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Abstract  
Large efforts have been deployed in developing methods to estimate methane 
emissions from cattle. For large scale applications, accurate and inexpensive methane 
predictors are required. Within a livestock precision farming context, the objective of 
this work was to integrate real-time data on animal feeding behaviour with an in silico 
model for predicting the individual dynamic pattern of methane emission in cattle. The 
integration of real-time data with a mathematical model to predict variables that are not 
directly measured constitutes a software sensor. We developed a dynamic 
parsimonious grey-box model that uses as predictor variables either dry matter intake 
(DMI) or the intake time (IT). The model is described by ordinary differential equations. 
Model building was supported by experimental data of methane emissions from 
respiration chambers. The data set comes from a study with finishing beef steers 
(cross-bred Charolais and purebred Luing finishing). DMI and IT were recorded with 
load cells. A total of 37 individual dynamic patterns of methane production were 
analysed. Model performance was assessed by concordance analysis between the 
predicted methane output and the methane measured in respiration chambers. The 
model predictors DMI and IT performed similarly with a Lin’s concordance correlation 
coefficient (CCC) of 0.78 on average. When predicting the daily methane production, 
the CCC was 0.99 for both DMI and IT predictors. Consequently, on the basis of 
concordance analysis, our model performs very well compared with reported literature 
results for methane proxies and predictive models. Since IT measurements are easier 
to obtain than DMI measurements, this study suggests that a software sensor that 
integrates our in silico model with a real-time sensor providing accurate IT 
measurements is a viable solution for predicting methane output in a large scale 
context. 
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Implications 
Reducing methane emissions from ruminants is a major target for sustainable and 
efficient livestock farming. For the animal, methane production represents a loss of 
feed energy. For the environment, methane exerts a potent greenhouse effect. 
Methane mitigation strategies require accurate, non-invasive and inexpensive 
techniques for estimating individual methane emissions on farm.  In this study, we 
integrate measurements of feeding behaviour in cattle and a mathematical model to 
estimate individual methane production. Together, model and measurements form a 
software sensor that efficiently predicts methane output. Our software sensor is a 
promising approach for estimating methane emissions at large scale.       
 
Introduction  
Methane emission from cattle is an output associated to animal efficiency that impacts 
the environmental footprint of livestock farming. Accordingly, reducing enteric methane 
production is a major target for ruminant production systems (Martin et al., 2010, 
Hristov et al., 2013). Large efforts have been deployed to develop methods and 
devices to measure and estimate methane emissions from ruminants, with respiration 
chambers being the gold standard under rigorous operation (Gardiner et al., 2015, 
Hammond et al., 2016). However, some of these techniques are usually costly and not 
suitable to be applied for on farm application at large scale for the development of 
mitigation strategies of greenhouse gas emissions. An ideal technique for large scale 
application should provide, at low cost, individual accurate estimations of methane 
produced by ruminants (Negussie et al., 2017b). In complement to the development of 
methane proxies, mathematical modelling offers a useful tool for methane prediction. 
Mathematical models are often categorized as white box (phenomenological, 
mechanistic) or black box (empirical) models.  A model with mechanistic and empirical 
components is termed as a grey box model. With respect to the models developed for 
predicting methane production by ruminants, white box models aim at describing the 
biological phenomena associated to rumen fermentation and methanogenesis (Mills et 
al., 2001, Huhtanen et al., 2015, Vetharaniam et al., 2015). These phenomena may 
include for instance the microbial activity of archaea methanogens (Wang et al., 2015, 
Muñoz-Tamayo et al., 2016). Alternatively, black box models aim at deriving regression 
equations that quantify relationships between variable predictors and methane 
emissions (Sauvant et al., 2011, Ramin and Huhtanen, 2013). In general, white box 
models offer the possibility of quantifying the dynamics of key variables while black 
box models are often static. On the other hand, black box models are less complex 
than white box model which favours their implementation for practical purposes (e.g., 
on-farm monitoring). Existing black box models for methane predictions are algebraic 
equations that use an average measure of dry matter intake (DMI) as primary predictor 
(Giger-Reverdin et al., 2003, Charmley et al., 2016, Niu et al., 2018). Generally, models 
and techniques have been applied to estimate the daily average methane emission. 
Few studies report predictions of the dynamic pattern of methane production (Wang et 
al., 2015). Integrating dynamic data from dedicated sensors with mathematical models 
to support livestock management decisions, and guide timely interventions is the great 
promise of precision livestock farming (Wathes et al., 2008, Rutten et al., 2013, 
Friggens et al., 2017). The integration of real-time data with a mathematical model to 
predict variables that are not directly measured constitutes what is called as software 
sensor (observer) in the automatic control scientific literature (Dochain, 2003). 
Software sensors have been broadly applied to monitor and control biotechnological 
processes. A highly performant software sensor is composed of (i) real-time sensors 
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that accurately measure variables of interest and (ii) a reliable model that provides 
accurate predictions and has a simple structure to facilitate its implementation. In this 
context, the objective of this work was to develop a software sensor for predicting the 
individual dynamic pattern of methane emissions in cattle. While, a software sensor 
operates in real-time using online sensor measurements, for a research purpose, our 
development was applied to off-line data as preliminary step for further on-line 
applications. Our software sensor is composed of a dynamic grey box model and 
dynamic data on animal feeding behaviour measured either as dry matter intake (DMI) 
or simply as intake time (IT). Our developments provide a promising and viable solution 
for predicting methane output for on farm applications at large scale.     
 
