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Lahoucine Ballihi, Member, IEEE, and Stefano Berretti, Senior, IEEE

Abstract—In this paper, we propose a new approach for facial
expression recognition using deep covariance descriptors. The
solution is based on the idea of encoding local and global Deep
Convolutional Neural Network (DCNN) features extracted from
still images, in compact local and global covariance descriptors.
The space geometry of the covariance matrices is that of
Symmetric Positive Definite (SPD) matrices. By conducting the
classification of static facial expressions using Support Vector
Machine (SVM) with a valid Gaussian kernel on the SPD
manifold, we show that deep covariance descriptors are more
effective than the standard classification with fully connected
layers and softmax. Besides, we propose a completely new
and original solution to model the temporal dynamic of facial
expressions as deep trajectories on the SPD manifold. As an
extension of the classification pipeline of covariance descriptors,
we apply SVM with valid positive definite kernels derived from
global alignment for deep covariance trajectories classification.
By performing extensive experiments on the Oulu-CASIA, CK+,
SFEW and AFEW datasets, we show that both the proposed static
and dynamic approaches achieve state-of-the-art performance
for facial expression recognition outperforming many recent
approaches.

Index Terms—Convolutional neural networks, covariance ma-
trix, deep trajectory, facial expression recognition, symmetric
positive definite manifold.

I. INTRODUCTION

For a long time, automated Facial Expression Recognition
(FER) has been studied in many computer vision researches.
This is due to the vital role of facial expressions in social
interaction, and the wide spectrum of their potential applica-
tions that go from human computer interaction to medical and
psychological investigations. As in several other applications,
hand-crafted features, including geometric descriptors (e.g.,
distances between landmarks) and appearance descriptors
(e.g., LBP, SIFT, HOG, etc.), were designed for many years
to find a powerful face representation allowing an efficient
analysis of facial expressions. Some works have also explored
higher order relations such as the covariance descriptor to
encode these low-level features. Recently, Deep Convolutional
Neural Networks (DCNNs) have radically changed the way to
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address this problem and opened the door for a quite differ-
ent approach. Instead of using hand-crafted features, DCNN
models learn from large collections of data to automatically
extract the relevant patterns for the problem at hand.

One limitation of current DCNN models is due to the
fully connected layers that flatten the features extracted from
the convolution layers, thus completely losing the spatial
relationships within the face. To tackle this problem, we
propose to discard the fully connected layers after the training
phase, and directly use the global and local features extracted
from the convolution layers in different facial regions. The
question is how to encode these features in a compact and
discriminative representation for a more efficient classification
than the one achieved globally by classical softmax. Motivated
by the impressive performance of the covariance descriptors
used as second-order representations in many computer vision
tasks [23], [24], in this work we propose to encode local
and global deep facial features in local and global covariance
descriptors. We demonstrate the benefits of this representation
in facial expression recognition from static images or collec-
tions of static peak frames, and from video sequences. For
static images, we represent each face with local and global
covariance descriptors that reside on the Symmetric Positive
Definite (SPD) manifold; then, we define a valid positive
definite Gaussian kernel on this manifold to be used with an
SVM for static facial expressions classification. Conducting
a thorough set of experiments with different DCNN architec-
tures, i.e., VGG-face [25] and ExpNet [26], we demonstrate
that our approach outperforms classification with the classical
softmax.

Furthermore, we extend our static approach to deal with
dynamic facial expressions. The challenges encountered here
are: how to represent the dynamic evolution of the video
sequences? how to deal with the temporal misalignment of
these videos to classify them in an efficient way? Regarding
the first question, we exploit the space geometry of the
covariance matrices as points on the SPD manifold, and model
the temporal evolution of facial expressions as trajectories on
this manifold. Following the static approach, we studied both
global and local deep trajectories. Once constructing the deep
trajectories, we need to align them in their manifold to remedy
to the different execution rates of the facial expressions. A
common method to do so is to use Dynamic Time Warping
(DTW) as proposed in several works [27], [28], [29]. However,
DTW does not define a proper metric and cannot be used
to derive a valid positive-definite kernel for the classification
phase [30]. Instead, in this work we propose global alignment
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Fig. 1. Overview of the proposed approach. In the upper part, feature extraction and covariance matrix computation are illustrated on the left, while the static
classification method on the SPD manifold is shown on the right. In the bottom part of the figure, the way trajectories are formed on the SPD manifold, and
how they are aligned and classified is reported in the plots from right-to-left.

of deep trajectories with the log-Euclidean Riemannian metric,
which allows us to derive a valid positive-definite kernel used
with SVM for the classification. By doing so, we propose a
completely new approach to model and compare the spatial
and the temporal evolution of facial expressions.

