the two-dimensional Eu-
clidean model given, formally, by Eq. (7) with d = 1.
Although this quantity has no straightforward physical
interpretation, its calculation is as difficult as the calcu-
lation of the Casimir energy in 2+1 dimensional model.
Below we will apply the very same ML technique to this
two-dimensional model. To shorten notations, we will
call these models below as 3d and 2d, respectively.

In our numerical simulations we use the methods suc-
cessfully adopted for studies of the Casimir forces in
Abelian gauge theories in Refs. [14, 41, 42]. To calculate
the Casimir energy (10) in the (2+1) dimensional model,
we discretize each geometry of the boundaries at 2553 lat-
tice and then generate 2× 105 scalar field configurations
using a Hybrid Monte Carlo algorithm which combines
standard Monte-Carlo methods [48] with the molecular
dynamics approach. The latter incorporates a second-
order minimum norm integrator [49]. We skip first 105

configurations to assure their thermalisation and subse-
quent 105 configurations for the statistical analysis. We
employ the same techniques to calculate the mean action
in the two-dimensional model, using 106 configurations
at 2562 lattices. The method also allows us to calculate
the energy density and pressure around the boundaries.
In this work, we concentrate only on the single scalar
quantity, the Casimir energy (10).

The neural network is standard in the context of image
processing (Figure 1). It is made of four 2d convolutional
layers with a kernel of size (3, 3) and with 32, 64, 128 and
256 filters respectively. Each layer is followed by

1) a batch normalization layer with momentum 0.9,

2) a leaky ReLU activation layer with α = 0.3, and

3) a max pooling layer with size (4, 4).

The last pooling operation is global in order to collapse
the spatial dimensions to a single number and it is fol-
lowed by a dropout layer with probability 0.5. This ar-
chitecture allows the input lattice to be of any size. Fi-
nally, a dense layer with a single unit without activa-
tion is added to output the Casimir energy. There is a
L2-regularization for all weights. The gradient descent
is performed with the Adam algorithm with the per-
formance measured by the root-mean-square error, us-
ing a batch size of 32 and early stopping (the maximum
number of epochs is fixed to 200, in practice it requires
around 150 before stopping). Neural networks work best
when all variables have similar scales: the output (en-
ergy) is normalized (subtraction of the mean and scaling
to unit variance) and batch normalization is used be-
tween the intermediate layers. Total, the neural network
has circa 390k parameters. All these ingredients are stan-
dard [20, 53] and aim at making the learning faster and
preventing overfitting and underfitting (improve general-
ization). The code is written using Keras, an open-source
neural-network library written in Python [52].

We have randomly generated a few thousands of thin
boundaries, which included closed non-self-intersecting
lines and, separately, two quasi-parallel nonintersecting
lines. To sample different shapes and size scales, we gen-
erated the curves in a few independent runs so that the
general distribution the dimensions of the curves does
not correspond to a Gaussian. The number of samples
for the different datasets is as follows:

• 2d, (256, 256): 3000 deformed circles, 3000 lines;

• 3d, (255, 255): 2000 deformed circles, 2000 lines;

• 2d, (512, 512): 5000 deformed circles.

The neural network is trained for each dataset separately.
In each case, the dataset is split in three sets: 80% for
training, 10% for validation (to tune the parameters of
the network) and 10% for testing. In 3d, the training
takes circa 5 min for 800 samples (running on a GPU
GeForce GTX 1080), while predicting takes circa 5 ms
for one sample. For comparison, Monte Carlo takes 3.1
hours for a single sample on a GPU Tesla K40.

The inset histograms in Fig. 2 characterize the statisti-
cal features of the predictive power of the ML algorithm.
The histograms show, in a statistical manner, the number
of the deformed circles with given range of the Casimir
energies in 3d (the mean action in 2d) obtained with the
help of the Monte-Carlo calculations (“true”) as com-
pared to the predicted by the neural network (“pred.”).
The errors are summarized in Table I. For the majority
of samples, the relative errors are small and the neural
network reproduces well the MC result. The largest er-
rors are found for very small curves, as it can be expected
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FIG. 1. (left) The neural network used to predict the Casimir
energy ES for the static boundary S placed at the spatial
L × L lattice cross-section of the 3d model. The size of the
inputs of each layer is indicated on the left. The same network
is employed for the mean action in the 2d model. (right)
The examples of the quasi-parallel, corrugated lines used for
training and prediction.

