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RESEARCH ARTICLE

Constant Step Stochastic Approximations Involving Differential

Inclusions: Stability, Long-Run Convergence and Applications

Pascal Bianchi(1), Walid Hachem(2), and Adil Salim(1)∗

(Received 00 Month 200x; in final form 00 Month 200x)

We consider a Markov chain (xn) whose kernel is indexed by a scaling parameter γ > 0,
referred to as the step size. The aim is to analyze the behavior of the Markov chain in the
doubly asymptotic regime where n → ∞ then γ → 0. First, under mild assumptions on the
so-called drift of the Markov chain, we show that the interpolated process converges narrowly
to the solutions of a Differential Inclusion (DI) involving an upper semicontinuous set-valued
map with closed and convex values. Second, we provide verifiable conditions which ensure
the stability of the iterates. Third, by putting the above results together, we establish the
long run convergence of the iterates as γ → 0, to the Birkhoff center of the DI. The ergodic
behavior of the iterates is also provided. Application examples are investigated. We apply
our findings to 1) the problem of nonconvex proximal stochastic optimization and 2) a fluid
model of parallel queues.

Keywords: Differential inclusions; Dynamical systems; Stochastic approximation with
constant step; Non-convex optimization; Queueing systems.

AMS Subject Classification: 34A60,47N10, 54C60,62L20.

1. Introduction

In this paper, we consider a Markov chain (xn, n ∈ N) with values in E = RN ,
where N ≥ 1 is an integer. We assume that the probability transition kernel Pγ is
indexed by a scaling factor γ, which belongs to some interval (0, γ0). The aim of
the paper is to analyze the long term behavior of the Markov chain in the regime
where γ is small. The map

gγ(x) :=

∫
y − x
γ

Pγ(x, dy) , (1)

assumed well defined for all x ∈ RN , is called the drift or the mean field. The
Markov chain admits the representation

xn+1 = xn + γ gγ(xn) + γ Un+1 , (2)
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where Un+1 is a zero-mean martingale increment noise i.e., the conditional expec-
tation of Un+1 given the past samples is equal to zero. A case of interest in the
paper is given by iterative models of the form:

xn+1 = xn + γ hγ(ξn+1, xn) , (3)

where (ξn, n ∈ N∗) is a sequence of independent and identically distributed (iid)
random variables indexed by the set N∗ of positive integers and defined on a prob-
ability space Ξ with probability law µ, and {hγ}γ∈(0,γ0) is a family of maps on

Ξ× RN → RN . In this case, the drift gγ has the form:

gγ(x) =

∫
hγ(s, x)µ(ds) . (4)

Our results are as follows.

(1) Dynamical behavior. Assume that the drift gγ has the form (4). Assume
that for µ-almost all s and for every sequence ((γk, zk) ∈ (0, γ0)×RN , k ∈ N)
converging to (0, z),

hγk(s, zk)→ H(s, z)

where H(s, z) is a subset of RN (the Euclidean distance between hγk(s, zk)
and the set H(s, z) tends to zero as k → ∞). Denote by xγ(t) the
continuous-time stochastic process obtained by a piecewise linear inter-
polation of the sequence xn, where the points xn are spaced by a fixed time
step γ on the positive real axis. As γ → 0, and assuming that H(s, ·) is a
proper and upper semicontinuous (usc) map with closed convex values, we
prove that xγ converges narrowly (in the topology of uniform convergence
on compact sets) to the set of solutions of the differential inclusion (DI)

ẋ(t) ∈
∫
H(s, x(t))µ(ds) , (5)

where for every x ∈ RN ,
∫
H(s, x)µ(ds) is the selection integral of H(·, x),

which is defined as the closure of the set of integrals of the form
∫
ϕdµ

where ϕ is any integrable function such that ϕ(s) ∈ H(s, x) for µ-almost
all s.

(2) Tightness. As the iterates are not a priori supposed to be in a compact
subset of RN , we investigate the issue of stability. We posit a verifiable
Pakes-Has’minskii condition on the Markov chain (xn). The condition en-
sures that the iterates are stable in the sense that the random occupation
measures

Λn :=
1

n+ 1

n∑
k=0

δxk (n ∈ N)

(where δa stands for the Dirac measure at point a), form a tight family
of random variables on the Polish space of probability measures equipped
with the Lévy-Prokhorov distance. The same criterion allows to establish
the existence of invariant measures of the kernels Pγ , and the tightness of
the family of all invariant measures, for all γ ∈ (0, γ0). As a consequence
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of Prokhorov’s theorem, these invariant measures admit cluster points as
γ → 0. Under a Feller assumption on the kernel Pγ , we prove that every
such cluster point is an invariant measure for the DI (5). Here, since the
flow generated by the DI is in general set-valued, the notion of invariant
measure is borrowed from [18].

(3) Long-run convergence. Using the above results, we investigate the be-
havior of the iterates in the asymptotic regime where n → ∞ and, next,
γ → 0. Denoting by d(a,B) the distance between a point a ∈ E and a
subset B ⊂ E, we prove that for all ε > 0,

lim
γ→0

lim sup
n→∞

1

n+ 1

n∑
k=0

Prob (d(xk,BC) > ε) = 0 , (6)

where BC is the Birkhoff center of the flow induced by the DI (5), and
Prob stands for the probability. We also characterize the ergodic behavior
of these iterates. Setting xn = 1

n+1

∑n
k=0 xk, we prove that

lim
γ→0

lim sup
n→∞

Prob (d(xn, co(Lav)) > ε) = 0 , (7)

where co(Lav) is the convex hull of the limit set of the averaged flow asso-
ciated with (5) (see Section 4.4).

(4) Applications. We investigate several application scenarios. We consider
the problem of non-convex stochastic optimization, and analyze the con-
vergence of a constant step size proximal stochastic gradient algorithm. The
latter finds application in the optimization of deep neural networks [23]. We
show that the interpolated process converges narrowly to a DI, which we
characterize. We also provide sufficient conditions allowing to characterize
the long-run behavior of the algorithm (see also [27]). Second, we explain
that our results apply to the characterization of the fluid limit of a system
of parallel queues. The model is introduced in [3, 20]. Whereas the narrow
convergence of the interpolated process was studied in [20], less is known
about the stability and the long-run convergence of the iterates. We show
how our results can be used to address this problem. As a final example, we
explain how our results can be used in the context of monotone operator
theory, in order to analyze a stochastic version of the celebrated proximal
point algorithm. The algorithm consists in replacing the usual monotone
operator by an iid sequence of random monotone operators. The algorithm
has been studied in [11, 12] in the context of decreasing step size. Our
analysis provide the tools to characterize its behavior in a constant step
regime.

Paper organization. In Section 2, we introduce the application examples. In Sec-
tion 3, we briefly discuss the literature. Section 4 is devoted to the mathematical
background and to the notations. The main results are given in Section 5. The
tightness of the interpolated process as well as its narrow convergence towards the
solution set of the DI (Th. 5.1) are proven in Section 6. Turning to the Markov
chain characterization, Prop. 5.2, who explores the relations between the cluster
points of the Markov chains invariant measures and the invariant measures of the
flow induced by the DI, is proven in Section 7. A general result describing the
asymptotic behavior of a functional of the iterates with a prescribed growth is pro-
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vided by Th. 5.3, and proven in Section 8. Finally, in Section 9, we show how the
results pertaining to the ergodic convergence and to the convergence of the iterates
(Th. 5.4 and 5.5 respectively) can be deduced from Th. 5.3. Finally, Section 10 is
devoted to the application examples. We prove that our hypotheses are satisfied.

2. Examples

Example 2.1 Non-convex stochastic optimization. Consider the problem

minimize Eξ(`(ξ, x)) + r(x) w.r.t x ∈ RN , (8)

where `(ξ, ·) is a (possibly non-convex) differentiable function on RN → R in-
dexed by a random variable (r.v.) ξ, Eξ represents the expectation w.r.t. ξ, and
r : RN → R is a convex function. The problem typically arises in deep neural
networks [30, 32]. In the latter case, x represents the collection of weights of the
network, ξ represents a random training example of the database, and `(ξ, x) is
a risk function which quantifies the inadequacy between the sample response and
the network response. Here, r(x) is a regularization term which prevents the oc-
curence of undesired solutions. A typical regularizer used in machine learning is
the `1-norm ‖x‖1 that promotes sparsity or generalizations like ‖Dx‖1, where D is
a matrix, that promote structured sparsity. A popular algorithm used to find an
approximate solution to Problem (8) is the proximal stochastic gradient algorithm,
which reads

xn+1 = proxγr(xn − γ∇`(ξn+1, xn)) , (9)

where (ξn, n ∈ N∗) are i.i.d. copies of the r.v. ξ, where ∇ represents the gradient
w.r.t. parameter x, and where the proximity operator of r is the mapping on
RN → RN defined by

proxγr : x 7→ arg min
y∈RN

(
γ r(y) +

‖y − x‖2

2

)
.

The drift gγ has the form (4) where hγ(ξ, x) = γ−1(proxγr(x− γ∇`(ξ, x))−x) and
µ represents the distribution of the r.v. ξ. Under adequate hypotheses, we prove
that the interpolated process converges narrowly to the solutions to the DI

ẋ(t) ∈ −∇xEξ(`(ξ, x(t)))− ∂r(x(t)) ,

where ∂r represents the subdifferential of a function r, defined by

∂r(x) :=
{
u ∈ RN : ∀y ∈ RN , r(y) ≥ r(x) + 〈u, y − x〉

}
at every point x ∈ RN . We provide a sufficient condition under which the iter-
ates (9) satisfy the Pakes-Has’minskii criterion, which in turn, allows to character-
ize the long-run behavior of the iterates.

Example 2.2 Fluid limit of a system of parallel queues with priority. We consider
a time slotted queuing system composed of N queues. The following model is
inspired from [3, 20]. We denote by ykn the number of users in the queue k at time
n. We assume that a random number of Akn+1 ∈ N users arrive in the queue k at
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time n+1. The queues are prioritized: the users of Queue k can only be served if all
users of Queues ` for ` < k have been served. Whenever the queue k is non-empty
and the queues ` are empty for all ` < k, one user leaves Queue k with probability
ηk > 0. Starting with yk0 ∈ N, we thus have

ykn+1 = ykn +Akn+1 −Bk
n+11{ykn>0, yk−1

n =···=y1n=0} ,

where Bk
n+1 is a Bernoulli r.v. with parameter ηk, and where 1S denotes the indi-

cator of an event S, equal to one on that set and to zero otherwise. We assume that
the process ((A1

n, . . . , A
N
n , B

1
n, . . . , B

N
n ), n ∈ N∗) is iid, and that the random vari-

ables Akn have finite second moments. We denote by λk := E(Akn) > 0 the arrival
rate in Queue k. Given a scaling parameter γ > 0 which is assumed to be small,
we are interested in the fluid-scaled process, defined as xkn = γykn. This process is
subject to the dynamics:

xkn+1 = xkn + γ Akn+1 − γ Bk
n+11{xkn>0, xk−1

n =···=x1
n=0} . (10)

The Markov chain xn = (x1
n, . . . , x

N
n ) admits the representation (2), where the drift

gγ is defined on γNN , and is such that its k-th component gkγ(x) is

gkγ(x) = λk − ηk1{xk>0, xk−1=···=x1=0} , (11)

for every k ∈ {1, . . . , N} and every x = (x1, . . . , xN ) in γNN . Introduce the vector
uk := (λ1, · · · , λk−1, λk−ηk, λk+1, . . . , λN ) for all k. Let R+ := [0,+∞), and define
the set-valued map on RN

+

H(x) :=

{
u1 if x(1) > 0
co(u1, . . . ,uk) if x1 = · · · = xk−1 = 0 and xk > 0 ,

(12)

where co is the convex hull. Clearly, gγ(x) ∈ H(x) for every x ∈ γNN . In [20, § 3.2],
it is shown that the DI ẋ(t) ∈ H(x(t)) has a unique solution. Our results imply the
narrow convergence of the interpolated process to this solution, hence recovering a
result of [20]. More importantly, if the following stability condition

N∑
k=1

λk
ηk

< 1 (13)

holds, our approach allows to establish the tightness of the occupation measure
of the iterates xn, and to characterize the long-run behavior of these iterates. We
prove that in the long-run, the sequence (xn) converges to zero in the sense of (6).
The ergodic convergence in the sense of (7) can be also established with a small
extra effort.