Overall, our proposed method allows an efficient combina-
tion of both geometric and appearance features to define a
compact representation of facial expressions, taking into con-
sideration the spatial relationships within the face. In addition,
this solution is extended to deal with both the spatial and
the temporal domains of facial expressions. We illustrate in
Figure I, an overview of the proposed approach. In summary,
the main contributions of this paper are:
• Encoding local/global facial DCNN features by using

local/global covariance matrices;
• Using multiple late/early fusion schemes to combine

multiple local and global information;
• A temporal extension of the static covariance representa-

tions by modeling their temporal evolution as trajectories
in the SPD manifold. To the best of our knowledge, this
is the first work that uses DCNN features to model videos
as trajectories on a Riemannian manifold;

• A temporal alignment method based on Global Alignment
(GA), which is the first time to be proposed for aligning
trajectories on the SPD manifold;

• Classifying static facial expressions using a Gaussian
kernel on the SPD manifold coupled with an SVM;

• Classifying deep trajectories in the SPD manifold using
a Global Alignment Kernel (GAK), which is a valid
positive definite kernel, and an SVM;

• Extensive experiments on three public datasets using two
different DCNN architectures as well as a comparative
study with the existing solutions.

We presented some preliminary ideas of this work in [31].
With respect to [31], here we propose a completely new and
original solution to model the temporal dynamic of facial
expressions as trajectories on the SPD manifold. The experi-

mental evaluation now comprises both the static and dynamic
solutions, also including a larger number of datasets.

The remaining of the paper is organized as follows: In the
next section, we present an overview of related works. In
Section III, we introduce deep covariance descriptors as a way
to encode deep facial features in a compact representation of
the face; The way these descriptors can be used for expression
classification from static images is reported in Section IV;
In Section V, the approach is extended to the modeling of
facial expressions as deep trajectories on the SPD manifold;
In Section VI, we present an extensive experimentation of the
proposed approaches as well as a comparison with the state-
of-the-art; Lastly, conclusions and discussion are reported in
Section VII.

II. RELATED WORK

This section is organized into three parts; We first re-
view works that use covariance descriptors for image/video
classification; Then, we discuss works that employ DCNN
features for static facial expression analysis, including some
approaches that explore covariance descriptors to encode
DCNN features; In the last part, we tackle the problem of
facial expression recognition from dynamic data, by discussing
solutions proposed for the temporal modeling of the facial
expression evolution.

Covariance Descriptors for Image/Video Classification:
In Computer Vision, covariance matrices have been shown
to provide discriminative representations for both images and
videos [23], [1]. These solutions have shown impressive results
in faces [2], [3] and actions [22], especially when accounting
for the geometry of these representations as points in SPD
manifold instead of handling them in the Euclidean space.
However, using covariance matrices gives rise to many chal-
lenges and requires to develop effective and efficient inference
methods. In [4], Wang et al. proposed Covariance Discrimina-
tive Learning (CDL) for image set classification. A covariance
matrix is used to represent each image set and model the
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problem as classifying points on the Riemannian manifold
spanned by non-singular covariance matrices. To take into
account the geometry structure of covariance matrices, they de-
rived a novel Riemannian kernel function, which successfully
bridges the gap between traditional learning methods operating
in vector spaces and the learning task on an unconventional
manifold. In the same direction, Harandi et al. [5] proposed
an approach to transform a high-dimensional SPD manifold
into another SPD manifold with lower intrinsic dimension and
maximum discriminative power. In [6], Huang et al. tackled
the problem of the non-linear space by employing tangent
space approximations. The method aims to learn a tangent
map that can directly transform the matrix logarithms from
the original tangent space to a new, more discriminant, tangent
space. Their approach has been successfully applied to face
recognition and face verification. Liu et al. [7] represented
video clips by three types of image set models, i.e., linear
subspace, covariance matrix, and Gaussian distribution, re-
spectively, that can all be viewed as points residing on some
Riemannian manifolds. Then, different Riemannian kernels
were employed on these set models correspondingly for simi-
larity/distance measurement. Kernel SVM, logistic regression,
and partial least squares were investigated for classification. To
further improve performance, an optimal fusion of classifiers is
learned from different kernels and different modalities (video
and audio) at the decision level.