(255, 255) (256, 256) (512, 512)
3d circles 3d lines 2d circles 2d lines 2d circles

samples 200 200 300 300 500
mean 0.064 0.0037 0.048 0.0025 0.084
min 0.000087 0.000019 0.00003 0.000024 0.000047
75% 0.069 0.0051 0.060 0.0034 0.096
max 2.1 0.016 0.87 0.015 1.1

TABLE I. Relative errors for 3d (for the Casimir energy EC)
and 2d (for the mean action 〈S〉) compared to the MC result,
evaluated for the deformed circles and the quasi-parallel lines.
The line “75%” gives the third quartile (75% of the errors are
below the value), “min” and “max” are the minimum and
maximal errors.

(the image resolution is not sufficient for the neural net-
work). The learning curves represent the evolution of
the root-mean-square error (loss) in terms of the num-
ber of samples used for training the neural network. The
validation data corresponds to all the data not used for
training. For large training sets, the flattening of both
curves indicate that there is enough samples for train-
ing the network, the quasi-absence of gap between them
shows that there is no overfitting, and the overall low

Casimir energy – deformed circles in (2+1)d

Mean action – deformed circles in 2d

2 5

1

3 4

5

3

2 4

1

FIG. 2. Learning curves for (top) the Casimir energy ES in 3d
scalar model and (bottom) the mean action 〈S〉 in 2d scalar
model for the set of the deformed circles at 2552 and 2563

lattices, respectively. The inset histograms confront, statisti-
cally, the real vs. predicted distributions of the Casimir ener-
gies ES and actions 〈S〉, for the 3d and 2d sets, respectively.
Several examples of the deformed circles are shown as well (de-
scribed in Table II; See Supplemental Material at [URL will
be inserted by publisher] for the examples of the deformed
circles in a digital data format).

values of the losses signals the absence of underfitting.
Together, this shows that the architecture of the network
is well adapted to the task.

We also demonstrate the success of the method in Ta-
ble II for a set of particular examples, visualized and la-
beled in the insets of Fig. 2. It is interesting to notice that
in most cases the neural network gives the prediction very
close to the mean actual value, which falls well within the
errors both at Monte-Carlo and Machine-Learning sides.
This fact, most probably, highlights a (cautionary) over-
estimation of the errors provided by the algorithms at
the both sides.

We got very similar results for the learning curves, the
statistical distribution and the magnitude of errors, for
the set of quasi-parallel lines, with typical examples vi-
sualized in the right panel of Fig. 1 and relative errors
presented in Table I.
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MC ML
N O errO O errO

3
d

1 -22.62 0.13 -22.60 0.014
2 -20.34 0.12 -20.34 0.0018
3 -12.22 0.09 -12.23 0.011
4 -9.57 0.16 -9.57 0.0028
5 -9.57 0.013 -9.56 0.011

2
d

1 -227.44 0.43 -227.43 0.0068
2 -165.06 0.42 -165.05 0.014
3 -156.99 0.42 -156.98 0.018
4 -95.30 0.42 -95.38 0.019
5 -90.44 0.42 -90.45 0.088

TABLE II. The Casimir energy (O = ES) in the 3d model and
the mean action (O = 〈S〉) in the 2d model obtained with
the first-principle Monte-Carlo (MC) calculation and the Ma-
chine Learning (ML) techniques, together with appropriate
absolute errors. The numbers N label the deformed circles
shown in Fig. 2.

The predictive power of the ML algorithm depends on
the size of the curve in dimensionless units (pixels). It
seems that both for the coarser (2562) and the finer-
graded (5122) lattices, there is a common scale L (in
pixels) below which the neural network does not work
well; see Fig. 3 with the data shown in Table III of Sup-
plemental Material at [URL will be inserted by publisher]
for the examples of these worst configurations. The exis-
tence of the lower pixel size needed to maintain the pre-
dictive power of the ML algorithm is naturally consistent
with the expected property that for a fixed physical size
of the curve, a finer discretization gives better results.