Example 2.3 Random monotone operators. As a second application, we consider
the problem of finding a zero of a maximal monotone operator A : RN → 2RN :

Find x s.t. 0 ∈ A(x) . (14)

We recall that a set-valued map A : RN → 2RN is said monotone if for every
x, y in RN , and every u ∈ A(x), v ∈ A(y), 〈u − v, x − y〉 ≥ 0. The domain
and the graph of A are the respective subsets of RN and RN × RN defined as
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dom(A) := {x ∈ RN : A(x) 6= ∅}, and gr(A) := {(x, y) ∈ RN × RN : y ∈ A(x)}.
We denote by zer(A) := {x ∈ RN : 0 ∈ A(x)} the set of zeroes of A. The operator
A is proper if dom(A) 6= ∅. A proper monotone operator A is said maximal if
its graph gr(A) is a maximal element in the inclusion ordering. Denote by I the
identity operator, and by A−1 the inverse of the operator A, defined by the fact
that (x, y) ∈ gr(A−1)⇔ (y, x) ∈ gr(A). It is well know that A is maximal monotone
if and only if, for all γ > 0, the resolvent := (I + γA)−1 is a contraction defined on
the whole space (in particular, it is single valued).

Problem (14) arises in several applications such as convex optimization, varia-
tional inequalities, or game theory. The celebrated proximal point algorithm [28]
generates the sequence (un, n ∈ N) defined recursively as un+1 = (I + γA)−1(un).
The latter sequence converges to a zero of the operator A, whenever such a zero
exists. Recent works (see [12] and references therein) have been devoted to the
special case where the operator A is defined as the following selection integral

A(x) =

∫
A(s, x)µ(ds) ,

where µ is a probability on Ξ and where {A(s, ·), s ∈ Ξ} is a family of maximal
monotone operators. In this context, a natural algorithm for solving (14) is

xn+1 = (I + γA(ξn+1, ·))−1(xn) (15)

where (ξn, n ∈ N∗) is an iid sequence of r.v. whose law coincides with µ. The
asymptotic behavior of (15) is analyzed in [11] under the assumption that the step
size γ is decreasing with n. On the other hand, the results of the present paper
apply to the case where γ is a constant which does not depend on n. Here, the
drift gγ has the form (4) where the map −hγ(s, x) = γ−1(x− (I + γA(s, ·))−1(x))
is the so-called Yosida regularization of the operator A(s, ·) at x. As γ → 0, it is
well known that for every x ∈ dom(A(s, ·)), −hγ(s, x) converges to the element of
least norm in A(s, ·) [4]. Thanks to our results, it can be shown that under some
hypotheses, the interpolated process converges narrowly to the unique solution to
the DI

ẋ(t) ∈ −
∫
A(s, x(t))µ(ds) , (16)

and, under the Pakes-Has’minskii condition, that the iterates xn converge in the
long run to the zeroes of A.

3. About the Literature

When the drift gγ does not depend on γ and is supposed to be a Lispchitz continu-
ous map, the long term behavior of the iterates xn in the small step size regime has
been studied in the treatises [5, 6, 10, 15, 22] among others. In particular, narrow
convergence of the interpolated process to the solution of an Ordinary Differential
Equation (ODE) is established. The authors of [19] introduce a Pakes-Has’minskii
criterion to study the long-run behavior of the iterates.

The recent interest in the stochastic approximation when the ODE is replaced
with a differential inclusion dates back to [7], where decreasing steps were con-
sidered. A similar setting is considered in [17]. A Markov noise was considered in
the recent manuscript [31]. We also mention [18], where the ergodic convergence is
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studied when the so called weak asymptotic pseudo trajectory property is satisfied.
The case where the DI is built from maximal monotone operators is studied in [11]
and [12].

Differential inclusions arise in many applications, which include game theory
(see [7, 8], [29] and the references therein), convex optimization [12], queuing the-
ory or wireless communications, where stochastic approximation algorithms with
non continuous drifts are frequently used, and can be modelled by differential in-
clusions [20].

Differential inclusions with a constant step were studied in [29]. The paper [29]
extends previous results of [9] to the case of a DI. The key result established in [29]
is that the cluster points of the collection of invariant measures of the Markov chain
are invariant for the flow associated with the DI. Prop. 5.2 of the present paper
restates this result in a more general setting and using a shorter proof, which we
believe to have its own interest. Moreover, the so-called GASP model studied by
[29] does not cover certain applications, such as the ones provided in Section 2, for
instance. In addition, [29] focusses on the case where the space is compact, which
circumvents the issue of stability and simplifies the mathematical arguments. How-
ever, in many situations, the compactness assumption does not hold, and sufficient
conditions for stability need to be formulated. Finally, we characterize the asymp-
totic behavior of the iterates (xn) (as well as their Cesarò means) in the doubly
asymptotic regime where n→∞ then γ → 0. Such results are not present in [29].

4. Background

4.1 General Notations

The notation C(E,F ) is used to denote the set of continuous functions from the
topological space E to the topological space F . The notation Cb(E) stands for the
set of bounded functions in C(E,R). We use the conventions sup ∅ = −∞ and
inf ∅ = +∞. Notation bxc stands for the integer part of x.

Let (E, d) be a metric space. For every x ∈ E and S ⊂ E, we define d(x, S) =
inf{d(x, y) : y ∈ S}. We say that a sequence (xn, n ∈ N) on E converges to S, noted
xn →n S or simply xn → S, if d(xn, S) tends to zero as n tends to infinity. For
ε > 0, we define the ε-neighborhood of the set S as Sε := {x ∈ E : d(x, S) < ε}. The
closure of S is denoted by S, and its complementary set by Sc. The characteristic
function of S is the function 1S : E → {0, 1} equal to one on S and to zero
elsewhere.

Let E = RN for some integer N ≥ 1. We endow the space C(R+, E) with the
topology of uniform convergence on compact sets. The space C(R+, E) is metrizable
by the distance d defined for every x, y ∈ C(R+, E) by

d(x, y) :=
∑
n∈N

2−n

(
1 ∧ sup

t∈[0,n]
‖x(t)− y(t)‖

)
, (17)

where ‖ · ‖ denotes the Euclidean norm in E.

4.2 Random Probability Measures

Let E denote a metric space and let B(E) be its Borel σ-field. We denote byM(E)
the set of probability measures on (E,B(E)). The support supp(ν) of a measure
ν ∈M(E) is the smallest closed set G such that ν(G) = 1. We endow M(E) with
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the topology of narrow convergence: a sequence (νn, n ∈ N) onM(E) converges to a
measure ν ∈M(E) (denoted νn ⇒ ν) if for every f ∈ Cb(E), νn(f)→ ν(f), where
ν(f) is a shorthand for

∫
f(x)ν(dx). If E is a Polish space,M(E) is metrizable by

the Lévy-Prokhorov distance, and is a Polish space as well. A subset G of M(E)
is said tight if for every ε > 0, there exists a compact subset K of E such that for
all ν ∈ G, ν(K) > 1 − ε. By Prokhorov’s theorem, G is tight if and only if it is
relatively compact in M(E).

We denote by δa the Dirac measure at the point a ∈ E. If X is a random
variable on some measurable space (Ω,F ) into (E,B(E)), we denote by δX :
Ω → M(E) the measurable mapping defined by δX(ω) = δX(ω). If Λ : (Ω,F ) →
(M(E),B(M(E))) is a random variable on the set of probability measures, we
denote by EΛ the probability measure defined by (EΛ)(f) := E(Λ(f)) , for every
f ∈ Cb(E).

4.3 Set-Valued Mappings and Differential Inclusions

A set-valued mapping H : E ⇒ F is a function on E into the set 2F of subsets
of F . The graph of H is gr(H) := {(a, b) ∈ E × F : y ∈ H(a)}. The domain of H
is dom(H) := {a ∈ E : H(a) 6= ∅}. The mapping H is said proper if dom(H) is
non-empty. We say that H is single-valued if H(a) is a singleton for every a ∈ E
(in which case we handle H simply as a function H : E → F ).

Let H : E ⇒ E be a set-valued map on E = RN , where N is a positive integer.
Consider the differential inclusion:

ẋ(t) ∈ H(x(t)) . (18)

We say that an absolutely continuous mapping x : R+ → E is a solution to the
differential inclusion with initial condition a ∈ E if x(0) = a and if (18) holds for
almost every t ∈ R+. We denote by

ΦH : E ⇒ C(R+, E)

the set-valued mapping such that for every a ∈ E, ΦH(a) is set of solutions to (18)
with initial condition a. We refer to ΦH as the evolution system induced by H. For
every subset A ⊂ E, we define ΦH(A) =

⋃
a∈A ΦH(a).

A mapping H : E ⇒ E is said upper semi continuous (usc) at a point a0 ∈ E
if for every open set U containing H(a0), there exists η > 0, such that for every
a ∈ E, ‖a − a0‖ < η implies H(a) ⊂ U . It is said usc if it is usc at every point [1,
Chap. 1.4]. In the particular case where H is usc with nonempty compact convex
values and satisfies the condition

∃c > 0, ∀a ∈ E, sup{‖b‖ : b ∈ H(a)} ≤ c(1 + ‖a‖) , (19)

then, dom(ΦH) = E, see e.g. [1], and moreover, ΦH(E) is closed in the metric space
(C(R+, E), d).

4.4 Invariant Measures of Set-Valued Evolution Systems

Let (E, d) be a metric space. We define the shift operator Θ : C(R+, E) →
C(R+, C(R+, E)) s.t. for every x ∈ C(R+, E), Θ(x) : t 7→ x(t+ · ).

Consider a set-valued mapping Φ : E ⇒ C(R+, E). When Φ is single-valued
(i.e., for all a ∈ E, Φ(a) is a continuous function), a measure π ∈ M(E) is called
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an invariant measure for Φ, or Φ-invariant, if for all t > 0, π = πΦ−1
t , where

Φt : E → E is the map defined by Φt(a) = Φ(a)(t). For all t ≥ 0, we define the
projection pt : C(R+, E)→ E by pt(x) = x(t).

The definition can be extended as follows to the case where Φ is set-valued.

Definition 4.1: A probability measure π ∈M(E) is said invariant for Φ if there
exists υ ∈M(C(R+, E)) s.t.