DCNN for Static Facial Expression Recognition: In the
last few years, DCNN models have achieved a great success in
different facial analysis tasks, including static facial expression
recognition [32], [33]. The main challenge encountered when
using DCNN models is the necessity of large-scale databases
to train a good model. However, the databases available for
facial expression recognition are quite small w.r.t. other tasks.
To address this challenge, some works opted for minimizing
the depth and the complexity of the network by using a small
deep architecture [72], while other works used deep models
already trained on large expression datasets before fine-tuning
them on the target dataset [33], [34]. To further boost the
performance, Ding et al. [26] proposed FaceNet2ExpNet,
which uses a very deep network trained for face recogni-
tion, to regularize a small deep network trained for facial
expression recognition from static images. Many works opted
for combining multiple DCNN models to further boost the
results. For example, Kim et al. [8] used a validation-accuracy-
based exponentially-weighted average (VA-Expo-WA) rule to
train multiple DCNN models by using different parameters
of the models and adopting several learning strategies to use
large external databases. In the same direction, Yu et al. [34]
combined two schemes for learning the ensemble weights of
the network responses: by minimizing the log-likelihood loss,
and by minimizing the hinge loss. However, all these works
used a similar strategy, where a deep processing based on
linear combinations, non-linearity activation and pooling are
used to extract relevant features that are classified by fully con-
nected and softmax layers. Taking a different direction, Yang
et al. [9] proposed De-expression Residue Learning (DeRL),
which consists of using Conditional Generative Adversarial
Networks (cGANs) to filter out the expression of the person

and provide its neutral image. By doing so, the expressive
information is still encoded in the intermediate layers of cGAN
and can be employed later on for expression classification.
CGANs were also used by Yang et al. [21]. Given an identity,
they proposed to generate six facial expressions given six
trained cGAN networks. Then, the minimum distance between
the input image and the generated expression images in the
feature space was used to classify the expression of the input
image. Besides, several other works introduced a novel class of
DCNNs that explore second-order statistics (e.g., covariances).
In the context of facial expression recognition from images,
Acharya et al. [35] explored convolutional networks in con-
junction with manifold networks for covariance pooling in an
end-to-end deep learning manner. Wang et al. [36] presented
Discriminative Covariance oriented Representation Learning
(DCRL), which uses a DCNN model to project the face into
a target feature space, while maximizing the discriminative
ability of the covariance matrices calculated in this space.

Temporal Modeling of Facial Expressions: The difficulty
here is to account for the dynamic evolution of the facial
expression. One direction to address this difficulty is to explore
deep architectures that can model appearance and motion
information simultaneously. For example, LSTMs combined
with CNN have been successfully employed for facial expres-
sion recognition with different names such as CNN-RNN [37],
CNN-BRNN [38], etc. 3D CNNs have also been used for facial
expression recognition in several works including [37], [39].
In the same direction, Jung et al. [40], used a CNN to extract
temporal appearance features from face image sequences with
an additional deep network that extracts temporal geometry
features from temporal facial landmarks. The two networks are
then combined using a joint fine-tuning method. In [11], Meng
et al. proposed Time-Delay Neural Network (TDNN) to model
the temporal relationships between consecutive predictions
on the decision level of a multistage system. This system
was designed to continuously predict affective dimension
values from facial expression videos. In [10], Jan et al. used
different visual features including DCNN features to build
a facial expression representation on the frame-level; then,
feature dynamic history histogram (FDHH) was proposed to
capture the temporal movement on the feature space. Acharya
et al. [35] extended their static approach discussed before
to dynamic facial expression recognition. They considered
the temporal evolution of per-frame features by leveraging
covariance pooling. Their networks achieve significant facial
expression recognition performance for static data, while dy-
namic data are still more challenging.

Taking a different direction, several recent works chose to
model the temporal evolution of the face as a trajectory. For
example, Taheri et al. [41] used landmark configurations of
the face to represent facial deformations on the Grassmann
manifold G(2, n). They modeled the dynamics of facial ex-
pressions by parameterized trajectories on this manifold before
classifying them using LDA followed by an SVM. In the same
direction, Kacem et al. [42], described the temporal evolution
of facial landmarks as parameterized trajectories on the Rie-
mannian manifold of positive semidefinite matrices of fixed-
rank. Trajectories modeling in Riemannian manifolds was also



4

used for human action recognition in several works [27],
[43], [44]. However, all these works were based on geometric
information to study the temporal evolution of some landmarks
ignoring the texture information.

One outstanding problem encountered when modeling the
temporal evolution of the face as a trajectory is the temporal
misalignment resulting from the different execution rate of the
facial expression. This necessitates the use of an algorithm
to align different trajectories, which is generally based on
dynamic programming. Several works including [27], [28],
[42] used DTW to align trajectories in a Riemannian manifold;
however, this algorithm does not define a proper metric, which
is indeed required in the classification phase to define a
valid positive-definite kernel. As alternative solution, different
works [28], [42], [45] proposed to ignore this constraint by
using a variant of SVM with an arbitrary kernel without any
restrictions on the kernel function.

Different from the above methods, in this work, we use
both global and local covariance descriptors computed on
DCNN features to explore appearance and geometric features
simultaneously. Furthermore, we propose a new solution for
trajectories alignment in a Riemannian manifold based on
global alignment. This allows us to derive a valid positive def-
inite kernel for trajectory classification in the SPD manifold,
instead of using an arbitrary kernel.

