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Large efforts have been deployed in developing methods to estimate methane emissions from cattle. For large scale applications,
accurate and inexpensive methane predictors are required. Within a livestock precision farming context, the objective of this work
was to integrate real-time data on animal feeding behaviour with an in silico model for predicting the individual dynamic pattern
of methane emission in cattle. The integration of real-time data with a mathematical model to predict variables that are not
directly measured constitutes a software sensor. We developed a dynamic parsimonious grey-box model that uses as predictor
variables either dry matter intake (DMI) or the intake time (IT). The model is described by ordinary differential equations.

Model building was supported by experimental data of methane emissions from respiration chambers. The data set comes from
a study with finishing beef steers (cross-bred Charolais and purebred Luing finishing). Dry matter intake and IT were recorded using
feed bins. For research purposes, in this work, our software sensor operated off-line. That is, the predictor variables (DMI, IT) were
extracted from the recorded data (rather than from an on-line sensor). A total of 37 individual dynamic patterns of methane
production were analyzed. Model performance was assessed by concordance analysis between the predicted methane output and
the methane measured in respiration chambers. The model predictors DMI and IT performed similarly with a Lin’s concordance
correlation coefficient (CCC) of 0.78 on average. When predicting the daily methane production, the CCC was 0.99 for both DMI
and IT predictors. Consequently, on the basis of concordance analysis, our model performs very well compared with reported
literature results for methane proxies and predictive models. As IT measurements are easier to obtain than DMI measurements, this
study suggests that a software sensor that integrates our in silico model with a real-time sensor providing accurate IT
measurements is a viable solution for predicting methane output in a large scale context.
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Implications

Reducing methane emissions from ruminants is a major tar-
get for sustainable and efficient livestock farming. For the
animal, methane production represents a loss of feed energy.
For the environment, methane exerts a potent greenhouse
effect. Methane mitigation strategies require accurate, non-
invasive and inexpensive techniques for estimating individual
methane emissions on farm. In this study, we integrate
measurements of feeding behaviour in cattle and a mathe-
matical model to estimate individual methane production.
Together, model and measurements form a software sensor
that efficiently predicts methane output. Our software sensor

is a promising approach for estimating methane emissions at
large scale.

Introduction

Methane emission from cattle is an output associated with
animal efficiency that impacts the environmental footprint of
livestock farming. Accordingly, reducing enteric methane
production is a major target for ruminant production systems
(Martin et al., 2010; Hristov et al., 2013). Large efforts have
been deployed to develop methods and devices to measure
and estimate methane emissions from ruminants, with
respiration chambers being the gold standard under rigorous
operation (Gardiner et al., 2015; Hammond et al., 2016).
However, some of these techniques are usually costly and† E-mail: rafael.munoz-tamayo@inra.fr
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not suitable to be applied for on farm application at large
scale for the development of strategies to mitigate green-
house gas emissions. An ideal technique for large scale
application should provide, at low cost, individual accurate
estimations of methane produced by ruminants (Negussie
et al., 2017b). In complement to the development of
methane proxies, mathematical modelling offers a useful
tool for methane prediction. Mathematical models are often
categorized as white box (phenomenological, mechanistic)
or black box (empirical) models. A model with mechanistic
and empirical components is termed a grey box model. With
respect to the models developed for predicting methane
production by ruminants, white box models aim at describing
the biological phenomena associated with rumen fermenta-
tion and methanogenesis (Mills et al., 2001; Huhtanen et al.,
2015; Vetharaniam et al., 2015). These phenomena may
include for instance the microbial activity of archaea
methanogens (Wang et al., 2015; Muñoz-Tamayo et al.,
2016). Alternatively, black box models aim at deriving
regression equations that quantify relationships between
variable predictors and methane emissions (Sauvant et al.,
2011; Ramin and Huhtanen, 2013). In general, white box
models offer the possibility of quantifying the dynamics of
key variables whereas black box models are often static. On
the other hand, black box models are less complex than
white box models which favour their implementation for
practical purposes (e.g. on-farm monitoring). Existing black
box models for methane predictions are algebraic equations
that use an average measure of dry matter intake (DMI) as
primary predictor (Giger-Reverdin et al., 2003; Charmley
et al., 2016; Niu et al., 2018). Generally, models and tech-
niques have been applied to estimate the daily average
methane emission. Few studies report predictions of the
dynamic pattern of methane production (Wang et al., 2015).
Integrating dynamic data from dedicated sensors with
mathematical models to support livestock management
decisions, and guide timely interventions is the great promise
of precision livestock farming (Wathes et al., 2008; Rutten
et al., 2013; Friggens et al., 2017). The integration of real-
time data with a mathematical model to predict variables
that are not directly measured constitutes what is called a
software sensor (observer) in the automatic control scientific
literature (Dochain, 2003). Software sensors have been
broadly applied to monitor and control biotechnological
processes. A high performing software sensor is composed of
(i) real-time sensors that accurately measure variables of
interest and (ii) a reliable model that provides accurate pre-
dictions and has a simple structure to facilitate its imple-
mentation. In this context, the objective of this work was to
develop a software sensor for predicting the individual
dynamic pattern of methane emissions in cattle. Before a real
on-line implementation, it is common practice to assess the
performance of the software sensor via simulation using
either virtual data or off-line data. In our work, for research
purposes, we used off-line data obtained from published
work (Troy et al., 2015). Our software sensor is composed of
a dynamic grey box model and dynamic data on animal

