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Abstract 

The Flying-Spot infrared thermography was introduced more than twenty years ago to detect 

narrow cracks. Recent progress made in optical control, lasers and infrared cameras allows 

extending the Flying-Spot technique for a quantitative thermal analysis. In this work, we 

propose a Constant Velocity Flying Spot to measure the in-plane thermal diffusivity of 

isotropic and anisotropic materials. We demonstrate that the logarithmic temperature profiles 

perpendicular to the laser motion are parabolic functions from which the thermal diffusivity 

along this direction is obtained. We have investigated two equivalent experimental 

configurations: (a) Moving laser with motionless sample and (b) moving sample with 

motionless laser spot. Both are of practical interest: the first one leads to identify thermal 

heterogeneities in macroscopic samples and the second one leads to measure the thermal 

properties of materials in in-line production processes. Measurements performed on calibrated 

samples (from insulators to good thermal conductors) with both configurations confirm the 

reliability of the method to measure the in-plane thermal diffusivity with an error less than 

4 %. 
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1. Introduction 

Photohermal infrared thermography is an efficient tool to characterize the thermal diffusivity 

of solids. The flash method, both in the rear-face [1] and in the front-face [2] configurations, 

is a well-established technique for measuring the in-depth thermal diffusivity. In this method, 

a flat flash beam illuminates the whole sample surface homogeneously. Measuring the in-

plane thermal diffusivity, instead, requires generating a thermal gradient along the surface. To 

do this, several illumination schemes have been proposed: a Gaussian spot [3-9], an annular 

area [10-12], a line or a strip [13-15] and a grid-like mask [16]. Measurements can be 

performed in the time-domain (pulsed excitation) or in the frequency-domain (modulated 

excitation). 

In the nineties, with the aim of studying large surfaces in short times, it was introduced the so-

called Flying-Spot infrared thermography. It consists in heating the sample surface with a 

moving continuous wave (cw)-laser spot and detecting the surface temperature field with an 

infrared video camera [17,18]. Since then, this technique has been developed and is suitable 

for the detection of defects, mainly vertical cracks, in a very fast and efficient way [19-27].  

When an extremely short laser pulse heats the sample surface of a motionless isotropic and 

opaque material, the surface isothermals are concentric circles at all subsequent times. In a 

recent paper [9], authors demonstrated that the in-plane transient temperature profiles in 

natural logarithmic scale, Log(T), are parabolas and that the inverse of the second order 

coefficient of these parabolas behaves linearly as a function of time, the slope being directly 

related to the thermal diffusivity. This linear relation provides an excellent method to measure 

the thermal diffusivity in a fast and accurate way. The main advantage of this technique is that 

identifying the second order coefficient of the parabolas requires only few pixels around the 

heating spot. 

In this work, we propose a method to measure the in-plane thermal diffusivity of opaque, 

isotropic and anisotropic samples based on the so-called Constant Velocity Flying Spot 

(CVFS), when a cw-laser spot is moving at a constant velocity along a straight line at the 

sample surface. In this case, increasing the motion speed leads to enhance the asymmetry of 

the surface temperature field. However, we will demonstrate that the transverse profiles of 

Log(T) with respect to the direction of the laser motion are still parabola and that the inverse 

of the second order coefficient of these parabola is a linear function of the distance to the laser 
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spot. From the slope of this straight line, the thermal diffusivity along the direction 

perpendicular to the laser motion can be derived easily.  

It is worth writing that this method is also valid when the laser spot is motionless and the 

sample is moving at a constant velocity. This last configuration is of practical interest since it 

allows measuring the thermal diffusivity in in-line production processes, where 

heterogeneities, i.e. local changes in the thermal properties, can be detected in real time with a 

processing time less than 1 s on a I7 core with 128 Go of RAM computer.  

To check the ability of the method to measure the thermal diffusivity efficiently using the 

CVFS, two experimental configurations have been designed. In the first one (Conf I), the 

sample is motionless while the laser is moving at constant velocity. In the second one 

(Conf II), the laser is motionless while the sample is moving at a constant velocity. In both 

cases (Conf I and II) the sensor (IR camera) is motionless. In-plane thermal diffusivity 

measurements performed in both configurations using calibrated samples covering a wide 

range of thermal diffusivities (from insulators to good thermal conductors) confirm the 

reliability of the method. 

 

2. Material and experimental methods 

2.1 Setups 

Figure 1a and Figure 1b represent the Conf I (Motionless sample and moving laser). A cw 

laser diode (976 nm, 330 mW) is used to heat the surface of a sample. A Dual-Axis Scanning 

Galvo System (Thorlabs GVS112/M) is used to control the displacement of the laser spot at a 

constant velocity over the surface. A 160 mm focal length lens is used to reduce the spot 

diameter at 25 μm on the surface. With such a focal length, the scanning area is a 

(11 × 11) cm square and minimum displacement is 4.5 µm. A dichroic mirror, treated to 

reflect 95% of the visible light from 700 nm to 1000 nm and to transmit 95% of the infrared 

radiation between 2 and 16 μm, is used to direct the laser beam perpendicularly to the sample 

surface. The radiative emission of the sample surface is recorded by an IR video camera 

(FLIR SC7000, 320 × 256 pixels, pitch 30 μm, spectral band from 7 to 14 μm) equipped with 

a 25 mm focal length lens, which provides a spatial resolution of 250 ± 4 μm per pixel. More 

details on the setup can be found in Ref. [9]. 
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a) 

 

b) 

 

c) 

 

d) 

 

 

 
 

 

Figure 1: Experimental setup (developed at I2M lab) with a moving laser spot: a) sketch of 

the system and b) photo from the top. Experimental setup (developed at DFA) with a moving 

sample: c) sketch of the system and d) laser at fixed position and moving sample at constant 

velocity. 