III. FACE REPRESENTATION

Given a set of nf face images F = {f1, f2, . . . , fnf } la-
beled with their corresponding expressions {y1, y2, . . . , ynf },
we aim to find an efficient matching between these faces
and their corresponding expression labels; to do so, we need
to define a high discriminative face representation. To find
such representation, we followed recent state-of-the-art meth-
ods that explore DCNN models to project the face into a
new feature space. Through a deep processing, these models
extract automatically relevant non-linear features and arrange
them into a set of Feature Maps (FMs). Then, we compute
a covariance descriptor over these FMs to define a global
face representation. In addition, we extract local features by
mapping relevant facial regions on the extracted deep FMs to
define local covariance descriptors around the eyes, mouth and
left/right cheeks.

As a first step, our approach uses a DCNN model to extract
deep features that encode well the facial expression in the input
face image. In this work, we use the ExpNet [26] network
regularized by the VGG-face [25] model.

A. Global DCNN Features

VGG-face is a DCNN model composed of 16 layers and
trained on 2.6M facial images for the face identification
task. After fine-tuning, VGG-face has also shown competitive
performance in recognizing facial expressions. However, given
that the model was firstly trained for face recognition on a
large dataset, it is expected to still capture facial identity infor-
mation, especially when it is fine-tuned on a small dataset, like
those available for our task. Actually, this identity information
should be filtered-out in order to capture person-independent

facial expressions. Ding et al. [26] have addressed this issue
by proposing the ExpNet model. The architecture of this new
model is much smaller than VGG-face, containing only five
convolutional layers and one fully connected layer. The key
idea is to use VGG-face to regularize this small model in a
two-stage training algorithm.

As Ding et al. proposed in [26], we first use the target
expression dataset to fine-tune the VGG-face model by min-
imizing the cross-entropy loss. Then, we explore this fine-
tuned model to regularize the ExpNet network. Finally, the last
convolutional layer of this model is used to extract deep facial
features. In what follows, we denote the set of extracted FMs
from an input face image f as Φ(f) = {M1,M2, . . . ,Mm},
where {Mi}mi=1 are the m FMs at the last convolutional layer,
and Φ(.) is the non-linear function induced by the DCNN
architecture at this layer.

B. Local DCNN Features

In order to explore local information, we extract from the
global feature maps Φ(f) local deep features that are related
to relevant facial regions.

To this end, we first detect a set of facial landmarks on
the input image. Using these points, four regions {Rj}4j=1

are identified around the eyes, mouth, and the two cheeks. To
localize these facial regions on the FMs, we need to define
a pixel-wise mapping between the input face image and its
corresponding FMs. Actually, a feature map Mi results from
applying a convolution with linear filters across the input face
image. Consequently, units of the feature map will be attached
to different facial regions Rj . Based on this assumption, it is
possible to map the coordinates of the feature maps to those
of the input face image. Formally, each pixel in the input face
image of coordinates (xp, yp), can be associated to the feature
φp(f,Mi) in the feature map Mi such that,

φp(f,Mi) = M i(s1 × xp, s2 × yp) , (1)

where (̄.) is the rounding operation, and s1, s2 are the map
size ratio with respect to the input size, such that s1 = w

W

and s2 = h
H , being w and h the width and the height of the

feature maps, respectively, and W and H those of the input
image. Using this pixel-wise mapping, we map each region Rj
formed by r pixels {p1, p2, . . . , pr} on the input image into the
global FMs {Mi}mi=1 to obtain the corresponding local FMs
ΦRj (f) = {φp1

(f,Mi), φp2
(f,Mi), . . . , φpr (f,Mi)}mi=1.

Figure 2 shows the four local regions detected on the input
facial image on the left; then, landmarks and regions are shown
on four FMs, selected from a total of 512 FMs.

C. Deep Covariance Descriptors

Motivated by the impressive performance of covariance
matrices as global and local descriptors used in several pre-
vious works [12], [23], we propose to compute local and
global covariance descriptors on the extracted deep features.
In particular, a global covariance descriptor is calculated on
the global FMs Φ(f) representing the whole face. In addition,
four local covariance descriptors are computed for the four
facial regions introduced previously across their corresponding
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Fig. 2. Visualization of the detected facial landmarks (first row) and regions
(second row) on the corresponding input facial image, and their mapping on
four selected feature maps (from 512) extracted from the last convolution
layer of the ExpNet model. Best viewed in color.

local FMs ΦRj (f). By doing so, we explore a compact
and discriminative face representation that encodes all linear
correlations between the deep facial features. Contrary to fully
connected and softmax layers, this representation allows us to
define local descriptors that focus on relevant facial regions.
In the following, we describe more formally how to construct
the global deep covariance descriptors; the same processing
is applied to the local deep covariance descriptors computed
over local deep features.