Material and methods  
 
Experimental data  
Model building was supported by the analysis of experimental data obtained from 
studies conducted at Scotland’s Rural College (SRUC, United Kingdom) with finishing 
beef steers from two breeds (cross-bred Charolais and purebred Luing) (Troy et al., 
2015). Animals received two contrasting basal diets consisting (g/kg DM) of 500:500 
and 80:920 forage to concentrate ratios. Within each basal diet, there were two 
treatments: a control treatment with rapeseed meal as protein source, and an oil 
treatment with rapeseed cake as protein source to increase dietary oil from 27 (control) 
to 53 g/kg DM. Methane emissions were measured in a respiration chamber facility 
with a turnover rate constant of 0.04 min-1 and a gas recovery of 98% (Rooke et al., 
2014). The gas sampling time was 6 min. DMI and IT were recorded with load cells. A 
total of 37 individual dynamic patterns of methane production was analysed.  

 
Mathematical model development  
A mass balance applied to the respiration chamber for methane gives the following 
ordinary differential equation (ODE) 

                                       
𝑑𝑥c(𝑡)

𝑑𝑡
= 𝑎 ∙ 𝑥a(𝑡) − 𝑏 ∙ (𝑥c(𝑡) − 𝑥i(𝑡))                                              (1) 

Where 𝑥c, 𝑥i are the amount (in grams) of methane inside the chamber and at the inlet 
of the chamber respectively, and 𝑥a is the amount of methane in the gas flow released 
by the animal (exhalation+ eructation). The parameter 𝑎 (min-1) is the rate constant of 
the animal gas emission and 𝑏 (min-1) is the turnover rate of the chamber. Note that in 

reality, 𝑎 may be time varying. If 𝑥i is almost constant over time and 𝑥i ≪ 𝑥c, then Eq. 
(1) is simplified to  

                                               
d𝑥c(𝑡)

d𝑡
= 𝑎 ∙ 𝑥a(𝑡) − 𝑏 ∙ 𝑥c(𝑡)                                                 (2) 

The quantity 𝑎 ∙ 𝑥a is the gas produced (g/min) by the animal while 𝑏 ∙ 𝑥c is the gas 
production (g/min) measured in the chamber. For mathematical convenience, we 

denote 𝑦a = 𝑎 ∙ 𝑥a and 𝑦c = 𝑏 ∙ 𝑥c. Equation (2) is thus translated to   

                                                   
d𝑦c(𝑡)

d𝑡
= 𝑏 ∙ (𝑦a(𝑡) − 𝑦c(𝑡))                                                  (3) 
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If the turnover rate of the chamber is optimally chosen, it can be shown that 𝑦c follows 
almost the same dynamics of 𝑦a (See Supplementary material S1). In the remaining of 
the text, we will assume that 𝑦c = 𝑦a. Based on this clarification, we proposed the 

following ODE model for predicting the animal methane emission  𝑦a 

                  
d𝑦a(𝑡)

d𝑡
= 𝑐 ∙ 𝑢(𝑡) − 𝑑 ∙ 𝑦a(𝑡)                                    (4) 

where 𝑢 is either the DMI or IT. DMI is in g/min and IT is a Boolean variable having the 
value one to indicate intake (eating) activity and zero otherwise. The parameters 𝑐, 𝑑 
are specific to the animal and diet and must be estimated from the experimental data. 