(i) supp(υ) ⊂ Φ(E) ;
(ii) υ is Θ-invariant ;

(iii) υp−1
0 = π.

When Φ is single valued, both definitions coincide. The above definition is bor-
rowed from [18] (see also [24]). Note that Φ(E) can be replaced by Φ(E) whenever
the latter set is closed (sufficient conditions for this have been provided above).

The limit set of a function x ∈ C(R+, E) is defined as

Lx :=
⋂
t≥0

x([t,+∞)) .

It coincides with the set of points of the form limn x(tn) for some sequence tn →∞.
Consider now a set valued mapping Φ : E ⇒ C(R+, E). The limit set LΦ(a) of a
point a ∈ E for Φ is

LΦ(a) :=
⋃

x∈Φ(a)

Lx ,

and LΦ :=
⋃
a∈E LΦ(a). A point a is said recurrent for Φ if a ∈ LΦ(a). The Birkhoff

center of Φ is the closure of the set of recurrent points

BCΦ := {a ∈ E : a ∈ LΦ(a)} .

The following result, established in [18] (see also [2]), is a consequence of the cele-
brated recurrence theorem of Poincaré.

Proposition 4.2: Let Φ : E ⇒ C(R+, E). Assume that Φ(E) is closed. Let
π ∈M(E) be an invariant measure for Φ. Then, π(BCΦ) = 1.

We denote by I(Φ) the subset of M(E) formed by all invariant measures for Φ.
We define

I (Φ) := {m ∈M(M(E)) : ∀A ∈ B(M(E)), I(Φ) ⊂ A ⇒ m(A) = 1} .

We define the mapping av : C(R+, E)→ C(R+, E) by

av(x) : t 7→ 1

t

∫ t

0
x(s) ds ,

and av(x)(0) = x(0). Finally, we define av(Φ) : E ⇒ C(R+, E) by av(Φ)(a) =
{av(x) : x ∈ Φ(a)} for each a ∈ E.

4.5 The Selection Integral

Let (Ξ,G , µ) denote an arbitrary probability space. For 1 ≤ p <∞, we denote by
Lp(Ξ,G , µ;E) the Banach space of the measurable functions ϕ : Ξ→ E such that
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‖ϕ‖pdµ <∞. For any set-valued mapping G : Ξ ⇒ E, we define the set

Sp
G := {ϕ ∈ Lp(Ξ,G , µ;E) : ϕ(ξ) ∈ G(ξ) µ− a.e.} .

Any element of S1
G is referred to as an integrable selection. If S1

G 6= ∅, the mapping
G is said to be integrable. The selection integral [25] of G is the set∫

Gdµ :=

{∫
Ξ
ϕdµ : ϕ ∈ S1

G

}
.

5. Main Results

5.1 Dynamical Behavior

From now on to the end of this paper, we set E := RN where N is a positive
integer. Choose γ0 > 0. For every γ ∈ (0, γ0), we introduce a probability transition
kernel Pγ on E ×B(E)→ [0, 1]. Let (Ξ,G , µ) be an arbitrary probability space.

(RM). There exist a G ⊗ B(E)/B(E)-measurable map hγ : Ξ × E → E and
H : Ξ× E ⇒ E such that:

i) For every x ∈ E, ∫
y − x
γ

Pγ(x, dy) =

∫
hγ(s, x)µ(ds) .

ii) For every s µ-a.e. and for every converging sequence (un, γn) → (u?, 0) on
E × (0, γ0),

hγn(s, un)→ H(s, u?) .

iii) For all s µ-a.e., H(s, ·) is proper, usc, with closed convex values.
iv) For every x ∈ E, H(·, x) is µ-integrable. We set H(x) :=

∫
H(s, x)µ(ds).

v) For every T > 0 and every compact set K ⊂ E,

sup{‖x(t)‖ : t ∈ [0, T ], x ∈ ΦH(a), a ∈ K} <∞ .

vi) For every compact set K ⊂ E, there exists εK > 0 such that

sup
x∈K

sup
0<γ<γ0

∫ ∥∥∥∥y − xγ
∥∥∥∥1+εK

Pγ(x, dy) <∞ , (20)

sup
x∈K

sup
0<γ<γ0

∫
‖hγ(s, x)‖1+εK µ(ds) <∞ . (21)

Assumption i implies that the drift has the form (1). As mentioned in the intro-
duction, this is for instance useful in the case of iterative Markov models such as
(3). Assumption v requires implicitly that the set of solutions ΦH(a) is non-empty
for any value of a. It holds true if, e.g., the linear growth condition (19) on H is
satisfied.

On the canonical space Ω := EN equipped with the σ-algebra F := B(E)⊗N,
we denote by X : Ω→ EN the canonical process defined by Xn(ω) = ωn for every
ω = (ωk, k ∈ N) and every n ∈ N, where Xn(ω) is the n-th coordinate of X(ω). For
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every ν ∈M(E) and γ ∈ (0, γ0), we denote by Pν,γ the unique probability measure
on (Ω,F ) such that X is an homogeneous Markov chain with initial distribution ν
and transition kernel Pγ . We denote by Eν,γ the corresponding expectation. When
ν = δa for some a ∈ E, we shall prefer the notation Pa,γ to Pδa,γ .

The set C(R+, E) is equipped with the topology of uniform convergence on
the compact intervals, who is known to be compatible with the distance d de-
fined by (17). For every γ > 0, we introduce the measurable map on (Ω,F ) →
(C(R+, E),B(C(R+, E))), such that for every x = (xn, n ∈ N) in Ω,

Xγ(x) : t 7→ xb t
γ
c + (t/γ − bt/γc)(xb t

γ
c+1 − xb t

γ
c) .

The random variable Xγ will be referred to as the linearly interpolated process. On
the space (C(R+, E),B(C(R+, E))), the distribution of the r.v. Xγ is Pν,γX−1

γ .

Theorem 5.1 : Suppose that Assumption (RM) is satisfied. Then, for every com-
pact set K ⊂ E, the family {Pa,γX−1

γ : a ∈ K, 0 < γ < γ0} is tight. Moreover, for
every ε > 0,

sup
a∈K

Pa,γ (d(Xγ ,ΦH(K)) > ε) −−−→
γ→0

0 .

5.2 Convergence Analysis

For each γ ∈ (0, γ0), we denote by

I(Pγ) := {π ∈M(E) : π = πPγ}

the set of invariant probability measures of Pγ . Letting P = {Pγ , 0 < γ < γ0}, we
define I(P) =

⋃
γ∈(0,γ0) I(Pγ). We say that a measure ν ∈M(E) is a cluster point

of I(P) as γ → 0, if there exists a sequence γj → 0 and a sequence of measures
(πj , j ∈ N) s.t. πj ∈ I(Pγj ) for all j, and πj ⇒ ν.

We define

I (Pγ) := {m ∈M(M(E)) : supp(m) ⊂ I(Pγ)} ,

and I (P) =
⋃
γ∈(0,γ0) I (Pγ). We say that a measure m ∈ M(M(E)) is a cluster

point of I (P) as γ → 0, if there exists a sequence γj → 0 and a sequence of
measures (mj , j ∈ N) s.t. mj ∈ I (Pγj ) for all j, and mj ⇒ m.

Proposition 5.2: Suppose that Assumption (RM) is satisfied. Then,

i) As γ → 0, any cluster point of I(P) is an element of I(ΦH);
ii) As γ → 0, any cluster point of I (P) is an element of I (ΦH).

In order to explore the consequences of this proposition, we introduce two sup-
plementary assumptions. The first is the so-called Pakes-Has’minskii tightness cri-
terion, who reads as follows [19]:

(PH). There exists measurable mappings V : E → [0,+∞), ψ : E → [0,+∞)
and two functions α : (0, γ0)→ (0,+∞), β : (0, γ0)→ R, such that

sup
γ∈(0,γ0)

β(γ)

α(γ)
<∞ and lim

‖x‖→+∞
ψ(x) = +∞ ,
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and for every γ ∈ (0, γ0),

PγV ≤ V − α(γ)ψ + β(γ) .

We recall that a transition kernel P on E × B(E) → [0, 1] is said Feller if the
mapping Pf : x 7→

∫
f(y)P (x, dy) is continuous for any f ∈ Cb(E). If P is Feller,

then the set of invariant measures of P is a closed subset of M(E). The following
assumption ensures that for all γ ∈ (0, γ0), Pγ is Feller.

(FL). For every s ∈ Ξ, γ ∈ (0, γ0), the function hγ(s, ·) is continuous.

Theorem 5.3 : Let Assumptions (RM), (PH) and (FL) be satisfied. Let ψ and
V be the functions specified in (PH). Let ν ∈ M(E) s.t. ν(V ) < ∞. Let U :=⋃
π∈I(Φ) supp(π). Then, for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑
k=0

Pν,γ(d(Xk,U) > ε) −−−→
γ→0

0 . (22)

Let N ′ ∈ N∗ and f ∈ C(E,RN ′). Assume that there exists M ≥ 0 and ϕ : RN ′ →
R+ such that lim‖a‖→∞ ϕ(a)/‖a‖ =∞ and

∀a ∈ E, ϕ(f(a)) ≤M(1 + ψ(a)) . (23)

Then, the set Sf := {π(f) : π ∈ I(ΦH) and π(‖f(·)‖) < ∞} is nonempty. For all
n ∈ N, γ ∈ (0, γ0), the r.v.

Fn :=
1

n+ 1

n∑
k=0

f(Xk)

is Pν,γ-integrable, and satisfies for all ε > 0,

lim sup
n→∞

d (Eν,γ(Fn) ,Sf ) −−−→
γ→0

0 , (24)

lim sup
n→∞

Pν,γ (d (Fn ,Sf ) ≥ ε) −−−→
γ→0

0 . (25)

Theorem 5.4 : Let Assumptions (RM), (PH) and (FL) be satisfied. Assume that
ΦH(E) is closed. Let ψ and V be the functions specified in (PH). Let ν ∈ M(E)
s.t. ν(V ) <∞. Assume that

lim
‖a‖→∞

ψ(a)

‖a‖
= +∞ .

For all n ∈ N, define Xn := 1
n+1

∑n
k=0Xk . Then, for all ε > 0,

lim sup
n→∞

d
(
Eν,γ(Xn) , co(Lav(Φ))

)
−−−→
γ→0

0 ,

lim sup
n→∞

Pν,γ
(
d
(
Xn , co(Lav(Φ))

)
≥ ε
)
−−−→
γ→0

0 ,

where co(S) is the convex hull of the set S.
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Theorem 5.5 : Let Assumptions (RM), (PH) and (FL) be satisfied. Assume that
ΦH(E) is closed. Let ψ and V be the functions specified in (PH). Let ν ∈ M(E)
s.t. ν(V ) <∞. Then, for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑
k=0

Pν,γ (d (Xk ,BCΦ) ≥ ε) −−−→
γ→0

0 .

6. Proof of Theorem 5.1

The first lemma is a straightforward adaptation of the convergence theorem [1,
Chap. 1.4, Th. 1, pp. 60]. Hence, the proof is omitted. We denote by λT the
Lebesgue measure on [0, T ].