feeding behaviour measured either as DMI or simply as
intake time (IT).

Material and methods

Experimental data
Model building was supported by the analysis of experi-
mental data obtained from studies conducted at Scotland’s
Rural College (SRUC, UK) with finishing beef steers from two
breeds (cross-bred Charolais and purebred Luing) (Troy et al.,
2015). Animals received two contrasting basal diets con-
sisting (g/kg dry matter (DM)) of 500 : 500 and 80 : 920 for-
age to concentrate ratios. Within each basal diet, there were
two treatments: a control treatment with rapeseed meal as
protein source, and an oil treatment with rapeseed cake as
protein source to increase dietary oil from 27 (control) to
53 g/kg DM. Methane emissions were measured in a
respiration chamber facility with a turnover rate constant of
0.04/min and a gas recovery of 98% (Rooke et al., 2014). The
gas sampling time was 6min. The steers were fed once daily
and had ad libitum access to feed. Dry matter intake was
recorded using Hoko feed bins (Insentec, Marknesse, The
Netherlands). We determined IT directly from the DMI data
as a Boolean variable having the value 1 to indicate intake
(eating) activity and 0 otherwise. A total of 37 individual
dynamic patterns of methane production was analyzed.

Mathematical model development
A mass balance applied to the respiration chamber for
methane gives the following ordinary differential equation
(ODE):

dxc tð Þ
dt

=a ´ xa tð Þ�b ´ xc tð Þ�xi tð Þð Þ (1)

where xc, xi are the amount (in grams) of methane inside the
chamber and at the inlet of the chamber respectively, and xa
is the amount of methane in the gas flow released by the
animal (exhalation+ eructation). The parameter a (min-1) is
the rate constant of the animal gas emission and b (min-1) is
the turnover rate of the chamber. Note that in reality, a
may be time varying. If xi is almost constant over time and
xi<< xc, then equation (1) is simplified to:

dxc tð Þ
dt

=a ´ xa tð Þ�b ´ xc tð Þ (2)

The quantity a× xa is the gas produced (g/min) by the animal
whereas b× xc is the gas production (g/min) measured in
the chamber. For mathematical convenience, we denote
ya= a× xa and yc= b× xc. Equation (2) is thus translated to:

dyc tð Þ
dt

=b ´ ya tð Þ�yc tð Þð Þ (3)

If the turnover rate of the chamber is optimally chosen, it can
be shown that yc follows almost the same dynamics of ya (see
Supplementary material S1). In the remaining of the text, we
will assume that yc= ya. Based on this assumption, we pro-
posed the following ODE model for predicting the animal
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methane emission ya:

dya tð Þ
dt

= c ´u tð Þ�d ´ ya tð Þ (4)

where u is either the DMI or IT. Dry matter intake is in g/min
and IT is a Boolean variable having the value 1 to indicate
intake (eating) activity and 0 otherwise. The parameters c, d
are specific to the animal and diet and must be estimated
from the experimental data. The parameter d (min-1). The
parameter c is in g CH4/(g×DM×min) or in g CH4/min