The parameter 𝑑 is in min-1. The parameter 𝑐 is in g CH4/(g DM∙min) or in g CH4/min2 
when using DMI or IT as predictors respectively. The model in Eq. (4) has a 
parsimonious structure with only two parameters. Although very simple, it follows the 
structure of a mass balance model (as Eq. (2)) in aggregated form. Indeed, the quantity 

parameter 𝑐/𝑑 can be interpreted as a yield factor i.e,  the mass of methane produced 
per mass of DM (when using DMI as a predictor). Given this phenomenological 
characteristic, the model is referred to as a grey box model. Additionally, the model 

has the property of being identifiable, that is that the parameters 𝑐, 𝑑 can, in theory,  be 
uniquely estimated if noise-free dynamic data of 𝑦a and 𝑢 are available (see, e.g.,  
Muñoz-Tamayo et al., 2018 for a discussion on parameter identifiability). The model in 
Eq. (4) can also be written in finite differential form. By applying backward 

differentiation with a constant time step ∆𝑡, we obtain  

 𝑦a(𝑡) =  
𝑐∙∆𝑡

1+𝑑∙∆𝑡
∙ 𝑢(𝑡) +

1

1+𝑑∙∆𝑡
∙ 𝑦a(𝑡 − ∆𝑡)                   (5) 

Equation (5) is an exponential smoothing filter. After a sensitivity analysis (not shown) 

the step time was fixed to ∆𝑡 = 1.0 min. The model was implemented in the open 
source software Scilab (https://www.scilab.org). Model calibration was performed by 
minimizing the sum of squared errors beween experimental data and predicted output 
for each of the 37 dynamic methane patterns. The minimization was performed using 
the Nelder-Mead algorithm implemented in the fminsearch function of Scilab. Our grey 
box model has the simplest structure to represent the dynamics of methane emissions 
from time series data of DMI or IT. To assess if increasing model complexity could lead 
to gains in goodness of fitting, we tested the performance of different linear models 
(described by Laplace transfer functions) with higher number of parameters than our 
model using  the Matlab® System Identification Toolbox (Ljung, 1997).  Our model was 
the best linear candidate model with respect to the Akaike’s information criterion which 
provides an indicator of model parsimony based on a trade-off between goodness of 
fit and model complexity (quantified by the number of model parameters). The Lin’s 
concordance correlation coefficient (Lin, 1989) was computed to quantify the 
agreement between the methane estimation provided by the software sensor and the 
methane measured in respiration chambers (the gold standard). 
 
Results  
Figure 1 shows typical data extracted from the experimental study. The dynamics of 
methane production is modulated by the feeding pattern (DMI or IT). Methane 
emissions increased following feeding and declines towards a basal value before the 
next feeding as observed in other studies (Crompton et al., 2011, Wang et al., 2015, 
Olijhoek et al., 2016).  
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Figure 1 Example of dynamic data of methane production (top) and feeding behaviour 
measured as DMI (*) and IT (solid line) 
 
Figure 2 displays the individual dynamic pattern of methane production against 
software sensor predictions for the best and worst fitting cases. Plots are given for the 
model using either DMI or IT as predictors applied to both control and oil treatments.  
 

 
Figure 2 Experimental (*) versus predicted methane emissions using DMI (red solid 
line) and IT (dashed black line) as predictors for control and oil treatments. Top plots 
are the experiments where model fits were the best. Bottom plots are the experiments 
where model fits were the poorest. IT is as good predictor as DMI 
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Figure 3 Experimental data vs predicted output of the dynamic pattern of methane of 
production. The isocline is the solid line. Results are presented for the model using 
either DMI or IT as predictors 
 
Figure 3 displays the observations versus predictions from both models for all dynamic 
individual data (n = 15041 time data points). Figure 4 shows the individual daily 
average methane emission (n=37 steers) against predicted methane production. It is 
observed that individuals fed with the mixed basal diet produce more methane than 
those fed with the control basal diet (Troy et al., 2015).  
 