 

In the second setup Conf II (motionless laser spot and moving sample), which was developed 

at the Photothermal Techniques Laboratory in Bilbao, the laser spot is motionless and the 

sample is moved at constant velocity. The sketch of the experiment is shown in Figure 1c and 

Figure 1d. A cw laser (532 nm, up to 6 W) is directed by means of several mirrors and it is 

focused on the sample surface by a 10 cm focal length lens down to a radius of about 150 µm. 

A Ge window, which reflects visible light and transmits the IR wavelength, is used as a 

visible light filter for the camera. A small mirror, glued to the Ge window, allows the laser 

IR Camera

f)

IR lasera)

2D galvanometers systemb)

F-Theta scan lensc)

Dichroic mirrord) Samplee)
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beam to impinge the sample surface perpendicularly. An IR video camera (FLIR, model 

SC7500, 320 × 256 pixels, pitch 30 μm, spectral band from 3 to 5 μm) records the 

temperature field at the sample surface when it moves at a constant speed, v. An IR 

microscope lens is used to improve the spatial resolution of the IR camera down to 30 µm, 

with a field of view of 9.60 mm x 7.68 mm. The sample is mounted on a dynamic system 

(cart + track) that is coupled to an electronic system to control the speed of the cart between 

2.5 and 10 cm.s-1. 

 

2.2 Constant Velocity Flying Spot (CVFS) methods 

 

Regarding the setup of the Bilbao research group Conf II (motionless laser spot and moving 

sample), the speed of the sample is measured by counting the number of frames between the 

entrance and the exit of one end of the sample in the field of view of the camera and taking 

into account the length of the sample and the frame rate of the camera. In this way, the sample 

speed is measured with an uncertainty of less than 0.5%. We worked at the maximum frame 

rate allowed by the IR camera: 330 frames/s at full frame and up to 2000 frames/s applying a 

sub-windowing (320 × 70 pixels) with an integration time of 800 µs. On the other hand, in 

order to enhance the signal to noise ratio, several hundred of thermograms are averaged after 

reaching the steady state. For a comparison, we show in Figure 2 the single thermogram and 

the average thermogram corresponding to a Ni sample moving along the horizontal axis at 

6 cm.s-1. As can be observed, the noise reduction is remarkable and using this averaged 

thermogram the sample thermal diffusivity will be obtained with high accuracy, as it will be 

shown in section 5. 

a) b) 
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Figure 2: (a) Single thermogram and (b) averaged thermogram over several hundreds of 

thermograms corresponding to a Nickel sample moving downwards at 6 cm.s-1. 

 

Due to the versatility of the galvanometric system, an infinite number of different shapes 

could be generated for the laser displacement. In this study, a line is applied for the spot 

motion.  

To understand the measurement ability, an example of CVFS realized on a PVC sample is 

represented in Figure 2.a. according to the following experimental conditions: (i), continuous 

laser beam with 6 mm.s-1 velocity, (ii) the diameter of the focused laser beam equal to 

d = 25 μm, (iii), power of 330 mW. While the parameters for the acquisition of the 

temperature fields are: (i), the spatial resolution of a pixel of the infrared camera is fixed at 

250 ± 4 μm per pixel, (ii) the acquisition frequency of the camera is set at 200 Hz, (iii) the 

integration time is taken to be 500 μs, and (iv) acquisition takes place over a period of 

t = 5.3 s, representing 1050 images. 

As illustrated in Figure 3, the laser beam scans the sample surface at constant speed as 

function of time along the y axis. As a first step, it is interesting to note the quality of the 

measurements with low noise levels. From these measurements, the scanning speed is 

determined by direct analysis of the measured temperature fields. For this purpose, an average 

of the film is produced in the direction x as illustrated in Figure 4. This makes it possible to 

obtain an image ( , )I y t  for which it is possible to estimate the average speed of the laser. 

This image depicted in Figure 4.a shows the great regularity of the displacement due to the 

homogeneity and isotropic properties of PVC sample. From this space-time image, the 

maxima of each of the lines are extracted as well as their corresponding times. These points 
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are shown in Figure 4.b in order to determine the speed. In this example, a speed of about 

6 mm.s-1 is obtained. 

 

a)  

 

b)  

 

c)  

 

d)  

 

Figure 3: Excitation at constant scanning speed and with the laser continuously lit in the 

camera reference: a), temperature field at t = 0 s, b), temperature field after at t = 1.25 s, c), 

temperature field at t = 3.7 s and d) temperature field after completion of the sweep at 

t = 5.3 s. 
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a) b) 

Figure 4: a), Image ( , )I y t  of the mean of the film ( , , )T x y t  made in the x direction and b), 

points representing the maxima according to y traced as a function of time for the estimation 

of the velocity of the laser beam. 