Lemma 6.1: Let {Fξ : ξ ∈ Ξ} be a family of mappings on E ⇒ E. Let T > 0
and for all n ∈ N, let un : [0, T ] → E, vn : Ξ × [0, T ] → E be measurable maps
w.r.t B([0, T ]) and G ⊗B([0, T ]) respectively. Note for simplicity L1 := L1(Ξ ×
[0, T ],G ⊗B([0, T ]), µ⊗ λT ; R). Assume the following.

i) For all (ξ, t) µ⊗ λT -a.e., (un(t), vn(ξ, t))→n gr(Fξ).
ii) (un) converges λT -a.e. to a function u : [0, T ]→ E.

iii) For all n, vn ∈ L1 and converges weakly in L1 to a function v : Ξ× [0, T ]→ E.
iv) For all ξ µ-a.e., Fξ is proper upper semi continuous with closed convex values.

Then, for all (ξ, t) µ⊗ λT -a.e., v(ξ, t) ∈ Fξ(u(t)).

Given T > 0 and 0 < δ ≤ T , we denote by

wTx (δ) := sup{‖x(t)− x(s)‖ : |t− s| ≤ δ, (t, s) ∈ [0, T ]2}

the modulus of continuity on [0, T ] of any x ∈ C(R+, E).

Lemma 6.2: For all n ∈ N, denote by Fn ⊂ F the σ-field generated by the r.v.
{Xk, 0 ≤ k ≤ n}. For all γ ∈ (0, γ0), define Zγn+1 := γ−1(Xn+1 −Xn). Let K ⊂ E
be compact. Let {P̄a,γ , a ∈ K, 0 < γ < γ0} be a family of probability measures on
(Ω,F ) satisfying the following uniform integrability condition:

sup
n∈N∗,a∈K,γ∈(0,γ0)

Ēa,γ(‖Zγn‖1‖Zγn‖>A)
A→+∞−−−−−→ 0 . (26)

Then, {P̄ a,γX−1
γ : a ∈ K, 0 < γ < γ0} is tight. Moreover, for any T > 0, ε > 0,

sup
a∈K

P̄a,γ

(
max

0≤n≤bT
γ
c
γ

∥∥∥∥∥
n∑
k=0

(
Zγk+1 − Ēa,γ(Zγk+1|Fk)

)∥∥∥∥∥ > ε

)
γ→0−−−→ 0 . (27)

Proof : We prove the first point. Set T > 0, let 0 < δ ≤ T , and choose 0 ≤ s ≤
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t ≤ T s.t. t− s ≤ δ. Let γ ∈ (0, γ0) and set n := b tγ c, m := b sγ c. For any R > 0,

‖Xγ(t)− Xγ(s)‖ ≤ γ
n∑

k=m+2

‖Zγk ‖+ γ(t/γ − n)‖Zγn+1‖+ γ((m+ 1)− s/γ)‖Zγm+1‖

≤ γ(t/γ − s/γ)R+ γ

n+1∑
k=m+1

‖Zγk ‖1‖Zγk ‖>R .

Recalling that t− s ≤ δ and using Markov inequality, we obtain

P̄a,γX−1
γ ({x : wTx (δ) > ε}) ≤ P̄a,γ

γbTγ c+1∑
k=1

‖Zγk ‖1‖Zγk ‖>R > ε− δR


≤ (T + γ0)

supk∈N∗ Ēa,γ
(
‖Zγk ‖1‖Zγk ‖>R

)
ε− δR

,

provided that Rδ < ε. Choosing R = ε/(2δ) and using the uniform integrability,

sup
a∈K,0<γ<γ0

P̄a,γX−1
γ ({x : wTx (δ) > ε}) δ→0−−−→ 0 .

As {P̄a,γX−1
γ p−1

0 , 0 < γ < γ0, a ∈ K} is obviously tight, the tightness of

{P̄ a,γX−1
γ , a ∈ K, 0 < γ < γ0} follows from [13, Theorem 7.3].

We prove the second point. We define Ma,γ
n+1 :=

∑n
k=0

(
Zγk+1 − Ēa,γ(Zγk+1|Fk)

)
.

We introduce

ηa,γ,≤n+1 := Zγn+11‖Zγn+1‖≤R − Ēa,γ
(
Zγn+11‖Zγn+1‖≤R|Fn

)
and we define ηa,γ,>n+1 in a similar way, by replacing ≤ with > in the right hand side

of the above equation. Clearly, for all a ∈ K, Ma,γ
n+1 = ηa,γ,≤n+1 + ηa,γ,>n+1 . Thus,

γ
∥∥Ma,γ

n+1

∥∥ ≤ ‖Sa,γ,≤n+1 ‖+ ‖Sa,γ,>n+1 ‖

where Sa,γ,≤n+1 := γ
∑n

k=0 η
a,γ,≤
k+1 and Sa,γ,>n+1 is defined similarly. Under P̄a,γ , the

random processes Sa,γ,≤ and Sa,γ,> are Fn-adapted martingales. Defining qγ :=
bTγ c+ 1, we obtain by Doob’s martingale inequality and by the boundedness of the

increments of Sa,γ,≤n that

P̄a,γ
(

max
1≤n≤qγ

‖Sa,γ,≤n ‖ > ε

)
≤

Ēa,γ(‖Sa,γ,≤qγ ‖)
ε

≤
Ēa,γ(‖Sa,γ,≤qγ ‖2)1/2

ε
≤ 2

ε
γR
√
qγ ,

and the right hand side tends to zero uniformly in a ∈ K as γ → 0. By the same
inequality,

P̄a,γ
(

max
1≤n≤qγ

‖Sa,γ,>n ‖ > ε

)
≤ 2

ε
qγγ sup

k∈N∗
Ēa,γ

(
‖Zγk ‖1‖Zγk ‖>R

)
.

Choose an arbitrarily small δ > 0 and select R as large as need in order that the
supremum in the right hand side is no larger than εδ/(2T + 2γ0). Then the left
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hand side is no larger than δ. Hence, the proof is concluded. �

For any R > 0, define hγ,R(s, a) := hγ(s, a)1‖a‖≤R. Let HR(s, x) := H(s, x) if
‖x‖ < R, {0} if ‖x‖ > R, and E otherwise. Denote the corresponding selection
integral as HR(a) =

∫
HR(s, a)µ(ds). Define τR(x) := inf{n ∈ N : ‖xn‖ > R} for

all x ∈ Ω. We also introduce the measurable mapping BR : Ω→ Ω, given by

BR(x) : n 7→ xn1n<τR(x) + xτR(x)1n≥τR(x)

for all x ∈ Ω and all n ∈ N.

Lemma 6.3: Suppose that Assumption (RM) is satisfied. Then, for every com-
pact set K ⊂ E, the family {Pa,γB−1

R X−1
γ , γ ∈ (0, γ0), a ∈ K} is tight. Moreover,

for every ε > 0,

sup
a∈K

Pa,γB−1
R [d(Xγ ,ΦHR(K)) > ε] −−−→

γ→0
0 .

Proof : We introduce the measurable mapping Mγ,R : Ω→ EN s.t. for all x ∈ Ω,
Mγ,R(x)(0) := 0 and

Mγ,R(x)(n) := (xn − x0)− γ
n−1∑
k=0

∫
hγ,R(s, xk)µ(ds)

=

n−1∑
k=0

(xk+1 − xk)− γ
∫
hγ,R(s, xk)µ(ds)

for all n ∈ N∗. We also introduce the measurable mapping Gγ,R : C(R+, E) →
C(R+, E) s.t. for all x ∈ C(R+, E),

Gγ,R(x)(t) :=

∫ t

0

∫
hγ,R(s, x(γbu/γc))µ(ds) du .

We first express the interpolated process in integral form. For every x ∈ EN and
t ≥ 0,

Xγ(x)(t) = x0 +

∫ t

0
γ−1(xbu

γ
c+1 − xbu

γ
c) du .

We have the decomposition

xn = x0 + γ

n−1∑
k=0

∫
hγ,R(s, xk)µ(ds) +Mγ,R(x)(n).

Then, interpolating,

Xγ(x) = x0 + Gγ,R ◦ Xγ(x) + Xγ ◦Mγ,R(x) . (28)

The uniform integrability condition (26) is satisfied when letting P̄a,γ :=
Pa,γB−1

R . First, note that BR(x)(n + 1) = BR(x)(n) + (xn+1 − xn)1τR(x)>n and
that τR(x) > n⇔ ‖BR(x)(n)‖ ≤ R⇒ xn = BR(x)(n). Note also that, w.r.t (Fn),
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τR(X) is a stopping time and BR(X) is adapted. Then, using (RM)–i),

Ea,γ(γ−1(BR(X)(n+ 1)−BR(X)(n))|Fn) = Ea,γ
(
Xn+1 −Xn

γ
1τR(X)>n|Fn

)
= 1τR(X)>n

∫
y −Xn

γ
Pγ(Xn, dy)

= 1τR(X)>n

∫
hγ(s,Xn)µ(ds)

= 1‖BR(x)(n)‖≤R

∫
hγ(s,BR(X)(n))µ(ds)

=

∫
hγ,R(s,BR(X)(n))µ(ds).

Moreover,

Ea,γ
∥∥∥∥BR(X)(n+ 1)−BR(X)(n)

γ

∥∥∥∥1+εK

= Ea,γ
∥∥∥∥Xn+1 −Xn

γ

∥∥∥∥1+εK

1τR(X)>n

= Ea,γ
∫ ∥∥∥∥y −Xn

γ

∥∥∥∥1+εK

Pγ(Xn, dy)1τR(X)>n

≤ Ea,γ
∫ ∥∥∥∥y −Xn

γ

∥∥∥∥1+εK

Pγ(Xn, dy)1‖Xn‖≤R

≤ sup
‖x‖≤R

∫ ∥∥∥∥y − xγ
∥∥∥∥1+εK

Pγ(x, dy).

The condition (26) follows from hypothesis (20). Thus, Lemma 6.2 implies that for
all ε > 0 and T > 0,

sup
a∈K

P̄a,γ

(
max

0≤n≤bT
γ
c
‖Mγ,R(x)(n+ 1)‖ > ε

)
γ→0−−−→ 0 .

It is easy to see that for all x ∈ Ω, the function Xγ ◦Mγ,R(x) is bounded on every
compact interval [0, T ] by max0≤n≤bT

γ
c ‖Mγ,R(x)(n+ 1)‖. This in turns leads to:

sup
a∈K

P̄a,γ(‖Xγ ◦Mγ,R‖∞,T > ε)
γ→0−−−→ 0 , (29)

where the notation ‖x‖∞,T stands for the uniform norm of x on [0, T ].
As a second consequence of Lemma 6.2, the family {P̄a,γX−1

γ , 0 < γ < γ0, a ∈
K} is tight. Choose any subsequence (an, γn) s.t. γn → 0 and an ∈ K. Us-
ing Prokhorov’s theorem and the compactness of K, there exists a subsequence
(which we still denote by (an, γn)) and there exist some a? ∈ K and some
υ ∈ M(C(R+, E)) such that an → a? and P̄an,γnX−1

γn converges narrowly to υ.
By Skorokhod’s representation theorem, we introduce some r.v. z, {xn, n ∈ N} on
C(R+, E) with respective distributions υ and P̄an,γnX−1

γn , defined on some other
probability space (Ω′,F ′,P′) and such that d(xn(ω), z(ω)) → 0 for all ω ∈ Ω′.