 
Figure 4 Experimental data vs predicted output of daily average methane emission 

production for control (o) and oil () treatments . Filled marks are for the mixed basal 
diet, unfilled marks are for the concentrate basal diet. The isocline is the solid line. 
Results are presented for the model using either DMI or IT as predictors 
 
Tables 1 and 2 show the results of the model calibration for the individual dynamics of 
methane production using either DMI or IT as predictors for the control and oil 
treatments respectively. Classical statistical indicators are also given. The statistical 
analysis about the effects of genotype, basal diet and treatment on methane production 
has already been published (Troy et al., 2015). To avoid redundancy, we focus here 
on the analysis of model parameters.  
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Table 1 Model calibration results of individuals for the control treatment  
 Model with DMI as predictor Model with IT as predictor 

Animal* 𝑐 ∙ 10−5 𝑑 ∙ 10−3 CCC** 𝑟2 CVRMSE
*** 𝑐 ∙ 10−3 𝑑 ∙ 10−3 CCC 𝑟2 CVRMSE 

 gCH4/(g 
DM∙min) 

min-1    gCH4/min2 min-1    

ChC1 2.93 2.35 0.74 0.51 22.53 3.47 2.12 0.78 0.61 20.07 

ChC2 2.51 2.53 0.78 0.58 23.29 2.04 2.32 0.72 0.50 25.50 

ChC4 3.63 2.31 0.80 0.64 18.71 3.19 2.33 0.72 0.54 21.27 

ChC5 3.55 1.38 0.85 0.72 13.81 2.36 1.49 0.80 0.61 16.38 

ChC6 2.84 1.90 0.66 0.46 14.41 2.83 1.68 0.61 0.42 14.89 

ChM1 4.80 2.12 0.92 0.83 12.90 3.78 1.90 0.89 0.77 14.89 

ChM3 3.08 1.17 0.82 0.63 16.55 0.79 0.47 0.70 0.50 19.21 

ChM4 4.53 1.49 0.81 0.63 12.03 7.22 1.87 0.85 0.69 10.96 

ChM5 4.17 1.62 0.77 0.59 16.70 3.60 1.46 0.77 0.57 17.07 

LuC1 3.21 2.26 0.88 0.76 13.47 2.51 1.78 0.81 0.69 15.38 

LuC3 3.50 1.76 0.83 0.72 13.26 2.51 1.57 0.71 0.52 17.35 

LuC4 3.41 1.60 0.83 0.67 10.61 1.88 0.98 0.77 0.63 11.26 

LuC6 2.00 1.58 0.52 0.26 24.35 2.06 1.58 0.53 0.31 23.64 

LuM1 4.59 1.87 0.91 0.79 13.92 3.93 1.88 0.90 0.78 14.37 

LuM3 2.21 1.24 0.61 0.43 20.09 1.74 1.08 0.59 0.41 20.35 

LuM4 4.37 1.37 0.81 0.65 16.02 5.29 1.85 0.74 0.52 18.90 

LuM5 5.30 1.90 0.87 0.71 13.54 3.42 1.91 0.91 0.82 10.71 

LuM6 3.52 1.41 0.89 0.79 12.70 2.48 1.46 0.87 0.74 13.93 

Mean 3.56 1.77 0.79 0.63 16.05 3.06 1.65 0.76 0.59 17.01 

* Animals are identified by the type of breed: Charolais (Ch) or Luing (Lu), and the type of basal diet: 
mixed (M) or concentrate (C).  
** CCC: Lin’s concordance correlation coefficient.  
*** CVRMSE: coefficient of variation of the root mean squared error. 
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Table 2 Model calibration results of individuals for the oil treatment 
 Model with DMI as predictor Model with IT as predictor 