The extracted features Φ(f) are arranged in a (m×w×h)
tensor, where w and h denote the width and height of the FMs,
respectively, and m is their number. Each feature map Mi is
vectorized into a n-dimensional vector with n = w × h, and
the input tensor is transformed to a set of n observations stored
in the matrix [v1, v2, . . . , vn] ∈ Rm×n. Each observation
{vi}ni=1 ∈ Rm encodes the values of the pixel i across all
the m feature maps. Finally, we compute the corresponding
(m×m) covariance matrix,

CΦ(f) =
1

n− 1

n∑
i=1

(vi − µ)(vi − µ)T , (2)

where µ = 1/n
∑n
i=1 vi is the mean of the feature vectors.

Figure 3 shows six selected FMs (chosen from the 512 FMs
extracted with the ExpNet model) for two subjects with happy
and surprise expression. The figure also shows the global
covariance descriptor relative to the 512 FMs as a 2D image.
Common patterns can be observed in the covariance descrip-
tors computed for similar expressions, e.g., the green color
dominates in the covariance descriptors of happy expression
(left panel), while the cyan color dominates in the covariance
descriptors of surprise expression (right panel).

Covariance matrices of size m×m are by nature Symmetric
Positive Definite (SPD) matrices that are usually studied under
a Riemannian structure of the SPD manifold Sym++(m) [23],
[36], [47]. One of the most used metrics to compare these
matrices on Sym++(m), is the Log-Euclidean Riemannian
Metric (LERM) [48], due to its excellent theoretical properties
with simple and fast computation. More formally, the log-
Euclidean distance dLERM : (Sym++(m)× Sym++(m))→
R+ between two covariance descriptors CΦ(f1) and CΦ(f2) of
two faces f1 and f2, is defined by,

dLERM (CΦ(f1), CΦ(f2)) = ‖ log(CΦ(f1))− log(CΦ(f2))‖F ,
(3)

where ‖ · ‖F is the Frobenius norm, and log(.) is the matrix
logarithm.

IV. RBF KERNEL FOR DEEP COVARIANCE DESCRIPTORS
CLASSIFICATION OF STATIC EXPRESSIONS

Considering the geometry of the covariance matrices as
points on the non-linear manifold Sym++(m), facial expres-
sion classification comes back to the problem of classifying the
corresponding covariance descriptors in Sym++(m). To better
explore the discriminative ability of these representations, we
need to define a suitable classifier that respects their space
structure, while standard machine learning techniques cannot
be applied directly in such a non-linear space. Accordingly,
many works proposed adaptations of standard machine learn-
ing techniques to the SPD manifold. For example, Harandi et
al. [49] proposed kernels derived from two Bregman matrix di-
vergences, namely, the Stein and Jeffrey divergences to classify
SPD matrices in their embedding manifold. Here, we benefit
from the log-Euclidean distance given by Eq. (3) between
symmetric positive definite matrices to define the Gaussian
RBF kernel K : (Sym++(m)× Sym++(m))→ R+,

K(CΦ(f1), CΦ(f2)) = exp(−γd2
LERM (CΦ(f1), CΦ(f2))) ,

(4)
where dLERM (CΦ(f1), CΦ(f2)) is the log-Euclidean distance
between CΦ(f1) and CΦ(f2). Conveniently for us, this kernel
has been already proved to be a positive definite kernel for all
γ > 0 [47].

A. Fusion of Global and Local Information

Each facial region provides relevant information for facial
expression analysis and provides a different contribution to the
final decision. Consequently, an efficient fusion method of the
information provided by different regions is required.

In this section, we investigate different strategies to combine
the local information extracted from different facial regions.
We divide these strategies into late fusion and early fusion.
For the late fusion strategy, each region is pre-classified
independently, then the final decision is based on the fusion
of the scores of the different regions. More formally, given
{{CRiΦ(fj)

}4i=1, yj}Nj=1 a set of N training samples for each
of the four facial regions with their associated labels, we use
Support Vector Machines (SVM) to learn a classifier for each
region independently. Each of these classifiers provides for
each sample CRΦ(f) a scores vector SRCΦ(f)

= [s1, s2, . . . , sl],
where l is the number of investigated classes, and si is the
probability that CRΦ(f) belongs to the class yi. Using late
fusion, the final scores vector of a sample CΦ(f) is given by,

SCΦ(f)
=

4∏
i=1

SRiCΦ(f)
, (5)

for the product rule, and by,

SCΦ(f)
=

4∑
i=1

βiS
Ri
CΦ(f)

, (6)

for the weighted sum rule, where βi represents the weight
associated to the region Ri.
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Fig. 3. Visualization of some feature maps extracted from the last convolution layer of the ExpNet model. The FMs are superimposed on the top of the input
image, with their corresponding covariance descriptors for two subjects from the Oulu-CASIA dataset conveying happy and surprise expressions. We show
six FMs (selected from 512 FMs) for each example image. The corresponding covariance descriptors are computed over the 512 FMs. Best viewed in color.