 

From the knowledge of the average velocity of the laser scan, a change of mark can be 

performed (according to the processing method depicted in section 3.2) and represented 

Figure 5. This step consists in an interpolation of the temperature field from space and time 

representation ( , , )T x y t  to space temperature ( , )T x y  corresponding to the one of the laser 

once the steady state has been reached. 

 

a) 

 

b) 

 

Figure 5: Excitation at constant scanning speed and with the laser continuously lit in the laser 

spot mark:  a), temperature field after 6 mm of scanning, b), temperature field at the end of 

scanning. 
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2.3 Analysis of velocity and frequency dependencies 

Observations from Figure 5 allow introducing the effect of both the laser velocity and the 

acquisition frequency from the IR camera. Depending on the value of these two parameters 

the reconstructed 2D spatial fields would be different. Increasing the acquisition frequency 

will increase the number of the acquired images. In such a case, the velocity of the laser spot 

will not be affected whereas the spatial resolution will be increased. To illustrate this fact, the 

estimated velocity, corresponding to the following cases: (i), continuous laser beam, (ii) the 

diameter of the focused laser beam equal to d = 25 μm, (iii), power of 330 mW, while the 

parameters for the acquisition of the temperature fields are: (i), the spatial resolution of a pixel 

of the infrared camera is fixed at 250 μm (with an uncertainty of ± 4 μm) per pixel, (ii) the 

acquisition frequency of the camera is set between 25 to 629 Hz, (iii) the integration time is 

taken to be 500 μs are represented in Figure 6. 

 

a) b) 

Figure 6: Laser displacement at constant velocity for different camera acquisition rates: a), 

displacement in pixel as function of number of images and b), displacement in mm as 

function of time. 

 

To conclude it is important to notice that increasing the acquisition frequency is a way to 

increase the spatial resolution of the measurements when using a change of mark from the one 

of the camera image to the one of the laser spot. This is particularly easy due to the very high 

control or accuracy of the laser velocity. 



 

10 

 

 

2.4 Materials 

Measurements will be performed on the samples presented in Figure 7. This sample panel is 

composed of several isotropic and anisotropic materials going from thermal conductors to 

insulators. The sample in Figure 7.a is an isotropic and insulating 15 cm × 15 cm Plexiglas 

plate. The one in Figure 7.b is an orthotropic 12 cm × 14 cm carbon / epoxy plate elaborated 

with fibres oriented along one direction. The one in Figure 7.c is a 9 cm × 3 cm Zinc plate. 

The thickness of each sample is not the same, but in this study, where the experimentation is 

performed in the front face, it has no influence on the modelization of the proposed method 

and the experimental results. 

a) 

 

b) 

 

c)  

 
Figure 7: Sample to characterize: a) isotropic Polyethylene, b) anisotropic carbon / epoxy 

composite with fibres oriented along the vertical direction and c) isotropic Nickel. 

 

3. Thermal modelization of the Constant Velocity Flying Spot (CVFS) 

 

3.1 Transient thermal problem in the mark of the camera 

Let us start considering an anisotropic, opaque and semi-infinite sample illuminated by an 

extremely brief (Dirac) pulse laser of Gaussian laser beam of radius b (at 1/e2). We make the 

Cartesian reference frame coincide with the principal axes of this anisotropic slab. The 

geometry of the problem is illustrated in Figure 8.  
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a) 

 

b) 

 
Figure 8: Front surface of an anisotropic sample illuminated by a Gaussian laser beam. a), the 

laser spot is at rest, centered at the origin and b), the laser spot is moving to the right at 

constant velocity v. It was switched on when it was at the origin (dotted circle). 

 

In the absence of heat losses and for an infinite medium in z direction, the temperature rise 

above the ambient at the sample surface is given by [8]: 
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Here Qo is the energy of the laser pulse, η is the energy fraction absorbed by the sample, a is 

the thermal diffusivity and E is the thermal effusivity. Subscripts xx, yy, zz stand for the 

thermal properties along the principal axes. 

If the laser spot is displaced a distance l to the right, along the principal axis y, and we deposit 

a small amount of energy dQo, then, following Eq. (1), the temperature is given by: 
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Now we consider a cw laser of power Po and Gaussian profile of radius b (at 1/e2) moving to 

the right at constant velocity v. The laser is switched on at t = 0, when it is at the origin of 

coordinates. The energy delivered by this laser in a short time dt is dQo = Podt. The surface 
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temperature at time t, when the laser is at a distance y = vt, is given by the convolution 

integral (see Figure 8.b) 
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This equation allows us to calculate the surface temperature field at any time t after the laser 

was switched on, in the reference frame of the sample as illustrated in Figure 9. Simulations 

have been performed for an isotropic sample with a = 1.10-7 m2.s-1 and the laser moving at 

v = 6 mm.s-1, the power P0 = 300 mW, η = 1, ezz = 538 J.K-1.m-2.s-1/2 et e = 100 µm. 

a) 

 

b) 

 

Figure 9: Excitation at constant scanning speed and with the laser continuously lit in the 

camera reference. a) Temperature field at t = 2 s, b), temperature field at t = 5.3 s. 