2

when using DMI or IT as predictors respectively. The model in
equation (4) has a parsimonious structure with only two
parameters. Although very simple, it follows the structure of
a mass balance model (as equation (2)) in aggregated form.
Indeed, the quantity parameter c/d can be interpreted as a
yield factor, that is the mass of methane produced per mass
of DM (when using DMI as a predictor). Given this phe-
nomenological characteristic, the model is referred to as a
grey box model. Additionally, the model has the property of
being identifiable, that is that the parameters c, d can, in
theory, be uniquely estimated if noise-free dynamic data of ya
and u are available (see, for example, Muñoz-Tamayo et al.,
2018 for a discussion on parameter identifiability). The
model in equation (4) can also be written in finite differential
form. By applying backward differentiation with a constant
time step Δt, we obtain:

ya tð Þ= c ´Δt
1 +d ´Δt

´u tð Þ + 1
1 +d ´Δt

´ ya t�Δtð Þ (5)

Equation (5) is an exponential smoothing filter. After a sen-
sitivity analysis (not shown), the step time was fixed to
Δt= 1.0min. The model was implemented in the open
source software Scilab (https://www.scilab.org). Model cali-
bration was performed by minimizing the sum of squared
errors beween experimental data and predicted output for
each of the 37 dynamic methane patterns. The minimization
was performed using the Nelder–Mead algorithm imple-
mented in the fminsearch function of Scilab. Our grey box
model has the simplest structure to represent the dynamics
of methane emissions from time series data of DMI or IT. To
assess if increasing model complexity could lead to gains in
goodness of fitting, we tested the performance of different
linear models (described by Laplace transfer functions) with
higher number of parameters than our model using the
Matlab® System Identification Toolbox (Ljung, 1997). Our
model was the best linear candidate model with respect to
the Akaike’s information criterion which provides an indi-
cator of model parsimony based on a trade-off between
goodness of fit and model complexity (quantified by the
number of model parameters). The Lin’s concordance corre-
lation coefficient (CCC) (Lin, 1989) was computed to quantify
the agreement between the methane estimation provided by
the software sensor and the methane measured in respira-
tion chambers (the gold standard).

Results

Figure 1 shows typical data extracted from the experimental
study. The dynamics of methane production is modulated by
the feeding pattern (DMI or IT). Methane emissions increased
following feeding and declined towards a basal value before the
next feeding, as observed in other studies (Crompton et al.,
2011; Wang et al., 2015; Olijhoek et al., 2016). Figure 2 displays
the individual dynamic pattern of methane production against
software sensor predictions for the best and worst fitting cases.
Plots are given for the model using either DMI or IT as predictors
applied to both control and oil treatments. Figure 3 displays the
observations v. predictions from both models for all dynamic
individual data (n= 15 041 time data points). Figure 4 shows
the individual daily average methane emission (n= 37 steers)
against predicted methane production. It is observed that indi-
viduals fed with the mixed basal diet produce more methane
than those fed with the control basal diet (Troy et al., 2015).
Tables 1 and 2 show the results of the model calibration

for the individual dynamics of methane production using
either DMI or IT as predictors for the control and oil treat-
ments, respectively. Classical statistical indicators are also
given. The statistical analysis about the effects of genotype,
basal diet and treatment on methane production has already
been published (Troy et al., 2015). To avoid redundancy, we
focus here on the analysis of model parameters. Figure 5
shows the boxplots for the model parameters by treatment
and basal diet. Table 3 shows the results of unpaired t-tests
at the 5% level testing for a difference in parameter means in
concentrate v. mixed basal diets and rapeseed meal v.
rapeseed cake. The model parameter c is significantly lower
for a concentrate diet compared with a mixed basal diet, but
parameter d is not significantly different (at the 5% level) for
each diet. This is to be expected as c includes the methane
yield factor that converts u(t) (DMI or IT) to ya(t), whereas d is
simply a specific rate constant related to gas release.
Although the methane yield depends on the level of con-
centrate in the diet, the concentrate level might not have
impact on the rate of gas release (exhalation+ eructation).