Concerning the early fusion strategy, we do not need to
train a classifier on each region independently; instead, it
aims to combine information before any training. A simple
way to do so is to concatenate features of all regions in one
vector that will be used to train the classifier. This is different
from using the global features since many other irrelevant
regions are ignored in this case. We refer to this method in
our experimental study as feature fusion. A more efficient way
to conduct early fusion is Multiple Kernel Learning (MKL),
where information fusion is performed at the kernel level. In
our case, we use MKL to combine different local features
using different kernels, such that each kernel KR is computed
on the features of one region R following the weighted sum
rule, the final kernel is,

K =

4∑
i=1

βiK
Ri , (7)

where βi is the weight associated to the region Ri. In what
follows, we will refer to the kernel fusion with the weighted
sum rule as kernel fusion.

In our experimental study, we have evaluated each of the
fusion strategies discussed in this section.

V. MODELING DYNAMIC FACIAL EXPRESSIONS AS
TRAJECTORIES IN Sym++(m)

Facial expressions are much more described by a dynamic
process than a static one, thus we need to extend our approach
to take into account the temporal dimension. To this end, we
propose to model a video sequence of a facial expression as
a time varying trajectory on the Sym++(m) manifold.

Following our static approach, we represent each frame f
of a sequence by a covariance matrix CΦ(f) computed on
the top of deep features. Given that each covariance matrix
is a point on Sym++(m) as discussed before, a sequence
{CΦ(fi)}Li=1 of L covariance matrices computed on DCNN
features defines a trajectory TCΦ

on the Sym++(m) manifold
by TCΦ

: [0, 1]→ Sym++(m). We define a trajectory TCφ to
be a path that consists of a set of L points on Sym++(m).
In Figure 4, we visualize the temporal evolution of some
FMs extracted by our ExpNet model from a normalized video
sequence of the CK+ dataset. This figure shows that each
FM focuses on some relevant features (related to the facial

expression) that are more activated than others over time. For
example, the first row (first FM) shows the activation over time
of the right mouth corner resulting from the smile movement,
while the second FM detects the same activation over time
on the left corner. The last row of the same figure illustrates
the temporal evolution of the corresponding trajectory. In
particular, by encoding the m FMs of each frame in a compact
covariance matrix, the problem of analyzing the temporal
evolution of m FMs is turned to studying a trajectory of
covariance matrices in Sym++(m). Here, we can observe that
the dominant color of the covariance matrices corresponding to
neutral frames is green; this color gradually changes to yellow
along the facial expression (i.e., happiness).

Using the same strategy, we extend the local approach as
well, by representing each video sequence with five trajectories
{TCΦ

, {TCRjΦ
}4j=1}, including a trajectory which encodes the

temporal evolution of the global features, and four trajectories
representing the temporal evolution of four facial regions. For
simplicity, we will use T to refer to the trajectory TCΦ in the
rest of this section.

The temporal variability is one of the difficulties encoun-
tered when comparing videos. It is due to the different execu-
tion rate of the facial expressions, their variable durations, and
their arbitrary starting/ending intensities. These aspects yield
to a distortion of the comparison measures of the correspond-
ing trajectories. To tackle this problem, different algorithms
based on dynamic programming have been introduced to find
an optimal alignment between two videos. In this work, we
propose to align trajectories in Sym++(m) based on the
LERM distance using two algorithms: Dynamic Time Warping
(DTW) and Global Alignment (GA).

A. Dynamic Time Warping

We use the notation of [30] to formulate the problem of
aligning trajectories in Sym++(m). Given two trajectories
T 1 = {C1

Φ(fi)
}L1
i=1 and T 2 = {C2

Φ(fi)
}L2
i=1 of length L1 and

L2, respectively, an alignment π between these trajectories is
a pair of increasing q-tuples (π1, π2) of length q ≤ L1+L2−1
such that 1 = π1(1) ≤ · · · ≤ π1(q) = L1 and 1 =
π2(1) ≤ · · · ≤ π2(q) = L2, with unitary increments and no
simultaneous repetitions.
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Fig. 4. Visualization of the temporal evolution of three FMs extracted from the last convolution layer of the ExpNet model. Each row corresponds to the
temporal evolution of one FM from 512. The FMs are superimposed on the top of the input video frame selected from the CK+ dataset. The last row shows
the temporal evolution of the corresponding trajectory (sequence of covariance descriptors) of the video. Best viewed in color.