 

3.2 Transient thermal problem in the mark of the Laser spot 

If we are interested in measuring the thermal properties of a sample moving at constant 

velocity, we heat it with a laser beam, which remains at rest. To calculate the surface 

temperature in the laser mark we perform just a change in the reference frame in Eq. (3): 

Let us consider the same anisotropic and infinite medium in z direction sample, as before 

moving to the left at constant velocity v, while the laser is at rest. The sample frame is (x,y,z) 

and the laser frame is (x’,y’,z’). The laser is switched on at t = 0, when both reference frames 

are superimposed (see Figure 10.a). At time t the sample is displaced to the left a distance 

y’ = -vt (see Figure 10.b).  
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a) 

 

b) 

 
Figure 10: Front surface of an anisotropic sample moving to the left at constant velocity v, 

while the laser spot is at rest. a), The sample frame is (x,y,z) and the laser frame is (x’,y’,z’) 

are superimposed at t = 0, when the laser was switched on and b), At time t the sample is 

displaced to the left a distance y’ = -vt. 

 

To calculate the temperature field in the laser frame we perform a change of coordinates since 

y = y’ + vt. The exponentials in Eq. (3) can be transformed as y - vτ = y’ + vt – vτ = y’ + v(t – 

τ) and x = x’. Accordingly, the temperature in the laser frame is: 
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It is worth mentioning that this problem was already solved by Gupta and co-workers for a 

moving isotropic fluid by solving the heat diffusion equation with a transport term [28]. 

From Eq. (4) the surface temperature field at any time t after the sample started moving can 

be calculated. Figure 11 shows the temperature fields at two different times after the sample 

started moving. Simulations have been performed for the same isotropic sample as in 

Figure 9, with a = 1.10-7 m2.s-1 and the sample moving at v = 6 mm.s-1. 
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a) 

 

b) 

 

Figure 11: Excitation with the laser continuously lit and the sample moving at constant 

velocity.  a) Temperature field at t = 0.2 s and (b) temperature field at t = 5.3 s. 

 

According to the Relativity Principle, both Eq. (3) and Eq. (4) give the same temperature 

field. This result can be appreciated by comparing Figure 9b and Figure 11b, where the same 

thermogram is obtained regardless whether the laser or the sample is moving. Accordingly 

any procedure, moving the laser or moving the sample, can be used to retrieve the thermal 

transport properties of the sample. In Figure 12 we show the simulations of the natural 

logarithm of the temperature profiles in the direction perpendicular to the movement for the 

same material as in Figure 9 and Figure 11, when the steady state is reached. As can be 

observed, far away from the laser spot the temperature profiles look like parabolas. This result 

suggests the possibility of using the same method as in Ref. [9] for measuring the in-plane 

thermal diffusivity. However, Eqs. (3) and (4) are convolution integrals and it is difficult to 

develop an inverse procedure to retrieve the thermal diffusivity. That is the reason why we 

introduce in the next subsection a simplified theory to calculate the steady state temperature 

field if the heat diffusion along the laser movement direction is neglected. This assumption 

leads to an analytical expression of the surface temperature. It is worth mentioning that the 

validity of this simplified model increases with the laser speed and with the thermal 

diffusivity of the sample. 
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Figure 12: Logarithmic temperature profiles along the direction perpendicular to the laser 

movement (x) at several distances from the laser spot (y). Simulations have been performed 

for the same material and speed as in Figure 9 and Figure 11. The laser spot is centered at 

x = 5 mm and y = 40 mm. 

 

3.3 Simplified model in stationary state 

After having determined the scanning speed, the passage of the camera's reference mark (ie a 

transient 3D problem) to that of the laser beam (permanent 3D problem) is carried out and 

illustrated in Figure 5 and Figure 11 with respect to the principle of the scheme Figure 8 and 

Figure 10. This change of reference can be reflected in the equations in the form of a change 

of variable. This change of reference transforms the time variable t into the variable v y  

where v is the laser beam velocity and y is the distance travelled by the latter. 

With these considerations, the complete thermal problem could be written in steady state for a 

source point as follows: 
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Here a strong hypothesis is made assuming that the heat diffusion along the transport 

direction could be neglected. As a consequence, the term 
2

2 ),,(

y

zyxT
a

vy

yy ∂
∂

 is not taken into 

account to solve the thermal problem. This strong hypothesis is plausible when the velocity 

can be considered as important compared to the diffusion assuming that the Peclet number is 

larger than 10. 

With the previous system of equations, a double Laplace and Fourier transforms can be 

applied to the system according to the following formulation: 
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By application of the boundaries conditions and the integral transformed equation (6) the 

solution in the transformed space is obtained: 
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By using the inverse properties of the Laplace transformed (i.e. translation and scale 

properties), the expression of the temperature field in the real space is obtained:  
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where x0 is the spatial coordinates of the laser spot versus x direction (m); axx, azz represent the 

thermal diffusivities versus the x and z directions (m2.s−1); P0 is the power of the laser (W), 

and λzz corresponds to the thermal conductivity in z direction (W.m−1.K−1), and l (m) is the 

lateral dimension of the sample, vy (m.s-1) is the laser or sample velocity along y direction, ρ 

(kg.m-3) is the mass density and Cp (J.kg−1.K−1) is the specific heat. Due to the experimental 

configuration, the measurements are performed at the surface of the sample (i.e. in z = 0), 

with this condition, the temperature is expressed by:  
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Here it is very important to notice that the solution equation (8) is also available when the 

CVFS is applied along the x direction. In that case, the complete problem could be solved and 

the new expression of the temperature is given by: 
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 −
− 
 
 = =  (10) 

From an estimation point of view, it will be necessary to perform two kinds of thermal 

excitations: one along x and one along y directions to be able to estimate the thermal 

diffusivities along y and x directions. Finally, the following method should be used according 

to the direction of anisotropy of the sample. Future method based on the paper [10] would be 

addressed if an angle exists between the imaging axes and the orthotropic one. 