Figure 1 Example of dynamic data of methane production (top) and
feeding behaviour measured as dry matter intake (DMI) (*) and intake
time (IT) (solid line) from beef steers.
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The level of dietary oil (oil and control) did not have sig-
nificant effect on any of the parameters.
Our software sensor provides satisfactory results for pre-

dicting the dynamics of methane production with similar

levels of performance between DMI and IT as predictors. For
DMI, the average CCC was of 0.79. For IT, the average CCC
was 0.76. Interestingly, for 14 out of 37 dynamic data, the
CCC for IT was higher than the CCC for DMI, indicating the
great potential of using IT as predictor. When the software
sensor was applied for predicting the daily average methane
emission (Figure 4), the CCC was 0.99. On the basis of con-
cordance analysis, our software sensor performs very well
compared with reported literature results for methane prox-
ies and predictive models (Wang et al., 2015; Negussie et al.,
2017a; Niu et al., 2018).

Discussion

The primary role of the feeding pattern on methane emis-
sions in cattle (Crompton et al., 2011) motivated us to
investigate the capability of predicting the dynamics of
methane production from cattle using only time-series data
of feeding behaviour (DMI or IT) via the construction of a
software sensor. The objective of this construction was to
develop a suitable tool for estimating methane that could be
applied at large scale. The outcome of our work is encoura-
ging to envisage a real-time implementation provided that
accurate measurements or estimations of feeding behaviour
are guaranteed, which is in compliance with other studies
(Appuhamy et al., 2016). As the pattern of feeding behaviour
is an individual trait among ruminants (Morita et al., 1996;
Giger-Reverdin et al., 2012), individual characterization of
feeding patterns is central for producing individual estima-
tions of methane by ruminants in a large scale context. As
occurs in all model development, the quality of the prediction
of our model strongly depends on the quality of the estima-
tion of feed intake. Errors associated with DMI and IT esti-
mation from on-line sensors will be propagated to the
methane estimation. To allow robust estimation on-line,
diagnostic algorithms should be implemented to identify
sensor drift.
Our study suggest that IT is a good predictor of methane

emissions. The use of IT as predictor in our model relies on
the assumption that the intake rate is constant across the
day. This assumption applied to the data analyzed here was
shown to be adequate for methane prediction purposes, but
additional data should be further analyzed to assess the
assumption robustness. For a real implementation at large
scale, using IT as predictor instead of DMI has great
advantages in terms of costs and setting. Successful results
on real-time determination of IT by means of accel-
erometers (Oudshoorn et al., 2013; Arcidiacono et al.,
2017) are encouraging to make of our software sensor a
feasible and low cost solution for on farm applications in
the future. Recently, it has been suggested that, for a stable
management of feed allocation, the diurnal pattern of
methane is constant over time (Bell et al., 2018), which,
with respect to our modelling work, translates into a con-
stant diurnal feeding behaviour pattern. Accordingly, mon-
itoring IT offers an opportunity not only to predict methane

Figure 2 Experimental (*) v. predicted methane emissions from beef
steers using dry matter intake (DMI) (red solid line) and intake time (IT)
(dashed black line) as predictors for control and oil treatments. Top plots
are the experiments where model fits were the best. Bottom plots are the
experiments where model fits were the poorest. Intake time is as good
predictor as DMI.

Figure 3 Experimental data v. predicted output of the dynamic pattern
of methane of production from beef steers. The isocline is the solid line.
Results are presented for the model using either dry matter intake (DMI)
or intake time (IT) as predictors.