Given A(T 1, T 2) = {π}zi=1, the set of all z possible
alignments between two trajectories T 1 and T 2, the optimal
alignment is given by,

π∗ = argmin
π∈A(T 1,T 2)

1

|π|
D(π) , (8)

where D(π), defined as

D(π) =

|π|∑
i=1

d(T 1
π1(i), T

2
π2(i)) , (9)

is the cost given by the mean of a local divergence d on
Sym++(m) that measures dissimilarities between any two
points of the trajectories T 1 and T 2. Hence, the dissimilarity
measure computed by DTW between T 1 and T 2 is given by,

Ddtw(T 1, T 2) = D(π∗) . (10)

To align trajectories in Sym++(m) with DTW, we use
the LERM distance dLERM defined in Eq. (3) to define the
divergence d.

The problem of DTW is that the cost function Ddtw used
for alignment is not a proper metric; it is not even symmetric.
Indeed, the optimal alignment of a trajectory T 1 to a trajectory
T 2 is often different from the alignment of T 2 to T 1. Thus,
we can not use it to define a valid positive definite kernel,
while the positive definiteness of the kernel is a very important
requirement of kernel machines during the classification phase.

B. Global Alignment Kernel

To address the problem of non positive definiteness of the
kernel defined by DTW, Cuturi et al. [30] proposed the Global
Alignment Kernel (GAK). As shown earlier, DTW uses the
minimum value of alignments to align time-series. Instead, the
Global Alignment proposes to take advantage of all possible
alignments, assuming that the minimum value used in DTW
may be sensitive to peculiarities of the time series. GAK has
shown its effectiveness in aligning the temporal information in
many works including [50], [51], [52]. Furthermore, it requires
the same computational effort O(L1L2) as that of DTW. GAK

is defined as the sum of exponentiated and sign changed costs
of the individual alignments:

KGA(T 1, T 2) =
∑

π∈A(T 1,T 2)

e−D(π)

=
∑

π∈A(T 1,T 2)

|π|∏
i

e−d(T 1
π1(i),T

2
π2(i)) .

(11)

For simplicity, Eq. (11) can be rewritten using the local
similarity function k induced from the divergence d as k =
e−d, to get,

KGA(T 1, T 2) =
∑

π∈A(T 1,T 2)

|π|∏
i

k(T 1
π1(i), T

2
π2(i)) . (12)

Theorem 1: Let k be a positive definite kernel such that
k
k+1 is positive definite, then KGA as defined in Eq. (12) is
positive definite.

According to Theorem 1 proved by Cuturi et al. [30], the
global alignment kernel KGA is positive definite if k

k+1 is
positive definite. It has been shown in the same paper [30]
that, in practice, most kernels including the RBF kernel satisfy
the property that k

k+1 provides positive semi-definite matrices.
Consequently, in our numerical simulations, we have used the
same RBF kernel K given by Eq. (4) to define our local
similarity function k. By doing so, we have extended the
classification pipeline of our static approach to the dynamic
approach by using the same local RBF kernel defined on
the Sym++(m) manifold. Note that, we checked the positive
definiteness of all the kernels used in our experiments.

C. Classification of Trajectories in Sym++(m)

In this section, we aim to classify the aligned trajectories in
Sym++(m). More formally, given a set of aligned trajectories
T = {T : [0, 1] → Sym++(m)}, we select a training set
U = {(T i, Y i)}Nu1 of Nu samples with their corresponding
labels, and we seek for an approximation of the function g
that satisfies Y i = g(T i) for each sample of the training set
U . In order to learn this approximation function, we use two
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types of SVM, namely, the standard SVM and the pairwise
proximity function SVM (ppfSVM) [45].

Assuming the linear separability of the data, SVM classifies
them by defining a separating hyperplane in the data space.
However, most of the data do not satisfy this assumption and
necessitate to use a kernel function K to transform them
to a higher dimensional Hilbert space, where the data are
linearly separable. The kernel function can be used with
general data types like trajectories. However, according to
Mercer’s theorem [53], the kernel function must define a
symmetric positive semi-definite matrix to be a valid kernel;
otherwise, we cannot guarantee the convexity of the resulting
optimization problem, which makes it difficult to solve.

Given that GAK provides a valid SPD kernel under a mild
condition as demonstrated by Cuturi et al. [30], and given
that our local kernel k satisfies this condition as discussed
before, we use the standard SVM with the KGA kernel given
in Eq. (11) to classify the aligned trajectories with global
alignment on Sym++(m).