Animal* 𝑐 ∙ 10−5 𝑑 ∙ 10−3 CCC** 𝑟2 CVRMSE
*** 𝑐 ∙ 10−3 𝑑 ∙ 10−3 CCC 𝑟2 CVRMSE 

 
 gCH4/(g 

DM∙min) 
min-1    gCH4/min2 min-1    

ChC1 2.90 2.08 0.88 0.77 21.01 4.20 2.36 0.89 0.79 20.33 

ChC3 2.52 1.13 0.84 0.72 12.71 1.54 1.15 0.85 0.73 12.34 

ChC5 3.21 2.65 0.80 0.63 18.06 2.20 2.61 0.84 0.72 15.66 

ChC6 2.94 1.54 0.76 0.52 15.94 2.12 1.49 0.87 0.76 11.20 

ChM1 2.14 0.95 0.53 0.31 14.05 2.49 1.54 0.82 0.66 9.82 

ChM2 3.48 1.45 0.80 0.61 11.38 2.29 1.39 0.81 0.64 10.99 

ChM3 3.28 1.39 0.82 0.66 12.45 2.88 1.10 0.69 0.46 15.73 

ChM4 3.79 1.54 0.84 0.70 13.20 3.59 1.33 0.73 0.51 16.97 

ChM5 4.49 2.06 0.91 0.80 11.70 3.53 1.95 0.76 0.47 19.05 

ChM6 2.77 1.40 0.86 0.77 12.75 1.85 1.19 0.83 0.73 13.89 

LuC2 1.74 1.25 0.53 0.26 14.67 0.19 0.33 0.15 0.05 16.58 

LuC3 3.17 2.40 0.78 0.60 23.11 4.21 2.27 0.77 0.59 23.26 

LuC4 2.73 1.77 0.87 0.76 18.44 2.27 1.79 0.89 0.80 16.62 

LuC5 3.29 2.63 0.71 0.53 18.72 2.24 2.39 0.69 0.48 19.57 

LuM1 4.58 2.01 0.90 0.81 10.49 4.86 1.97 0.86 0.74 12.32 

LuM2 4.74 1.95 0.91 0.82 14.59 3.57 1.88 0.93 0.86 12.93 

LuM4 4.88 2.55 0.65 0.35 20.04 7.34 2.43 0.62 0.31 20.69 

LuM5 3.56 1.45 0.79 0.47 11.48 2.47 1.22 0.90 0.82 6.69 

LuM6 4.34 2.17 0.75 0.61 11.97 2.36 1.57 0.90 0.82 8.15 

Mean 3.40 1.81 0.79 0.62 15.09 2.96 1.68 0.78 0.63 14.88 

* Animals are identified by the type of breed: Charolais (Ch) or Luing (Lu), and the type of basal diet: 
mixed (M) or concentrate (C).  
** CCC: Lin’s concordance correlation coefficient.  
*** CVRMSE: coefficient of variation of the root mean squared error. 
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Figure 5 shows the boxplots for the model parameters by treatment and basal diet. 
Table 3 shows the results of unpaired t tests at the 5% level testing for a difference in 
parameter means in concentrate vs mixed basal diets and rapeseed meal vs rapeseed 

cake. The model parameter 𝑐 is significantly lower for a concentrate diet compared to 
a mixed basal diet, but parameter 𝑑 is not significantly different (at the 5% level) for 
each diet. This is to be expected as 𝑐 includes the methane yield factor that converts 
𝑢(𝑡) (DMI or IT) to 𝑦𝑎(𝑡) , whereas 𝑑  is simply a specific rate constant related to gas 
release. While the methane yield depends on the level of concentrate in the diet, the 
concentrate level might not have impact on the rate of gas release (exhalation+ 
eructation). The level of dietary oil (oil and control) did not have significant effect on 
any parameters. 
 

 
Figure 5 Estimated parameters of the model by treatment (control and oil). Grey 
boxes are for the concentrate basal diet and white boxes are for the mixed basal diet  
 
Table 3 P-values when testing for a difference in parameter means between basal 
diet and level of dietary oil groups 
 
 
 
 
 
 
 
 

P-values Basal diet Level of dietary oil 

DMI  𝑐 <0.001 0.5807 

DMI  𝑑 0.0603 0.8048 

IT  𝑐 0.0287 0.8349 

IT  𝑑 0.2508 0.8596 
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Our software sensor provides satisfactory results for predicting the dynamics of 
methane production with similar levels of performance between DMI and IT as 
predictors. For DMI, the average CCC was of 0.79. For IT, the average CCC was 
0.76. Interestingly, for 14 out of 37 dynamic data, the CCC for IT was higher than the 
CCC for DMI, indicating the great potential of using IT as predictor. When the 
software sensor was applied for predicting the daily average methane emission 
(Figure 4), the CCC was 0.99. On the basis of concordance analysis, our software 
sensor performs very well compared with reported literature results for methane 
proxies and predictive models (Wang et al., 2015, Negussie et al., 2017a, Niu et al., 
2018).   
 