 

4. Inverse processing 

 

4.1 The Logarithmic Parabolic Method 

The consideration of the spatial logarithm of the previous expressions (9) and (10) then yields 

the following expressions according to the x and y directions: 
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The expression (11) can be used to obtain a polynomial relation of order 2 only as a function 

of the space x, y and the velocity v. This development reveals 3 coefficients function of v and 

y the spatial coordinate that must be estimated to determine the thermophysical properties of 

the problem. These properties will be estimated perpendicularly to the direction of the 

velocity term in other words of the scanning with the laser beam: 

 

 
[ ]

2

0 1 2

2

0 1 2

log ( , , 0) ( ) ( ) ( )

log ( , , 0) ( ) ( ) ( )

vy vy vy vy

vx vx vx vx

T x y z y y x y x

T x y z x x y x y

β β β

β β β

 = = + + 

= = + +
 (12) 

with 
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 (13) 

Several comments arise from the previous expressions: 

• β
2
 is dependent only on the thermal diffusivities axx and ayy. It is thus a suitable way 

to verify the in-plane homogenous transfer at different location, independent of the 

transverse heat transfer and the position of the spot. 

• When the in-plane thermal diffusivities were estimated using β
2
, the estimation of x0 

and y0 could be conducted with the β
1
 parameter or with the direct relation between 

β
1
 and β

2
. 

• The estimation of β
0
 is directly related to a 1D front face flash experiment. For 

example, the TSR method [6] could be used to estimate the parameter on an log(T) 

versus log(x) or log(y) graph representation and also take into account the heat losses. 

 

4.2 Gauss-Markov inverse method 
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The inverse processing method consists in a linear least square method based on the logarithm 

of the temperature. The particularity of this method is to realize this inverse processing as 

function of the space and along the direction of the CVFS of the expressions (9) and (10). 

Nevertheless, the reconstructed spatial problem comes from the transient movie converted by 

using the method of section 3. For this reason, the noise of each pixel (i.e. spatial 

reconstruction of the temperature) is related to the noise associated to each pixel along time. 

Then, the measurement noise is considered uniform on the distribution and expressed as 

follows: 

 ),0,,()0,,()0,,(
itzyxTezyxTzyxT =+===

)
 (14) 

where ),,( ityxTe  is the random fluctuation added to a signal ),( yxT . It is considered to have a 

zero mean and uniform standard deviation (covariance matrix is diagonal). Moreover as the 

estimation could be performed along x or y directions linked to the main direction of the 

CVFS, the equation (14) can be rewritten as follow for each direction: 
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i

i

vy i vy i T x y z

vx i vx i T x y z

T x y z T x y z e

T x y z T x y z e

=

=

= = = +

= = = +

)

)  (15) 

where i represents the index of the variable corresponding to the direction of the CVFS. In 

agreement with the equation (12) a polynomial fitting can be implemented as function of the 

spaces x or y and the parameter 
nβ  can be estimated by using a linear least-square 

relationship. It can be expressed as a linear combination of the logarithm of the measured 

temperature [ ]),(ln yxT i

)
 or [ ]),(ln iyxT

)
 as function of the parameter to estimate and the space 

variable as follow: 
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 (16) 

The method of least squares assumes that there is constant variance in the noise, but in this 

case, the method of weighted least squares must be used because the ordinary least squares 

assumption of constant variance in the noise is violated (heteroscedasticity). The optimal 

estimation then yields: 
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 (17) 

where W is given by the diagonal elements of the variance–covariance matrix in the noise and 

Sx and Sy the sensitivities matrix linked to the different space direction. 

Finally, when the coefficients of the polynomial are estimated, a second linear Gauss-Markov 

method is applied between the estimated second order coefficient and the inverse of the 

distance (x or y) to realize a linear fit based on the relation (13) to retrieve the thermal 

diffusivity. 

 

4.3 Validation of the inverse processing on analytical case 

 

Even if the simplified proposed model is available in steady state and for high Peclet number, 

this formulation is not exact in terms of the true modelization of the complete problem 

depicted by equations (3) and (4). To study the error and bias of the simplified proposed 

model and inverse method, the two cases coming from the exact analytical solutions are 

minimized here. 
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First from the exact analytical method of Eq (3), where the laser is moving and the sample is 

at rest, the inverse processing depicted in section 4 is applied on the image case coming from 

Figure 9. The results relative to the parabolic fit of equation (12) are represented in Figure 13a 

for several positions. To point out the bias caused by the simplified proposed model and 

method, the residue of the fit is represented in Figure 13c. These residuals calculated as 

follow: 
( )