November 18, 2019 18:56 Stochastics: An International Journal of Probability and Stochastic Pro-
cesses revised˙dicst

Stochastics: An International Journal 17

By (28) and (29), the sequence of r.v.

xn − xn(0)− Gγn,R(xn)

converges in probability to zero in (Ω′,F ′,P′), as n → ∞. One can extract a
subsequence under which this convergence holds in the almost sure sense. Therefore,
there exists an event of probability one s.t., everywhere on this event,

z(t) = z(0) + lim
n→∞

∫ t

0

∫
Ξ
hγn,R(s, xn(γnbu/γnc))µ(ds) du (∀t ≥ 0) ,

where the limit is taken along the former subsequence. We now select an ω s.t. the
above convergence holds, and omit the dependence on ω in the sequel (otherwise
stated, z and xn are treated as elements of C(R+, E) and no longer as random
variables). Set T > 0. As (xn) converges uniformly on [0, T ], there exists a compact
set K ′ (which depends on ω) such that xn(γnbt/γnc) ∈ K ′ for all t ∈ [0, T ], n ∈ N.
Define

vn(s, t) := hγn,R(s, xn(γnbt/γnc)) .

By Eq. (21), the sequence (vn, n ∈ N) forms a bounded subset of L1+εK′ :=
L1+εK′ (Ξ × [0, T ],G ⊗B([0, T ]), µ ⊗ λT ;E). By the Banach-Alaoglu theorem, the
sequence converges weakly to some mapping v ∈ L1+εK′ along some subsequence.
This has two consequences. First,

z(t) = z(0) +

∫ t

0

∫
Ξ
v(s, u)µ(ds) du , (∀t ∈ [0, T ]) . (30)

Second, for µ ⊗ λT -almost all (s, t), v(s, t) ∈ HR(s, z(t)). In order to prove this
point, remark that, by Assumption (RM),

vn(s, t)→ HR(s, z(t))

for almost all (s, t). This implies that the couple (xn(γnbt/γnc), vn(s, t)) converges
to gr(HR(s, ·)) and the second point thus follows from Lemma 6.1. By Fubini’s
theorem, there exists a negligible set of [0, T ] s.t. for all t outside this set, v(·, t)
is an integrable selection of HR(·, z(t)). As H(·, x) is integrable for every x ∈ E,
the same holds for HR. Equation (30) implies that z ∈ ΦHR(K) . We have shown
that for any sequence ((an, γn), n ∈ N) on K × (0, γ0) s.t. γn → 0, there exists a
subsequence along which, for every ε > 0, Pan,γnB−1

R (d(Xγn ,ΦHR(K)) > ε) → 0 .
This proves the lemma. �

End of the proof of Theorem 5.1.
We first prove the second statement. Set an arbitrary T > 0. Define dT (x, y) := ‖x−
y‖∞,T . It is sufficient to prove that for any sequence ((an, γn), n ∈ N) s.t. γn → 0,
there exists a subsequence along which Pan,γn(dT (Xγn ,ΦH(K)) > ε) → 0. Choose
R > R0(T ), where R0(T ) := sup{‖x(t)‖ : t ∈ [0, T ], x ∈ ΦH(a), a ∈ K} is finite by
Assumption (RM). It is easy to show that any x ∈ ΦHR(K) must satisfy ‖x‖∞,T <
R. Thus, when R > R0(T ), any x ∈ ΦHR(K) is such that there exists y ∈ ΦH(K)
with dT (x, y) = 0 i.e., the restrictions of x and y to [0, T ] coincide. As a consequence
of the Lemma 6.3, each sequence (an, γn) chosen as above admits a subsequence
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along which, for all ε > 0,

Pan,γn(dT (Xγn ◦BR,ΦH(K)) > ε)→ 0 . (31)

The event dT (Xγ ◦ BR,Xγ) > 0 implies the event ‖Xγ ◦ BR‖∞,T ≥ R, which in
turn implies by the triangular inequality that R0(T ) + dT (Xγ ◦ BR,ΦH(K)) ≥ R .
Therefore,

Pan,γn(dT (Xγn ◦BR,Xγn) > ε) ≤ P(dT (Xγn ◦BR,ΦH(K)) ≥ R−R0(T )) . (32)

By (31), the right hand side converges to zero. Using (31) again along with the
triangular inequality, it follows that Pan,γn(dT (Xγn ,ΦH(K)) > ε)→ 0, which proves
the second statement of the theorem.

We prove the first statement (tightness). By [13, Theorem 7.3], this is equivalent
to showing that for every T > 0, and for every sequence (an, γn) on K × (0, γ0),
the sequence (Pan,γnX−1

γn p
−1
0 ) is tight, and for each positive ε and η, there exists

δ > 0 such that lim supn Pan,γnX−1
γn ({x : wTx (δ) > ε}) < η.

First consider the case where γn → 0. Fixing T > 0, letting R > R0(T ) and
using (32), it holds that for all ε > 0, Pan,γn(dT (Xγn◦BR,Xγn) > ε)→n 0. Moreover,
we showed that Pan,γnB−1

R X−1
γn is tight. The tightness of (Pan,γnX−1

γn p
−1
0 ) follows.

In addition, for every x, y ∈ C(R+, E), it holds by the triangle inequality that
wTx (δ) ≤ wTy (δ) + 2dT (x, y) for every δ > 0. Thus,

Pan,γnX−1
γn ({x : wTx (δ) > ε}) ≤ Pan,γnB−1

R X−1
γn ({x : wTx (δ) > ε/2})

+ Pan,γn(dT (Xγn ◦BR,Xγn) > ε/4),

which leads to the tightness of (Pan,γnX−1
γn ) when γn → 0.

It remains to establish the tightness when lim infn γn > η > 0 for some η > 0.
Note that for all γ > η,

wXTγ (x)(δ) ≤ 2δ max
k=0...bT/ηc+1

‖xk‖ .

There exist n0 such that for all n ≥ n0, γn > η which implies by the union bound:

Pan,γnX−1
γn ({x : wTx (δ) > ε}) ≤

bT/ηc+1∑
k=0

P kγ (a,B(0, (2δ)−1ε)c) ,

where B(0, r) ⊂ E stands for the ball or radius r and where P kγ stands for the
iterated kernel, recursively defined by

P kγ (a, ·) =

∫
Pγ(a, dy)P k−1

γ (y, ·) (33)

and P 0
γ (a, ·) = δa. Using (20), it is an easy exercise to show, by induction, that

for every k ∈ N, P kγ (a,B(0, r)c) → 0 as r → ∞. By letting δ → 0 in the above

inequality, the tightness of (Pan,γnX−1
γn ) follows.
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7. Proof of Proposition 5.2

To establish Prop. 5.2–i, we consider a sequence ((πn, γn), n ∈ N) such that
πn ∈ I(Pγn), γn → 0, and (πn) is tight. We first show that the sequence
(υn := Pπn,γnX−1

γn , n ∈ N) is tight, then we show that every cluster point of (υn)
satisfies the conditions of Def. 4.1.

Given ε > 0, there exists a compact set K ⊂ E such that infn πn(K) > 1− ε/2.
By Th. 5.1, the family {Pa,γnX−1

γn , a ∈ K,n ∈ N} is tight. Let C be a compact set

of C(R+, E) such that infa∈K,n∈N Pa,γnX−1
γn (C) > 1 − ε/2. By construction of the

probability measure Pπn,γn , it holds that Pπn,γn(·) =
∫
E Pa,γn(·)πn(da). Thus,

υn(C) ≥
∫
K

Pa,γnX−1
γn (C)πn(da) > (1− ε/2)2 > 1− ε ,

which shows that (υn) is tight.
Since πn = υnp

−1
0 , and since the projection p0 is continuous, it is clear that

every cluster point π of I(P) as γ → 0 can be written as π = υp−1
0 , where υ is

a cluster point of a sequence (υn). Thus, Def. 4.1–iii is satisfied by π and υ. To
establish Prop. 5.2–i, we need to verify the conditions i and ii of Definition 4.1.
In the remainder of the proof, we denote with a small abuse as (n) a subsequence
along which (υn) converges narrowly to υ.

To establish the validity of Def. 4.1–i, we prove that for every η > 0,
υn((ΦH(E))η) → 1 as n → ∞; the result will follow from the convergence of (υn).
Fix ε > 0, and let K ⊂ E be a compact set such that infn πn(K) > 1− ε. We have

υn((ΦH(E))η) = Pπn,γn(d(Xγn ,ΦH(E)) < η)

≥ Pπn,γn(d(Xγn ,ΦH(K)) < η)

≥
∫
K

Pa,γn(d(Xγn ,ΦH(K)) < η)πn(da)

≥ (1− ε) inf
a∈K

Pa,γn(d(Xγn ,ΦH(K)) < η) .

By Th. 5.1, the infimum at the right hand side converges to 1. Since ε > 0 is
arbitrary, we obtain the result.

It remains to establish the Θ-invariance of υ (Condition ii). Equivalently, we need
to show that ∫

f(x) υ(dx) =

∫
f ◦Θt(x) υ(dx) (34)

for all f ∈ Cb(C(R+, E)) and all t > 0. We shall work on (υn) and make n → ∞.
Write ηn := t−γnbt/γnc. Thanks to the Pγn–invariance of πn, Θηn(x(γnbt/γnc+ ·))
and Θt(x) are equal in law under υn(dx). Thus,∫

f ◦Θt(x) υn(dx) =

∫
f ◦Θηn(x(γnbt/γnc+ ·)) υn(dx)

=

∫
f ◦Θηn(x) υn(dx). (35)

Using Skorokhod’s representation theorem, there exists a probability space
(Ω′,F ′,P′) and random variables (x̄n, n ∈ N) and x̄ over this probability space,
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with values in C(R+, E), such that for every n ∈ N, the distribution of x̄n is υn,
the distribution of x̄ is υ and P′-a.s,

d(x̄n, x̄) −→n→+∞ 0,

i.e, (x̄n) converges to x̄ as n → +∞ uniformly over compact sets of R+. Since
ηn →n→+∞ 0, P′-a.s, d(Θηn(x̄n), x̄) −→n→+∞ 0. Hence,∫

f ◦Θηn(x) υn(dx) −−−→
n→∞

∫
f(x) υ(dx) .

Recalling Eq. (35), we have shown that
∫
f ◦Θt(x) υn(dx) −−−→

n→∞

∫
f ◦Θt(x) υ(dx).

Since
∫
f(x) υn(dx) −−−→

n→∞

∫
f(x) υ(dx), the identity (34) holds true. Prop. 5.2–i is

proven.
We now prove Prop. 5.2–ii. Consider a sequence ((mn, γn), n ∈ N) such that

mn ∈ I (Pγn), γn → 0, and mn ⇒ m for some m ∈ M(M(E)). Since the space
M(E) is separable, Skorokhod’s representation theorem shows that there exists a
probability space (Ω′,F ′,P′), a sequence of Ω′ → M(E) random variables (Λn)
with distributions mn, and a Ω′ →M(E) random variable Λ with distribution m
such that Λn(ω) ⇒ Λ(ω) for each ω ∈ Ω′. Moreover, there is a probability one
subset of Ω′ such that Λn(ω) is a Pγn–invariant probability measure for all n and
for every ω in this set. For each of these ω, we can construct on the space (EN,F )
a probability measure PΛn(ω),γn as we did in Sec. 5.1. By the same argument as
in the proof of Prop. 5.2–i, the sequence (PΛn(ω),γnX−1

γn , n ∈ N) is tight, and any

cluster point υ satisfies the conditions of Def. 4.1 with Λ(ω) = υp−1
0 . Prop. 5.2 is

proven.