Discussion  
The primary role of the feeding pattern on methane emissions in cattle (Crompton et 
al., 2011) motivated us to investigate the capability of predicting the dynamics of 
methane production from cattle using only time-series data of feeding behaviour (DMI 
or IT) via the construction of a software sensor. The objective of this construction was 
to develop a suitable tool for estimating methane that could be applied at large scale. 
The outcome of our work is encouraging to envisage a real-time implementation 
provided that accurate measurements or estimations of feeding behaviour are 
guaranteed, which is in compliance with other studies (Appuhamy et al., 2016). Since 
the pattern of feeding behaviour is an individual trait among ruminants (Morita et al., 
1996, Giger-Reverdin et al., 2012), individual characterisation of feeding patterns is 
central for producing individual estimations of methane by ruminants in a large scale 
context. Our study suggest that IT is a good predictor of methane emissions. The use 
of IT as predictor in our model relies on the assumption that the intake rate is constant 
across the day. This assumption applied to the data analysed here was shown to be 
adequate for methane prediction purposes, but additional data should be further 
analysed to assess the assumption robustness. For a real implementation at large 
scale, using IT as predictor instead of DMI has great advantages in terms of costs and 
setting. Successful results on real-time determination of IT by means of 
accelerometers (Oudshoorn et al., 2013, Arcidiacono et al., 2017) are encouraging to 
make of our software sensor a feasible and low cost solution for on farm applications 
in the future. Recently, it has been suggested that, for a stable management of feed 
allocation, the diurnal pattern of methane is constant over time (Bell et al., 2018), 
which, with respect to our modelling work, translates into a constant diurnal feeding 
behaviour pattern. Accordingly, monitoring IT offers an opportunity not only to predict 
methane emissions but also a tool to characterise individual normal feeding patterns. 
By this, it will be possible to signal when an animal exhibits a different pattern from its 
normal pattern. This change of pattern could be associated to a perturbation, providing 
useful information for timely interventions.   
Finally, a software sensor is meant to operate in real time using on-line measurements. 
In this work, however, our analysis was developed off-line. Further work needs to be 
carried out to evaluate the developed software sensor in real-time by integrating 
accelerometers for IT estimation. Running the software sensor requires prior 
calibration of the model parameters. This calibration can be performed, for example, 
by the GreenFeed system given its reliability for determining methane emissions on 
farm (Doreau et al., 2018), provided an adequate setting (Renand and Maupetit, 2016). 
Once the model parameters are estimated, the software sensor can be applied by 
setting an initial condition for methane production. This initial condition has a strong 
impact on the amplitude of the methane emissions pattern. In our study, we extracted 
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the initial condition from the experimental data. For real implementation, it would be 
recommended to start the software sensor at a moment when the methane production 
is close to the basal production of methane (e.g. before a meal). From the experiments 
analysed in this study, the basal production of methane was between 0.015 and 0.13 
g/min. The strategy of starting the software sensor at a moment where the methane 
production is close to basal production reduces the impact of a wrong choice of initial 
condition. Since the methane emission pattern might change over age and 
physiological state of animals (e.g., lactation stage for dairy cattle), adjustment of 
model parameters might be required when appropriate.  
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Supplementary material S1 
 
Influence of the turnover rate of a respiration chamber on methane output  

In a respiration chamber, the rate of methane produced (g/min) by the animal (𝑦a) 
and the rate of methane production measured in the chamber (𝑦c) are related by 
the following mass balance model  

                                              
d𝑦c(𝑡)

d𝑡
= 𝑏 ∙ (𝑦a(𝑡) − 𝑦c(𝑡)) ,                                               (1) 

 

where 𝑏 (min-1) is the turnover rate of the chamber. The magnitude of 𝑏 determines 
how fast the trajectory of 𝑦c will follow the trajectory of 𝑦a. The higher 𝑏, the faster 
𝑦c converges to the trajectory of 𝑦a. As displayed in Figure S1, a wrong choice of 
the turnover rate will imply an important mismatch between the dynamics of 
methane produced by the animal and the dynamics of the methane flux of the 

chamber. An adequate turnover rate guarantees that the dynamic of 𝑦a is mirrored 

by the dynamics of 𝑦c, that is that the approximation 𝑦c ≈ 𝑦a (used in this work) is 
consistent.  
 
In theory, a very high turnover rate of the respiration chamber is ideal to capture the 
dynamics of methane produced by the animal. In practice, however, attention 
should be paid to very high turnover rates, since the gas flux at the outlet of the 
camber might be too fast for the gas analyser to produce consistent measurements. 
The rate of sampling of the gas analyser must be considered to select the optimal 
turnover rate. Since the overall efficiency of a respiration chamber depends on the 
extraction, conduction, and gas analysis (Gardiner et al., 2015), both turnover rate 
and sampling rate are determining elements of the accuracy of respiration 
chambers for measuring methane emissions from livestock.        
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1 Experimen 
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Figure S1 Simulation study. Virtual data of methane production by the animal (*) 
are compared with the output from a respiration chamber using Eq. (1) at three 
turnover rates: 0.004 min-1 (blue -.), 0.4 min-1 (red --), 0.04 min-1 (solid black line). 
The turnover rate of the respiration chambers used in this study was 0.04 min-1. 
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