2

0 1 2

log ( , ,
100 1

( ) ( ) ( )

i f

vy vy vy

T x y t

y y x y x
ε

β β β
 

= − 
 + + 

 demonstrated that close to the laser spot, 

the bias is important with non-constant error and bias close to 5%. Whereas, far from the spot 

where the assumption of the model (steady state and high Peclet number) are satisfied, the 

residual are quite constant with value lower than 10-3%. Finally, in Figure 13b, the linear fit 

between the second order of the estimated coefficients of the polynomial is represented. First, 

it is important to notice that close to the laser (where the model is biased) the linearity of the 

estimated data is not consistent. The same problem occurred very far where no thermal 

gradient subsists. Nevertheless, the estimation performed far from this border effects allows 

us to obtain an estimated thermal diffusivity of 9.89.10-8 m².s-1 for a true value of 1.10-7 m².s-1 

meaning an error of 1.1%.  
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a) 

 

b) 

 

c) 

 

 

Figure 13: Validation of the proposed simplified method on exact analytical solution of 

equation (3): a), Parabolic fit of equation (12), b), linear fit of equation (13) and c), error ε of 

the parabolic approximation. 

 

Secondly, from the exact analytical method of Eq (4), where the sample is moving and the 

laser is at rest, the inverse processing depicted in section 4 is applied on the image case 

coming from the Figure 11. The results relative to the parabolic fit to equation (12) are 

represented Figure 14.a for several positions. To point out the bias caused by the simplified 

proposed model and method, the residue of the fit is represented in Figure 14.c. These 

residuals demonstrate that close to the laser spot, the bias is important with non-constant error 

and biased close to 5 %. Whereas, far from the spot where the assumptions of the model 

(steady state and high Peclet number) are satisfied, the residual are quite constant with value 

lower than 10-3 %. Finally, in Figure 14.b, the linear fit between the second order of the 

estimated coefficients of the polynomial is represented. First, it is important to notice that 
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close to the laser (where the model is biased) the linearity of the estimated data is not 

consistent. The same problem occurred very far where no thermal gradient subsists. 

Nevertheless, the estimation performed far from this border effects allows us to obtain an 

estimated thermal diffusivity of 9.95.10-8 m².s-1 for a true value of 1.10-7 m².s-1 meaning an 

error of 0.5%. Here it is important to notice that the change of mark previously depicted 

drastically increase the number of point (Figure 14.b) of the inverse processing. The 

consequence of this is a better spatial resolution and accurate estimation of the thermal 

diffusivity. Finally from an experimental point of view the uncertainty on the pixel size is 

around 1.5% and the one (see figure 6) on the velocity estimation is around 1%.  

a) 

 

b) 

 

c) 

 

 

Figure 14: Validation of the proposed simplified method on exact analytical solution of 

equation (4): a), Parabolic fit of equation (12), b), linear fit of equation (13) and c), error ε of 

the parabolic approximation. 
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To conclude this part it is important to note that the proposed simplified model is precise 

enough to perform thermal diffusivity estimation based on CVFS technique with bias lower 

than 1 %. Note that this bias is not linked to the noise which will introduce more error. 

 

5. Experimental results and discussion on homogeneous and orthotropic sample 

 

To validate the parabolas method proposed in this work, we have measured a set of samples 

with calibrated thermal properties, covering a wide range from insulators to thermal 

conductors: Polyethylene, Polyether-ether-ketone (PEEK), stainless steel AISI-304, Ni and 

Zn. Moreover, a carbon / epoxy composite with the carbon fibres unidirectionally aligned has 

been studied to verify the ability of the method to characterize the thermal diffusivity of 

anisotropic samples. Both the Bordeaux setup, with the moving laser, and the Bilbao setup, 

with the moving sample, have been used.  

As an example, we show in Figure 15 the results on Polyethylene using a moving laser 

(Conf I from Bordeaux team) at 8.5 mm.s-1. Measurements have been performed in two 

orthogonal directions to verify the isotropy of the sample. Figure 15.a and Figure 15.b show 

the temperature fields, while Figure 15.c shows fittings of the parabolas. Finally, Figure 15.d 

shows the linear relation between the inverse of the second order coefficient of these 

parabolas and the longitudinal distance with respect to the laser spot. From the slope of these 

straight lines the thermal diffusivities along the two orthogonal directions are obtained 

according to the formula Eq (13): axx = 1.48×10−7 m2.s-1 and ayy = 1.55×10−7 m2.s-1. Both 

results are very close, confirming the isotropy of the material, and in agreement with the 

literature value [30]. 

In Figure 16 we show the results on Ni using a moving sample (Conf II from Bilbao team) at 

6.6 cm.s-1. The retrieved thermal diffusivity is a = 20.4×10−6 m2.s-1, which agrees with the 

literature value [30]. 

Finally, in Figure 17 we show the results for the carbon / epoxy composite (Conf I from 

Bordeaux team). Figure 17.a and Figure 17.b show a clear anisotropy in the temperature 

fields, i.e. heat propagates much longer along the x-axis, the direction of the carbon fibres. 

The retrieved thermal diffusivities confirm this thermal anisotropy: axx = 3.53×10−6 m2.s-1 and 

ayy = 4.77×10−7 m2.s-1 (thermal anisotropic ratio of 7.4). These values are in good agreement 
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with the literature ones [9,10,31]. Table 1 summarizes all measurements performed in this 

work. Finally, the following method should be used according to the direction of anisotropy 

of the sample. Future method based on the paper [10] would be addressed if an angle exists 

between the imaging axes and the orthotropic one. 