In our article, we demonstrated that the trained neu-
ral networks provide us with a quick and accurate tool
for prediction of the zero-point energies of the physical –
though idealized, in our exploratory approach – bodies.
The methods are both versatile and universal as we suc-
cessfully applied them in two physical setups (in 2d and
3d) and for different types of boundaries (the deformed
circles and the corrugated lines). The machine learning
techniques may open the door to designing geometries
with requested characteristics of the vacuum forces.

The authors are grateful to A. N. Chernodub (Gram-
marly) for useful comments. The numerical simulations
were performed at the computing cluster Vostok-1 of Far
Eastern Federal University. The work was supported
by a grant of the Russian Foundation for Basic Re-
search No. 18-02-40121 mega. H.E. was supported by
a Carl Friedrich von Siemens Research Fellowship of the
Alexander von Humboldt Foundation during most of this
project. V.G. is partly supported by the Research Cen-
ter for Nuclear Physics, Osaka University Collaboration
Research network (COREnet).

Supplemental Material

For the overwhelming majority of the studied bound-
ary geometries, the trained neural network gives very
good results. However, there is a small subset of the
configurations for which our method does not work. In
the first part of this supplemental material, we provide
some examples where the neural network gives the worst
results in terms of relative errors. In Table III we com-
pare the Casimir energy EC obtained with the help of the
first-principles Monte Carlo (MC) simulations (configu-
rations A, B and C for the 3d model) and the mean action
〈S〉 (configurations D, E and F for the 2d model) with
the corresponding quantities predicted by the Machine
Learning (ML) method.

MC ML
N O errO O errO

3
d

A -0.82 0.12 -2.54 1.72
B -1.63 0.10 -2.67 1.04
C -1.48 0.09 -2.30 0.82

2
d

D -6.71 0.42 -12.53 5.82
E -14.44 0.42 -8.34 6.10
F -41.15 0.43 -28.38 12.78

TABLE III. Worst predictions (in terms of relative error) from
the ML for the Casimir energy (O = ES) in the 3d model and
the mean action (O = 〈S〉) in the 2d model. The labels N
correspond to the deformed circles shown in Fig. 3.

The worst configurations A, . . . , F are visualized in
Fig. 3 in yellow/red colors. It turns out that these con-
figurations correspond to relatively small loops, where
the effects of the coarse-graining are large. We also vi-
sualize, for comparison, one of the good configurations
which was already shown in the upper plot of Fig. 2.

B
A

C
D

F
E 3d

2d
conf No. 1 

from 3d “good”

FIG. 3. The examples A, B, . . . , F of the deformed circles for
which the neural network makes the worst predictions (given
in Table III). For comparison, we plot – keeping the correct
scale – the configuration No. 1 from the good examples for
the 3d model shown in the upper plot of Fig. 2.

For completeness, we also show in Fig. 4 the distribu-
tions of the MC and ML values and of the ML relative er-
rors (ML minus MC value divided by the MC value). The
bad examples described above are responsible for the tails
in the error distributions for the deformed circles. Note,
however, that there are very few such instances with high
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deformed circles

2d 2d

2d

3d

3d

L=256 L=512

L=256

L=255

L=255

deformed circles deformed circles

corrugated lines corrugated lines

FIG. 4. Distribution of values (MC and ML) and errors.

errors: for example, in the 2d case with L = 256, out of
the total of 300 samples, there is only one sample with
error of circa 0.85, one sample with the error about 0.4,
and two samples with errors approximately equal to 0.3.
On the other hand, these large relative errors appear for
small curves which have a small value of total Casimir en-
ergy. As a consequence, the absolute error with respect
to the MC result is small, which explains why the distri-
butions of the MC and ML values agree very well (notice
that the range of the values of the Casimir energies is
quite large).

We also find that the relative errors are much smaller
for the case of the corrugated lines. On the other hand,
the range of Casimir energies for the lines is more re-
stricted than the one for deformed circles, while the en-
ergy values are relatively large. Therefore, even small
relative errors can be visible in the value distribution, as
it is clearly seen for the 3d case of the corrugated lines in
Fig. 4.
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