8. Proof of Theorem 5.3

8.1 Technical lemmas

Lemma 8.1: Given a family {Kj , j ∈ N} of compact sets of E, the set

U := {ν ∈M(E) : ∀j ∈ N, ν(Kj) ≥ 1− 2−j}

is a compact set of M(E).

Proof : The set U is tight hence relatively compact by Prokhorov’s theorem. It
is moreover closed. Indeed, let (νn, n ∈ N) represent a sequence of U s.t. νn ⇒ ν.
Then, for all j ∈ N, ν(Kj) ≥ lim supn νn(Kj) ≥ 1− 2−j since Kj is closed. �

Lemma 8.2: Let X be a real random variable such that X ≤ 1 with probability
one, and EX ≥ 1− ε for some ε ≥ 0. Then P[X ≥ 1−

√
ε] ≥ 1−

√
ε.

Proof : 1 − ε ≤ EX ≤ EX1X<1−
√
ε + EX1X≥1−

√
ε ≤ (1 −

√
ε)(1 − P[X ≥ 1 −√

ε]) + P[X ≥ 1−
√
ε]. The result is obtained by rearranging. �

For any m ∈ M(M(E)), we denote by e(m) the probability measure in M(E)
such that for every f ∈ Cb(E),

e(m) : f 7→
∫
ν(f)m(dν) .
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Otherwise stated, e(m)(f) = m(Tf ) where Tf : ν 7→ ν(f).

Lemma 8.3: Let L be a family on M(M(E)). If {e(m) : m ∈ L} is tight, then
L is tight.

Proof : Let ε > 0 and choose any integer k s.t. 2−k+1 ≤ ε. For all j ∈ N, choose
a compact set Kj ⊂ E s.t. for all m ∈ L, e(m)(Kj) > 1 − 2−2j . Define U as the
set of measures ν ∈M(E) s.t. for all j ≥ k, ν(Kj) ≥ 1− 2−j . By Lemma 8.1, U is
compact. For all m ∈ L, the union bound implies that

m(E\U) ≤
∞∑
j=k

m{ν : ν(Kj) < 1− 2−j}

By Lemma 8.2, m{ν : ν(Kj) ≥ 1 − 2−j} ≥ 1 − 2−j . Therefore, m(E\U) ≤∑∞
j=k 2−j = 2−k+1 ≤ ε . This proves that L is tight. �

Lemma 8.4: Let (mn, n ∈ N) be a sequence on M(M(E)), and consider m̄ ∈
M(M(E)). If mn ⇒ m̄, then e(mn)⇒ e(m̄).

Proof : For any f ∈ Cb(E), Tf ∈ Cb(M(E)). Thus, mn(Tf )→ m̄(Tf ). �

When a sequence (mn, n ∈ N) of M(M(E)) converges narrowly to m ∈
M(M(E)), it follows from the above proof that mnT −1

f ⇒ mT −1
f for all bounded

continuous f . The purpose of the next lemma is to extend this result to the case
where f is not necessarily bounded, but instead, satisfies some uniform integrability
condition. For any vector-valued function f , we use the notation ‖f‖ := ‖f(·)‖.

Lemma 8.5: Let f ∈ C(E,RN ′) where N ′ ≥ 1 is an integer. Define by Tf :
M(E) → R the mapping s.t. Tf (ν) := ν(f) if ν(‖f‖) < ∞ and equal to zero
otherwise. Let (mn, n ∈ N) be a sequence on M(M(E)) and let m ∈ M(M(E)).
Assume that mn ⇒ m and

lim
K→∞

sup
n
e(mn)(‖f‖1‖f‖>K) = 0 . (36)

Then, ν(‖f‖) <∞ for all ν m-a.e. and mnT −1
f ⇒ mT −1

f .

Proof : By Eq. (36), e(m)(‖f‖) <∞. This implies that for all ν m-a.e., ν(‖f‖) <
∞. Choose h ∈ Cb(R

N ′) s.t. h is L-Lipschitz continuous. We must prove that
mnT −1

f (h)→ mT −1
f (h). By the above remark, mT −1

f (h) =
∫
h(ν(f))dm(ν), and by

Eq (36), mnT −1
f (h) =

∫
h(ν(f))dmn(ν). Choose ε > 0. By Eq. (36), there exists

K0 > 0 s.t. for all K > K0, supn e(mn)(‖f‖1‖f‖>K) < ε. For every such K, define

the bounded function fK ∈ C(E,RN ′) by fK(x) = f(x)(1 ∧ K/‖f(x)‖). For all
K > K0, and for all n ∈ N,

|mnT −1
f (h)−mnT −1

fK
(h)| ≤

∫
|h(ν(f))− h(ν(fK))|dmn(ν)

≤ L
∫
ν(‖f − fK‖)dmn(ν)

≤ L
∫
ν(‖f‖1‖f‖>K)dmn(ν) ≤ Lε .

By continuity of TfK , it holds that mnT −1
fK

(h) → mT −1
fK

(h). Therefore, for every

K > K0, lim supn |mnT −1
f (h) − mT −1

fK
(h)| ≤ Lε . As ν(‖f‖) < ∞ for all ν m-a.e.,
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the dominated convergence theorem implies that ν(fK) → ν(f) as K → ∞, m-
a.e. As h is bounded and continuous, a second application of the dominated con-
vergence theorem implies that

∫
h(ν(fK))dm(ν) →

∫
h(ν(f))dm(ν), which reads

mT −1
fK

(h) → mT −1
f (h). Thus, lim supn |mnT −1

f (h) − mT −1
f (h)| ≤ Lε . As a conse-

quence, mnT −1
f (h)→ mT −1

f (h) as n→∞, which completes the proof. �

8.2 Narrow Cluster Points of the Empirical Measures

Let P : E ×B(E) → [0, 1] be a probability transition kernel. For ν ∈ M(E), we
denote by Pν,P the probability on (Ω,F ) such that X is an homogeneous Markov
chain with initial distribution ν and transition kernel P .

For every n ∈ N, we define the measurable mapping Λn : Ω→M(E) as

Λn(x) :=
1

n+ 1

n∑
k=0

δxk (37)

for all x = (xk : k ∈ N). Note that

Eν,PΛn =
1

n+ 1

n∑
k=0

νP k ,

where Eν,PΛn = e(Pν,PΛ−1
n ), and P k stands for the iterated kernel, recursively

defined by P k(x, ·) =
∫
P (x, dy)P k−1(y, ·) and P 0(x, ·) = δx.

We recall that I (P ) represents the subset ofM(M(E)) formed by the measures
whose support is included in I(P ).

Proposition 8.6: Let P : E ×B(E) → [0, 1] be a Feller probability transition
kernel. Let ν ∈M(E).

(1) Any cluster point of {Eν,PΛn , n ∈ N} is an element of I(P ).
(2) Any cluster point of {Pν,PΛ−1

n , n ∈ N} is an element of I (P ).

Proof : We omit the upper script ν,P . For all f ∈ Cb(E), EΛn(Pf)−EΛn(f)→ 0.
As P is Feller, any cluster point π of {EΛn , n ∈ N} satisfies π(Pf) = π(f). This
proves the first point.

For every f ∈ Cb(E) and x ∈ Ω, consider the decomposition:

Λn(x)(Pf)− Λn(x)(f) =
1

n+ 1

n−1∑
k=0

(Pf(xk)− f(xk+1)) +
Pf(xn)− f(x0)

n+ 1
.

Using that f is bounded, Doob’s martingale convergence theorem implies that the

sequence
(∑n−1

k=0 k
−1(Pf(Xk)−f(Xk+1))

)
n

converges a.s. when n tends to infinity.

By Kronecker’s lemma, we deduce that 1
n+1

∑n−1
k=0(Pf(Xk) − f(Xk+1)) tends a.s.

to zero. Hence,

Λn(Pf)− Λn(f)→ 0 a.s. (38)

Now consider a subsequence (Λϕn) which converges in distribution to some r.v.
Λ as n tends to infinity. For a fixed f ∈ Cb(E), the mapping ν 7→ (ν(f), ν(Pf))
on M(R) → R2 is continuous. From the mapping theorem, Λϕn(f) − Λϕn(Pf)
converges in distribution to Λ(f)−Λ(Pf). By (38), it follows that Λ(f)−Λ(Pf) = 0
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on some event Ef ∈ F of probability one. Denote by Cκ(E) ⊂ Cb(E) the set
of continuous real-valued functions having a compact support, and let Cκ(E) be
equipped with the uniform norm ‖ · ‖∞. Introduce a dense denumerable subset S
of Cκ(E). On the probability-one event E = ∩f∈SEf , it holds that for all f ∈ S,
Λ(f) = ΛP (f). Now consider g ∈ Cκ(E) and let ε > 0. Choose f ∈ S such that
‖f − g‖∞ ≤ ε. Then, almost everywhere on E , |Λ(g) − ΛP (g)| ≤ |Λ(f) − Λ(g)| +
|ΛP (f)−ΛP (g)| ≤ 2ε. Thus, Λ(g)−ΛP (g) = 0 for every g ∈ Cκ(E). Hence, almost
everywhere on E , one has Λ = ΛP . �

8.3 Tightness of the Empirical Measures

Proposition 8.7: Let P be a family of transition kernels on E. Let V : E →
[0,+∞), ψ : E → [0,+∞) be measurable. Let α : P → (0,+∞) and β : P → R.

Assume that supP∈P
β(P )
α(P ) < ∞ and ψ(x) → ∞ as ‖x‖ → ∞. Assume that for

every P ∈ P,

PV ≤ V − α(P )ψ + β(P ) .

Then, the following holds.

i) The family
⋃
P∈P I(P ) is tight. Moreover, supπ∈I(P) π(ψ) < +∞ .

ii) For every ν ∈ M(E) s.t. ν(V ) <∞, every P ∈ P, {Eν,PΛn , n ∈ N} is tight.
Moreover, supn∈N Eν,PΛn(ψ) <∞ .

Proof : For each P ∈ P, PV is everywhere finite by assumption. Moreover,

n∑
k=0

P k+1V ≤
n∑
k=0

P kV − α(P )

n∑
k=0

P kψ + (n+ 1)β(P ) .

Using that V ≥ 0 and α(P ) > 0,

1

n+ 1

n∑
k=0

P kψ ≤ V

α(P )(n+ 1)
+ c ,

where c := supP∈P β(P )/α(P ) is finite. For any M > 0,

1

n+ 1

n∑
k=0

P k(ψ ∧M) ≤

(
1

n+ 1

n∑
k=0

P kψ

)
∧M

≤
(

V

α(P )(n+ 1)
+ c

)
∧M . (39)

Set π ∈ I(P), and consider P ∈ P such that π = πP . Inequality (39) implies that
for every n,

π(ψ ∧M) ≤ π
((

V

α(P )(n+ 1)
+ c

)
∧M

)
.