 

a) 

 

b) 

 

c) d) 

Figure 15: Measurement on Polyethylene sample: a) Reconstructed temperature field in the 

mark of the laser for the laser moving along y direction, b) reconstructed temperature field in 

the mark of the laser for the laser moving along x direction, c) example of parabolic fit along 

x direction (ie for the temperature field a)) and y direction (ie for the temperature field b) and 

d) linear fits along x and y directions. 

 

Table 1. Retrieved thermal diffusivities (×10-6 m2.s-1) values using the parabolas method. The 

uncertainty is less than 4 %. 

 

Sample 
Thermal diffusivity 

(moving laser) 

Thermal diffusivity 

(moving sample) 

Thermal diffusivity 

(Literature)29-32 
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Polyethylene 0.148-0.155  0.14-0.18 

Carbon/epoxy II 3.53  3.8 

Carbon/epoxy ┴ 0.48  0.45-0.64 

PEEK  0.20 0.18 

AISI-304  4.0 3.95 

Ni  20.4 22 

Zn  43 41.8 

 

a) 

 

b) 

 

Figure 16: Measurement and method on Nickel sample at 6 cm.s-1: a), Reconstructed 

temperature field in the mark of the laser for the sample moving along the y direction, b), 

linear fits along y direction. 
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a) 

 

b) 

 

c) 

 

d) 

Figure 17: Measurement and method on 1D carbon / epoxy Composite sample at 8.5 mm.s-1: 

a), Reconstructed temperature field in the mark of the laser for the laser moving along y 

direction, b), reconstructed temperature field in the mark of the laser for the laser moving 

along x direction, c), example of parabolic fit along x direction (ie for the temperature field 

a)) and y direction (ie for the temperature field b)) and (d), linear fits along x and y directions. 

 

6. Conclusion 

 

We propose a method to measure the in-plane thermal diffusivity of (an)isotropic samples 

using the Constant Velocity Flying Spot IR thermography, where a laser spot scans the 

sample surface along a straight line at constant speed. The method consists in studying the 

surface temperature field in logarithmic scale. Using a simplified model, which neglects heat 

propagation in the direction of the laser movement, we have demonstrated analytically that 
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the transverse profiles of Log(T) with respect to the laser movement are parabolas. The 

inverse of the second order coefficient of these parabolas depends linearly on the distance to 

the laser spot, its slope giving the thermal diffusivity. Moreover, according to the Relativity 

Principle, this method is also valid when the laser remains fixed in the camera mark while the 

sample is moving at constant velocity. Experimental measurements performed on a set of 

materials covering a wide range of diffusivity values confirm the validity of the method. This 

work opens the way to measure real time thermal diffusivity of samples in an industrial 

environment, e.g. covering big surfaces with a moving laser or analysing moving samples (in 

an in-line production) with a fixed laser. Another advantage is the ability of the method to 

characterize high thermal conductor sample by adjusting the scanning velocity in agreement 

with the camera acquisition rate.  

 

Acknowledgments 

This work was supported by “Projet Région Aquitaine”, by “Epsilon-Alcen” industrial group, 

by “Ministerio de Economía y Competitividad” (DPI2016-77719-R, AEI/FEDER, UE) and by 

“Universidad del País Vasco UPV/EHU” (GIU16/33). 

 

 



 

29 

 

References 

[1] W.J. Parker, R.J. Jenkins, C.P. Butler and G.L. Abbott, Flash method of determining 

thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32, 1679-84 

(1961). 

[2] D.L. Balageas, Thermal diffusivity measurement by pulsed methods, High Temp.-High 

Press. 21, 85-96 (1989). 

[3] J.-C. Krapez, G. Gardette, Characterization of anisotropic materials by steady-state and 

modulated thermal ellipsometry, High Temp. High Press. 30, 567 (1998). 

[4] J.F. Bisson, D. Fournier, Influence of diffraction on low thermal diffusivity measurements 

with infrared photothermal microscopy, J. Appl. Phys. 83, 1036 (1998). 

[5] C.S. Welch, D.M. Heath, W.P. Winfree, Remote measurement of in-plane diffusivity 

components in plates, J. Appl. Phys. 61, 895 (1987). 

[6] F. Cernuschi, A. Russo, L. Lorenzoni, A. Figari, In-plane thermal diffusivity evaluation by 

infrared thermography, Rev. Sci. Instrum. 72, 3988 (2001). 

[7] P. Bison, F. Cernuschi and S. Capelli, A thermographic technique for the simultaneous 

estimation of in-plane and in-depth thermal diffusivities of TBCs, Surface & Coating 

Technology 205, 3128 (2011). 

[8] N.W. Pech-May, A. Mendioroz and A. Salazar, Simultaneous measurement of the in-plane 

and in-depth thermal diffusivity of solids using pulsed infrared thermography with focused 

illumination, NDT&E International 77, 28-34 (2016). 

[9] L. Gaverina, J.C. Batsale, A. Sommier and C. Pradere, Pulsed flying spot with the 

logarithmic parabolas method for the estimation of in-plane thermal diffusivity fields on 

heterogeneous and anisotropic materials, J. Appl. Phys. 121, 115105 (2017). 