Figure 4 Experimental data v. predicted output of daily average
methane emission production from beef steers for control (o) and oil (□)
treatments. Filled marks are for the mixed basal diet, unfilled marks are
for the concentrate basal diet. The isocline is the solid line. Results are
presented for the model using either dry matter intake (DMI) or intake
time (IT) as predictors.
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Table 1 Model calibration results of beef steers for the control treatment

Model with DMI as predictor Model with IT as predictor

Animal* c/105 gCH4/(g×DM×min) d/103 /min CCC** r 2 CVRMSE*** c/103 gCH4/min
2 d/103 /min CCC r 2 CVRMSE

ChC1 2.93 2.35 0.74 0.51 22.53 3.47 2.12 0.78 0.61 20.07
ChC2 2.51 2.53 0.78 0.58 23.29 2.04 2.32 0.72 0.50 25.50
ChC4 3.63 2.31 0.80 0.64 18.71 3.19 2.33 0.72 0.54 21.27
ChC5 3.55 1.38 0.85 0.72 13.81 2.36 1.49 0.80 0.61 16.38
ChC6 2.84 1.90 0.66 0.46 14.41 2.83 1.68 0.61 0.42 14.89
ChM1 4.80 2.12 0.92 0.83 12.90 3.78 1.90 0.89 0.77 14.89
ChM3 3.08 1.17 0.82 0.63 16.55 0.79 0.47 0.70 0.50 19.21
ChM4 4.53 1.49 0.81 0.63 12.03 7.22 1.87 0.85 0.69 10.96
ChM5 4.17 1.62 0.77 0.59 16.70 3.60 1.46 0.77 0.57 17.07
LuC1 3.21 2.26 0.88 0.76 13.47 2.51 1.78 0.81 0.69 15.38
LuC3 3.50 1.76 0.83 0.72 13.26 2.51 1.57 0.71 0.52 17.35
LuC4 3.41 1.60 0.83 0.67 10.61 1.88 0.98 0.77 0.63 11.26
LuC6 2.00 1.58 0.52 0.26 24.35 2.06 1.58 0.53 0.31 23.64
LuM1 4.59 1.87 0.91 0.79 13.92 3.93 1.88 0.90 0.78 14.37
LuM3 2.21 1.24 0.61 0.43 20.09 1.74 1.08 0.59 0.41 20.35
LuM4 4.37 1.37 0.81 0.65 16.02 5.29 1.85 0.74 0.52 18.90
LuM5 5.30 1.90 0.87 0.71 13.54 3.42 1.91 0.91 0.82 10.71
LuM6 3.52 1.41 0.89 0.79 12.70 2.48 1.46 0.87 0.74 13.93
Mean 3.56 1.77 0.79 0.63 16.05 3.06 1.65 0.76 0.59 17.01

DMI= dry matter intake; IT= intake time; DM= dry matter; CCC= concordance correlation coefficient.
*Animals are identified by the type of breed: Charolais (Ch) or Luing (Lu), and the type of basal diet: mixed (M) or concentrate (C).
**CCC: Lin’s CCC.
***CVRMSE: coefficient of variation of the root mean squared error.

Table 2 Model calibration results of beef steers for the oil treatment

Model with DMI as predictor Model with IT as predictor

Animal* c/105 gCH4(g×DM×min) d/103 /min CCC** r 2 CVRMSE*** c/103 gCH4/min
2 d/103 /min CCC r 2 CVRMSE