By Lebesgue’s dominated convergence theorem, π(ψ ∧M) ≤ c. Letting M → ∞
yields π(ψ) ≤ c. The tightness of I(P) follows from the convergence of ψ(x) to ∞
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as ‖x‖ → ∞. Setting M = +∞ in (39), and integrating w.r.t. ν, we obtain

Eν,PΛn(ψ) ≤ ν(V )

(n+ 1)α(P )
+ c ,

which proves the second point. �

Proposition 8.8: We posit the assumptions of Prop. 8.7. Then,

(1) The family I (P) :=
⋃
P∈P I (P ) is tight;

(2) {Pν,PΛ−1
n , n ∈ N} is tight.

Proof : For every m ∈ I (P), it is easy to see that e(m) ∈ I(P). Thus, {e(m) :
m ∈ I (P)} is tight by Prop. 8.7. By Lemma 8.3, I (P) is tight. The second
point follows from the equality Eν,PΛn = e(Pν,PΛ−1

n ) along with Prop. 8.7 and
Lemma 8.3. �

8.4 Main Proof

By continuity of hγ(s, ·) for every s ∈ Ξ, γ ∈ (0, γ0), the transition kernel Pγ is
Feller. By Prop. 8.7 and Eq. (23), we have supn Eν,γΛn(ϕ ◦ f) < ∞ which, by de
la Vallée-Poussin’s criterion for uniform integrability, implies

lim
K→∞

sup
n

Eν,γΛn(‖f‖1‖f‖>K) = 0 . (40)

In particular, the quantity Eν,γΛn(f) = Eν,γ(Fn) is well-defined.
We now prove the statement (24). By contradiction, assume that for some

δ > 0, there exists a positive sequence γj → 0, such that for all j ∈ N,
lim supn→∞ d (Eν,γjΛn(f) ,Sf ) > δ . For every j, there exists an increasing se-

quence of integers (ϕjn, n ∈ N) converging to +∞ s.t.

∀n, d
(

Eν,γjΛϕjn(f) ,Sf
)
> δ . (41)

By Prop. 8.7, the sequence (Eν,γjΛϕjn , n ∈ N) is tight. By Prokhorov’s theorem and

Prop. 8.6, there exists πj ∈ I(Pγj ) such that, as n tends to infinity, Eν,γjΛϕjn ⇒ πj
along some subsequence. By the uniform integrability condition (40), πj(‖f‖) <∞
and Eν,γjΛϕjn(f) → πj(f) as n tends to infinity, along the latter subsequence. By

Eq. (41), for all j ∈ N, d(πj(f),Sf ) ≥ δ . By Prop. 8.7, supπ∈I(P) π(ψ) < +∞ .
Since ϕ ◦ f ≤M(1 + ψ), de la Vallée-Poussin’s criterion again implies that

sup
π∈I(P)

π(‖f‖1‖f‖>K) <∞ . (42)

Also by Prop. 8.7, the sequence (πj) is tight. Thus πj ⇒ π along some subsequence,
for some measure π which, by Prop. 5.2, is invariant for ΦH. The uniform integra-
bility condition (42) implies that π(‖f‖) <∞ (hence, the set Sf is non-empty) and
πj(f)→ π(f) as j tends to infinity, along the above subsequence. This shows that
d(π(f),Sf ) > δ, which is absurd. The statement (24) holds true (and in particular,
Sf must be non-empty).

The proof of the statement (22) follows the same line, by replacing f with
the function 1Uε . We briefly explain how the proof adapts, without repeating all
the arguments. In this case, S1Ucε is the singleton {0}, and Equation (41) reads
Eν,γjΛϕjn(Ucε ) > δ. By the Portmanteau theorem, lim supn Eν,γjΛϕjn(Ucε ) ≤ πj(Ucε )
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where the lim sup is taken along some subsequence. The contradiction follows from
the fact that lim supπj(Ucε ) ≤ π(Ucε ) = 0 (where the lim sup is again taken along
the relevant subsequence).

We prove the statement (25). Assume by contradiction that for some (other)
sequence γj → 0, lim supn→∞ Pν,γj (d (Λn(f) ,Sf ) ≥ ε) > δ . For every j, there

exists a sequence (ϕjn, n ∈ N) s.t.

∀n, Pν,γj
(
d
(

Λϕjn(f) ,Sf
)
≥ ε
)
> δ . (43)

By Prop. 8.8, (Pν,γjΛ−1
ϕjn
, n ∈ N) is tight, one can extract a further subsequence

(which we still denote by (ϕjn) for simplicity) s.t. Pν,γjΛ−1
ϕjn

converges narrowly to

a measure mj as n tends to infinity, which, by Prop. 8.6, satisfies mj ∈ I (Pγj ).

Noting that e(Pν,γjΛ−1
ϕjn

) = Eν,γjΛϕjn and recalling Eq. (40), Lemma 8.5 implies that

ν ′(‖f‖) < ∞ for all ν ′ mj-a.e., and Pν,γjΛ−1
ϕjn
T −1
f ⇒ mjT −1

f , where we recall that

Tf (ν ′) := ν ′(f) for all ν ′ s.t. ν ′(‖f‖) <∞. As (Sf )cε is a closed set,

mjT −1
f ((Sf )cε) ≥ lim sup

n
Pν,γjΛ−1

ϕjn
T −1
f ((Sf )cε)

= lim sup
n

Pν,γj
(
d
(

Λϕjn(f) ,Sf
)
≥ ε
)
> δ .

By Prop. 8.7, (mj) is tight, and one can extract a subsequence (still denoted by
(mj)) along which mj ⇒ m for some measure m which, by Prop. 5.2, belongs to
I (ΦH). For every j, e(mj) ∈ I(Pγj ). By the uniform integrability condition (42),
one can apply Lemma 8.5 to the sequence (mj). We deduce that ν ′(‖f‖) < ∞ for
all ν ′ m-a.e. and mjT −1

f ⇒ mT −1
f . In particular,

mT −1
f ((Sf )cε) ≥ lim sup

j
mjT −1

f ((Sf )cε) > δ .

Since m ∈ I (ΦH), it holds that mT −1
f ((Sf )cε) = 0, hence a contradiction.

9. Proofs of Theorems 5.4 and 5.5

9.1 Proof of Theorem 5.4

In this proof, we set L = Lav(Φ) to simplify the notations. It is straightforward
to show that the identity mapping f(x) = x satisfies the hypotheses of Th. 5.3
with ϕ = ψ. Hence, it is sufficient to prove that Sf is a subset of co(L), the closed
convex hull of L. Choose q ∈ SI and let q =

∫
xdπ(x) for some π ∈ I(Φ) admitting

a first order moment. There exists a Θ-invariant measure υ ∈ M(C(R+, E)) s.t.
supp(υ) ⊂ Φ(E) and υp−1

0 = π. We remark that for all t > 0,

q = υ(p0) = υ(pt) = υ(pt ◦ av) , (44)

where the second identity is due to the shift-invariance of υ, and the last one
uses Fubini’s theorem. Again by the shift-invariance of υ, the family {pt, t > 0}
is uniformly integrable w.r.t. υ. By Tonelli’s theorem, supt>0 υ(‖pt ◦ av ‖1S) ≤
supt>0 υ(‖pt‖1S) for every S ∈ B(C(R+, E)). Hence, the family {pt ◦ av, t > 0}
is υ-uniformly integrable as well. In particular, {pt ◦ av, t > 0} is tight in



November 18, 2019 18:56 Stochastics: An International Journal of Probability and Stochastic Pro-
cesses revised˙dicst

26 Taylor & Francis and I.T. Consultant

(C(R+, E),B(C(R+, E)), υ). By Prokhorov’s theorem, there exists a sequence
tn → ∞ and a measurable function g : C(R+, E) → E such that ptn ◦ av con-
verges in distribution to g as n→∞. By uniform integrability, υ(ptn ◦ av)→ υ(g).
Equation (44) finally implies that

q = υ(g) .

In order to complete the proof, it is sufficient to show that g(x) ∈ L for every x
υ-a.e., because co(L) ⊂ co(L). Set ε > 0 and δ > 0. By the tightness of the r.v.
(ptn ◦ av, n ∈ N), choose a compact set K such that υ(ptn ◦ av)−1(Kc) ≤ δ for all
n. As Lε

c
is an open set, one has

υg−1(Lε
c
) ≤ lim

n
υ(ptn ◦ av)−1(Lε

c
) ≤ lim

n
υ(ptn ◦ av)−1(Lε

c ∩K) + δ .

Let x ∈ Φ(E) be fixed. By contradiction, suppose that 1Lε
c∩K(ptn(av(x))) does not

converge to zero. Then, ptn(av(x)) ∈ Lε
c ∩K for every n along some subsequence.

As K is compact, one extract a subsequence, still denoted by tn, s.t. ptn(av(x))
converges. The corresponding limit must belong to the closed set Lcε, but must also
belong to L by definition of x. This proves that 1Lcε∩K(ptn ◦ av(x))) converges to
zero for all x ∈ Φ(E). As supp(υ) ⊂ Φ(E), 1Lε

c∩K(ptn ◦av) converges to zero υ-a.s.

By the dominated convergence theorem, we obtain that υg−1(Lε
c
) ≤ δ. Letting

δ → 0 we obtain that υg−1(Lε
c
) = 0. Hence, g(x) ∈ L for all x υ-a.e. The proof is

complete.

9.2 Proof of Theorem 5.5

Recall the definition U :=
⋃
π∈I(Φ) supp(π). By Th. 5.3, for all ε > 0,

lim sup
n→∞

Eν,γΛn(Ucε ) −−−→
γ→0

0,

where Λn is the random measure given by (37). By Theorem 4.2, supp(π) ⊂ BCΦ

for each π ∈ I(Φ). Thus, Uε ⊂ (BCΦ)ε. Hence, lim supn Eν,γΛn(((BCΦ)ε)
c)→ 0 as

γ → 0. This completes the proof.

10. Applications

In this section, we return to the Examples 2.1 and 2.2 of Section 2.

10.1 Non-Convex Optimization

Consider the algorithm (9) to solve problem (8) where ` : Ξ × E → R, r : E → R
and ξ is a random variable over a probability space (Ω,F ,P) with values in the
measurable space (Ξ,G ) and with distribution µ. Assume that `(ξ, ·) is continuously
differentiable for every ξ ∈ Ξ, that `(·, x) is µ-integrable for every x ∈ E and that r
is a convex and lower semicontinuous function. We assume that for every compact
subset K of E, there exists εK > 0 s.t.

sup
x∈K

∫
‖∇`(s, x)‖1+εKµ(ds) <∞ . (45)
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Define L(x) := Eξ(`(ξ, x)). Under Condition (45), it is easy to check that L is dif-
ferentiable, and that ∇L(x) =

∫
∇`(s, x)µ(ds). From now on, we assume moreover

that ∇L is Lipschitz continuous. Condition (45) and the Lipschitz continuity of ∇L
are satisfied under the following assumption : there exists ε > 0 such that ∇`(ξ, ·) is
C(ξ)-Lipschitz continuous for µ-a.e s, where C(ξ)1+ε is µ-integrable and there ex-
ists x? ∈ E such that ‖∇`(ξ, x?)‖1+ε is µ-integrable. Note that Lipschitz conditions
of this type are usually unavoidable regarding the so-called explicit part (or forward
part) of the proximal gradient algorithm (9). Letting H(s, x) := −∇`(s, x)−∂r(x),
it holds that H(·, x) is proper, µ-integrable and usc [26], and that the corresponding
selection integral H(x) :=

∫
H(s, x)µ(ds) is given by

H(x) = −∇L(x)− ∂r(x) .