[10] L. Gaverina, A. Sommier, J.L. Battaglia, J.C. Batsale and C. Pradere, Pulsed Flying Spot 

Elliptic method for the estimation of the thermal diffusivity field of orthotropic materials. Int. 

J. Therm. Sci. 125, 142-148 (2018). 

[11] D. Demange, P. Beauchene, M. Bejet, R. Casulleras, Mesure simultanée de la diffusivité 

thermique selon les deux directions principales d’un matériau, Rev. Gen. Therm. 36, 755 

(1997). 

[12] P. Cielo, L.A. Utracki, M. Lamontagne, Thermal diffusivity measurements by the 

converging thermal wave technique, Canad. J. Phys. 64, 1172 (1986). 



 

30 

 

[13] S. Alterowitz, G. Deutscher, M. Gerhenson, Heat capacity and thermal conductivity of 

sintered Al2O3 at low temperatures by the heat pulse technique, J. Appl. Phys. 46, 3637 

(1975). 

[14] I. Philippi, J.C. Batsale, D. Maillet, A. Degiovanni, Measurement of thermal diffusivities 

through processing of infrared images, Rev. Sci. Instrum. 66, 182 (1995). 

[15] C. Welch, J. Johnson, Thermographic measurement of in-plane diffusivity in very thin 

plates using diffusion of thermal patterns, in: D.O. Thompson, D.E. Chimenti (Eds.), Rev. 

Progress in Quant. Nondestr. Eval., vol. 19, Plenum, New York, 1999, pp. 1449–1456. 

[16] J.C. Krapez, L. Spagnolo, M. Frieb, H.P. Maier and G. Neuer, Measurement of in-plane 

diffusivity in non-homogeneous slabs by applying flash thermography, Int. J. Therm. Sci. 43, 

967 (2004). 

[17] Y.Q. Wang, P.K. Kuo, L.D. Favro and R.L. Thomas, A novel “flying-spot” infrared 

camera for imaging very fast thermal-wave phenomena, In Photoacoustic and Photothermal 

Phenomena II Springer Series in Optical Sciences 62, 24-26 (1990). 

[18] C. Gruss and D. Balageas. Theoretical and experimental applications of the flying spot 

camera. Proc QIRT 92 Conference (Seminar Eurotherm No 27) D Balageas, G Busse, GM 

Carlomagno eds Editions Europennes Thermique et Industrie, Paris. 1992;:19–24. Available 

from: QIRT Open Archives: www.qirt.org/dynamique/index.php?idD=55, Paper QIRT 1992-

004. 

[19] J.L. Bodnar and M. Egée, Wear crack characterization by photothermal radiometry, Wear 

196, 54-59 (1996). 

[20] J.C. Krapez, Résolution spatiale de la cemara thermique à source volante, Int. J. Therm. 

Sci. 38, 769-779 (1999). 

[21] J. Schlichting, M. Ziegler, A. Dey, Ch. Maierhofer and M. Kreutzbruck, Efficient data 

evaluation for thermographic crack detection, QIRT J. 8, 119-123 (2011). 

[22] S.E. Burrows, S. Dixon, S.G. Pickering, T. Li and D.P. Almond, Thermographic 

detection of surface breaking defects using a scanning laser source, NDT&E Int. 44, 589-596 

(2011). 

[23] T. Maffren, P. Juncar, F. Lepoutre and G. Deban, Crack detection in high-pressure 

rurbine blades with flying spot active thermography in the SWIR range, Rev. Progress 

Quantitative Nondestructive Evaluation, AIP Conference Proc. 1430, 515-522 (2012). 

[24] U. Netzelmann, Flying-spot lock-in thermography and its application to thickness 

measurement and crack detection, QIRT Conference Bordeaux 2014. Available from: QIRT 

Open Archives: http://dx.doi.org/10.21611/qirt.2014.064. 



 

31 

 

[25] A. Thiam, J.C. Kneip, E. Cicala, Y. Caulier, J.M. Jouvard and S. Mattei, Modeling and 

optimization of open crack detection by flying spot thermography, NDT&E Int. 89, 67-73 

(2017). 

[26] N. Montinaro, D. Cerniglia and G. Pitarresi, Detection and characterization of disbonds 

on fibre metal laminate hybrid composites by flying laser spot thermography, Composites Part 

B 108, 164-173 (2017). 

[27] C. Boué and S. Holé, Open crack depth sizing by multi-speed continuous laser stimulated 

lock-in thermography, Meas. Sci. Technol. 28, 065901 (2017). 

[28] Q. He, R. Vyas and R. Gupta, Theory of photothermal spectroscopy in an optically dense 

fluid, Appl. Opt. 36, 1841-1846 (1997). 

[29] Goodfellow catalogue at http://www.goodfellow.com.  

[30] Y.A. Çengel, Heat Transfer: A practical Approach (McGraw-Hill, Boston, 2003). 

[31] Thomas, M., Boyard, N., Lefèvre, N., Jarny, Y., & Delaunay, D. (2010). An 

experimental device for the simultaneous estimation of the thermal conductivity 3-D tensor 

and the specific heat of orthotropic composite materials. International Journal of Heat and 

Mass Transfer, 53(23), 5487-5498. 

[32] L.R. Touloukian, R.W. Powell, C.Y. Ho and M.C. Nicolasu, Thermal Diffusivity 

(IFI/Plenum, New York , 1973). 

 

 