ChC1 2.90 2.08 0.88 0.77 21.01 4.20 2.36 0.89 0.79 20.33
ChC3 2.52 1.13 0.84 0.72 12.71 1.54 1.15 0.85 0.73 12.34
ChC5 3.21 2.65 0.80 0.63 18.06 2.20 2.61 0.84 0.72 15.66
ChC6 2.94 1.54 0.76 0.52 15.94 2.12 1.49 0.87 0.76 11.20
ChM1 2.14 0.95 0.53 0.31 14.05 2.49 1.54 0.82 0.66 9.82
ChM2 3.48 1.45 0.80 0.61 11.38 2.29 1.39 0.81 0.64 10.99
ChM3 3.28 1.39 0.82 0.66 12.45 2.88 1.10 0.69 0.46 15.73
ChM4 3.79 1.54 0.84 0.70 13.20 3.59 1.33 0.73 0.51 16.97
ChM5 4.49 2.06 0.91 0.80 11.70 3.53 1.95 0.76 0.47 19.05
ChM6 2.77 1.40 0.86 0.77 12.75 1.85 1.19 0.83 0.73 13.89
LuC2 1.74 1.25 0.53 0.26 14.67 0.19 0.33 0.15 0.05 16.58
LuC3 3.17 2.40 0.78 0.60 23.11 4.21 2.27 0.77 0.59 23.26
LuC4 2.73 1.77 0.87 0.76 18.44 2.27 1.79 0.89 0.80 16.62
LuC5 3.29 2.63 0.71 0.53 18.72 2.24 2.39 0.69 0.48 19.57
LuM1 4.58 2.01 0.90 0.81 10.49 4.86 1.97 0.86 0.74 12.32
LuM2 4.74 1.95 0.91 0.82 14.59 3.57 1.88 0.93 0.86 12.93
LuM4 4.88 2.55 0.65 0.35 20.04 7.34 2.43 0.62 0.31 20.69
LuM5 3.56 1.45 0.79 0.47 11.48 2.47 1.22 0.90 0.82 6.69
LuM6 4.34 2.17 0.75 0.61 11.97 2.36 1.57 0.90 0.82 8.15
Mean 3.40 1.81 0.79 0.62 15.09 2.96 1.68 0.78 0.63 14.88

DMI= dry matter intake; IT= intake time; DM= dry matter; CCC= concordance correlation coefficient.
*Animals are identified by the type of breed: Charolais (Ch) or Luing (Lu), and the type of basal diet: mixed (M) or concentrate (C).
**CCC: Lin’s CCC.
***CVRMSE: coefficient of variation of the root mean squared error.
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emissions but also a tool to characterize individual normal
feeding patterns. By this, it will be possible to signal when
an animal exhibits a different pattern from its normal
pattern. This change of pattern could be associated to
a perturbation, providing useful information for timely
interventions.
Finally, a software sensor is meant to operate in real time

using on-line measurements. In this work, however, our
analysis was developed off-line. Further work needs to be
carried out to evaluate the developed software sensor in real-
time by integrating accelerometers for IT estimation. Running
the software sensor requires prior calibration of the model
parameters. In our study, model calibration was performed
with data from respiration chambers. We have observed that
feeding behaviour may differ between respiration chamber
and barn conditions. However, for a given diet, it is a good
approximation to assume that methane yield (represented in
our model by the parameter c) will not vary. Accordingly, we
expect that the mathematical model will be valid in barn
conditions, as the methane production estimation will
always be dependent on the actual measurement of DMI or
IT. It is important to highlight that the parameter c is diet
specific and need to be estimated when testing for instance a
methane inhibition feed. Respiration chambers are the gold

standard for enteric methane estimation and thus model
calibration should ideally be performed using chambers.
However, since the use of respiration chambers at large scale
is costly, an alternative is to use the GreenFeed system given
its reliability for determining methane emissions on farm
(Doreau et al., 2018), when appropriate protocols are used
(Renand and Maupetit, 2016). It is clear however, that for a
practical implementation, even the GreenFeed system might
not be available for model calibration, so other methods for
methane estimation, such as those reviewed by Hammond
et al., (2016), will be required. Implementation of our esti-
mator is then conditioned by the ability to monitor feeding
behaviour and to have accurate methane data for the pre-
liminary model calibration. Once the model parameters are
estimated, the software sensor can be applied by setting an
initial condition for methane production. This initial condi-
tion has a strong impact on the amplitude of the methane
emissions pattern. In our study, we extracted the initial
condition from the experimental data. For real implementa-
tion, it would be recommended to start the software sensor
at a moment when the methane production is close to the
basal production of methane (e.g. before a meal). From the
experiments analyzed in this study, the basal production of
methane was between 0.015 and 0.13 g/min. The strategy of
starting the software sensor at a moment where the methane
production is close to basal production reduces the impact of
a wrong choice of initial condition. Since the methane
emission pattern might change over age and the physiolo-
gical state of animals (e.g.,lactation stage for dairy cattle),
adjustment of model parameters might be required when
appropriate.
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