By [16, Theorem 3.17, Remark 3.14], for every a ∈ E, the DI ẋ(t) ∈ H(x(t)) admits
a unique solution on [0,+∞) s.t. x(0) = a.

Now consider the iterates xn given by (9). They satisfy (3) where hγ(s, x) :=
γ−1(proxγr(x − γ∇`(s, x)) − x). We verify that the map hγ satisfies Assumption
(RM). Let us first recall some known facts about proximity operators. Using [4,
Prop. 12.29], the mapping x 7→ γ−1(x − proxγr(x)) coincides with the gradient

∇rγ of the Moreau enveloppe rγ : x 7→ miny r(y) + ‖y − x‖2. By [4, Prop. 23.2],
∇rγ(x) ∈ ∂r(proxγr(x)), for every x ∈ E. Therefore,

hγ(s, x) = −∇rγ(x− γ∇`(s, x))−∇`(s, x) (46)

∈ −∂r(proxγr(x− γ∇`(s, x)))−∇`(s, x)

∈ −∂r(x− γhγ(s, x))−∇`(s, x) . (47)

In order to show that Assumption (RM)-ii) is satisfied, we need some estimate on
‖hγ(s, x)‖. Using Eq. (46) and the fact that ∇rγ is γ−1-Lipschitz continuous (see
[4, Prop. 12.29]), we obtain that

‖hγ(s, x)‖ ≤ ‖∇rγ(x)‖+ 2‖∇`(s, x)‖

≤ ‖∂0r(x)‖+ 2‖∇`(s, x)‖ , (48)

where ∂0r(x) the least norm element in ∂r(x) for every x ∈ E, and where the
last inequality is due to [4, Prop. 23.43]. As ∂0r is locally bounded and ∂r is usc,
it follows from Eq. (47) that Assumption (RM)-ii) is satisfied. The estimate (48)
also yields Assumption (RM)-vi). As a conclusion, Assumption (RM) is satisfied.
In particular, the statement of Th. 5.1 holds.

To show that Assumption (PH) is satisfied, we first consider the so-called
Kurdyka-Lojasiewicz (KL) inequality. The general (KL) inequality is used in [14]
to study descent methods in optimization, including the proximal gradient algo-
rithm. The inequality (49) below can be shown to be an instance of the general
(KL) inequality and is used in [21] to rederive some results of [14]. Assume that L
is differentiable with a C-Lipschitz continuous gradient. Denote

DL,r(x,C) := −2C min
y∈E

[
〈∇L(x), y − x〉+

C

2
‖y − x‖2 + r(y)− r(x)

]
.

Consider β > 0, the papers [14, 21] consider problems where the following inequality
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holds : for every x ∈ E,

1

2
DL,r(x,C) ≥ β [(L+ r)(x)−min(L+ r)] . (49)

In our stochastic setting, we consider a stochastic version of inequality (49) : for
every x ∈ E,

1

2

∫
D`(s,·),r

(
x,

1

γ

)
µ(ds) ≥ β [(L+ r)(x)−min(L+ r)] , (50)

for all γ ≤ 1
2C . Note that inequality (50) is satisfied if for every s ∈ Ξ, `(s, ·) and

r satisfy inequality (49) with constant β. In the sequel, we assume that for every
x ∈ E, the random variable ‖`(x, ξ)‖ is square integrable and denote by W (x) its
variance.

Proposition 10.1: Assume that (50) holds, that γ ≤ 1
2C and that

β(L(x) + r(x))−W (x) −→‖x‖→+∞ +∞.

Then (PH) is satisfied.

Proof : Using (sub)differential calculus, it is easy to show that for every n ∈ N,

x+ γhγ(s, x) = arg min
y∈E

[
〈∇`(s, x), y − x〉+

1

2γ
‖y − x‖2 + r(y)− r(x)

]
.

Since ∇L is C-Lipschitz continuous, recalling that γ2C
2 −

γ
2 ≤ −

γ
4 ,

(L+ r)(x+ γhγ(s, x)) = L(x+ γhγ(s, x)) + r(x) + r(x+ γhγ(s, x))− r(x)

≤ (L+ r)(x) + 〈∇L(x), γhγ(s, x)〉+
1

2γ
‖γhγ(s, x)‖2

+

(
C

2
− 1

2γ

)
‖γhγ(s, x)‖2 + r(x+ γhγ(s, x))− r(x)

≤ (L+ r)(x) + 〈∇`(s, x), γhγ(s, x)〉+
1

2γ
‖γhγ(s, x)‖2

+ 〈∇L(x)−∇`(s, x), γhγ(s, x)〉+ r(x+ γhγ(s, x))− r(x)

− γ

4
‖hγ(s, x)‖2

≤ (L+ r)(x)− γ

2
D`(s,·),r(x, 1/γ)− γ

4
‖hγ(s, x)‖2

− γ〈∇`(s, x)−∇L(x), hγ(s, x)〉. (51)

Using |〈a, b〉| ≤ ‖a‖2 + 1
4‖b‖

2 in the last inner product, we finally have

(L+r)(x+γhγ(s, x)) ≤ (L+r)(x)−γ
2
D`(s,·),r(x, 1/γ)+γ‖∇`(s, x)−∇L(x)‖2. (52)
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Integrating with respect to µ, we obtain

∫
(L+ r)(x+ γhγ(s, x))µ(ds) ≤ (L+ r)(x) + γW (x)

− γβ ((L+ r)(x)−min(L+ r)) .

Finally, the condition (PH) is satisfied with α(γ) = γ, β(γ) = 0, V = L + r −
minL+ r and ψ = βV −W.

�

Note that the assumptions of Proposition 10.1 are satisfied if (50) holds, L(x) +
r(x)→‖x‖→+∞ +∞ and the ”variance” function W is bounded.

Besides, the condition (FL) is naturally satisfied.

10.2 Fluid Limit of a System of Parallel Queues

We now apply the results of this paper to the dynamical system described in
Example 2.2 above. For a given γ > 0, the transition kernel Pγ of the Markov

chain (xn) whose entries are given by Eq. (10) is defined on γNN × 2γNN . This
requires some small adaptations of the statements of the main results that we keep
confined to this paragraph for the paper readability. The limit behavior of the
interpolated process (see Theorem 5.1) is described by the following proposition,
which has an analogue in [20]:

Proposition 10.2: For every compact set K ⊂ RN , the family {Pa,γX−1
γ , a ∈

K ∩ γNN , 0 < γ < γ0} is tight. Moreover, for every ε > 0,

sup
a∈K∩γNN

Pa,γ (d(Xγ ,ΦH(K)) > ε) −−−→
γ→0

0 ,

where the set-valued map H is given by (12).

Proof : To prove this proposition, we mainly need to check that Assumption (RM)
is verified. We recall that the Markov chain (xn) given by Eq. (10) admits the rep-
resentation (2), where the function gγ = (g1

γ , . . . , g
N
γ ) is given by (11). If we set

hγ(s, x) = gγ(x) (the fact that gγ is defined on γNN instead of RN
+ is irrelevant),

then for each sequence (un, γn) → (u?, 0) with un ∈ γnNN and x? ∈ RN
+ , it holds

that gγn(un)→ H(u?). Thus, Assumption (RM)–i) is verified with H(s, x) = H(x).
Assumptions (RM)–ii) to (RM)–iv) are obviously verified. Since the set-valued map
H satisfies the condition (19), Assumption (RM)–v) is verified. Finally, the finite-
ness assumption (20) with εK = 2 follows from the existence of second moments
for the Akn, and (21) is immediate. The rest of the proof follows word for word the
proof of Theorem 5.1. �

The long run behavior of the iterates is provided by the following proposition:

Proposition 10.3: Let ν ∈ M(RN
+ ) be such that ν(‖ · ‖2) <∞. For each γ > 0,

define the probability measure νγ on γNN as

νγ({γi1, γi2, . . . , γiN}) = ν(γ(i1 − 1/2, i1 + 1/2]× · · · × γ(iN − 1/2, iN + 1/2]) .
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If Condition (13) is satisfied, then for all ε > 0,

lim sup
n→∞

1

n+ 1

n∑
k=0

Pνγ ,γ (d (Xk , 0) ≥ ε) −−−→
γ→0

0 .

To prove this proposition, we essentially show that the assumptions of Theo-
rem 5.5 are satisfied. In the course of the proof, we shall establish the existence
of the (PH) criterion with a function ψ having a linear growth. With some more
work, it is possible to obtain a (PH) criterion with a faster than linear growth for
ψ, allowing to obtain the ergodic convergence as shown in Theorem 5.4. This point
will not be detailed here.

Proof : Considering the space γNN as a metric space equipped with the discrete
topology, any probability transition kernel on γNN × 2γNN is trivially Feller. Thus,
Proposition 8.6 holds when letting P = Pγ and ν ∈ M(γNN ). Let us check that
Assumption (PH) is verified if the stability condition (13) is satisfied. Let

V : RN
+ → R+, x = (x1, . . . , xN ) 7→

( N∑
k=1

xk/ηk
)2
.

Given 1 ≤ k, ` ≤ N , define f(x) = xkx` on γN2. Using Eq. (10), the iid property
of the process ((A1

n, . . . , A
N
n , B

1
n, . . . , B

N
n ), n ∈ N) and the finiteness of the second

moments of the Akn, we obtain

(Pγf)(x) ≤ xkx` − γxk
(
η`1{x`>0, x`−1=···=x1=0} − λ`

)
− γx`

(
ηk1{xk>0, xk−1=···=x1=0} − λk

)
+ γ2C ,

where C is a positive constant. Thus, when x ∈ γNN ,

(PγV )(x) ≤ V (x)− 2γ

N∑
k=1

xk/ηk
N∑
`=1

(
1{x`>0, x`−1=···=x1=0} − λ`/η`

)
+ γ2C,

after modifying the constant C if necessary. If x 6= 0, then one and only one of the
1{x`>0, x`−1=···=x1=0} is equal to one. Therefore, (PγV )(x) ≤ V (x) − γψ(x) + γ2C,
where

ψ(x) = 2
(

1−
N∑
`=1

λ`/η`
) N∑
k=1

xk/ηk .

As a consequence, when Condition (13) is satisfied, the function ψ is coercive,
and one can straightforwardly check that the statements of Proposition 8.7–i) and
Proposition 8.7–ii) hold true under minor modifications, namely,

⋃
P∈P I(P ) is

tight in M(RN
+ ), since supπ∈I(P) π(ψ) < +∞, where P = {Pγ}γ∈(0,γ0). More-

over, for every ν ∈ M(RN
+ ) s.t. ν(‖ · ‖2) < ∞ and every P ∈ P, {Eνγ ,PγΛn , γ ∈

(0, γ0), n ∈ N} is tight, since supγ∈(0,γ0),n∈N Eνγ ,PγΛn(ψ) < ∞. We can now follow
the proof of Theorem 5.5. Doing so, all it remains to show is that the Birkhoff
center of the flow ΦH is reduced to {0}. This follows from the fact that when Con-
dition (13) is satisfied, all the trajectories of the flow ΦH converge to zero, as shown
in [20, § 3.2]. �
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