By contrast, DTW cannot define a positive definite kernel.
Hence, we adopt the algorithm ppfSVM, which assumes that
instead of a valid kernel function, all that is available is a
proximity function without any restriction. In our case, the
proximity function P : T ×T → R+ between two trajectories
T 1 and T 2 is defined by,

P(T 1, T 2) = Ddtw(T 1, T 2) . (13)

Using this proximity function, the main idea of ppfSVM
is to represent each training example T with a vector
[P(T, T 1), . . . ,P(T, TNu)], which contains its proximities to
all training examples in U . This results in a Nu ×Nu matrix
ΓU that contains all proximities between all training data in
U . Using the linear kernel on this data representation, the
kernel matrix Kdtw = ΓU ×ΓT

U is used with SVM to classify
trajectories on their manifold.

Concerning local trajectories, we firstly align them with
GAK, then we compute the kernel function given by Eq. (12)
for each region. Finally, the kernel fusion discussed in Sec-
tion IV-A is used to combine them and classify their corre-
sponding expression.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our pro-
posed approach in recognizing basic facial expressions. We
evaluated the different settings discussed before on several
publicly available benchmarks representing constrained and
unconstrained environments.

A. Benchmarks

We evaluated our approach on the three following datasets:
Oulu-CASIA [54]: This dataset contains over 480 videos

of 80 subjects. Each one of these subjects has six videos
corresponding to six basic emotion labels; All videos begin
with a neutral expression and end with the apex of the
corresponding expression. The DCNN model used for this
dataset was trained on 1440 images corresponding to the last
three peak frames of each video. These images were also

used for the testing of our static approach using a ten-fold
cross validation with subject independent splitting. The same
setting was conducted for the dynamic approach using all
video frames.

Extended Cohn Kanade (CK+) [55]: This dataset com-
prises 327 sequences of posed expressions, annotated with
seven expression labels. Each sequence starts with a neutral
expression, and reaches the peak in the last frame. Following
the protocol of [26], the three last frames of each sequence
are used to represent the video in the static approach, and the
subjects are divided into ten groups by ID in ascending order
to conduct 10 cross validation.

Static Facial Expression in the Wild (SFEW) [56]:
Different from the previous controlled datasets, this database
is used for spontaneous facial expression recognition in the
wild. It contains 1, 322 images collected from real movies and
labeled with seven facial expressions (Anger, Disgust, Fear,
Happiness, Sadness, Surprise and Neutral). It includes three
sets: training (891 samples), validation (431 samples), and test
set. Given that we do not have access to the test set labels, all
the results of this dataset in our experiments were reported on
the validation set.

Acted Facial Expressions in the Wild (AFEW 6.0) [13]:
It is a dynamic non-controlled dataset that contains videos
selected from movies. It is composed of 1,156 labeled videos
of which 773 samples are used for training and 383 for vali-
dation. This dataset contains the same seven facial expressions
categories as SFEW. The results are reported on the validation
set of this dataset since we do not have access to the test set.

B. Settings

As data processing, we first applied the Viola & Jones
face detector [57] to the CK+ and Oulu-CASIA datasets.
Concerning SFEW, we utilized the aligned faces provided with
the database. Then, we used the Chehra face tracker [46] to
localize 49 facial landmarks explored in the local approach
to extract facial regions. Concerning AFEW dataset, we used
OpenFace1 for landmarks detection and face alignment. All
the detected faces were cropped and resized to 224 × 224 to
be fed to the DCNN model. For the dynamic approach, we
firstly normalize videos using the method proposed by Zhou
et al. [58].

DCNN models training: In order to keep our experiments
consistent with the state-of-the-art [26], [59], we trained a
DCNN model for each dataset separately. For CK+ and
Oulu-CASIA, the training was done in ten cross validation,
which results in ten DCNN models (one model per fold) for
each dataset; each one of these models was trained on nine
splits and tested on the rest split. Since SFEW is divided
on training and validation sets, we trained its corresponding
DCNN model on the training set. The model used for AFEW
was trained on SFEW dataset that contains its static peak
frames. Following [26] and [59], we performed the training
of all these models in two steps:
• VGG-face fine-tuning – As first step, we fine-tuned the

VGG-face model [25] on our datasets. The training was

1https://github.com/TadasBaltrusaitis/OpenFace/wiki
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performed in 100 epochs adopting Stochastic Gradient
Descent as optimization algorithm. The mini-batch size
was fixed to 64, the momentum to 0.9, and the learning
rate to 0.0001 decreased by 0.1 after each 50 epochs. The
horizontal flipping of the original data was used for data
augmentation, and a Gaussian distribution was utilized
to initialize the fully connected layers that were trained
from scratch with the appropriate number of classes.

• ExpNet training – The ExpNet architecture is composed
of five convolutional layers, each one followed by ReLU
activation and max pooling layer. The ExpNet training
was done in two steps; we firstly train the convolutional
layers that were regularized with our fine-tuned VGG-
face models for 50 epochs; then, we append one fully
connected layer of 128 neurons to train the whole network
for additional 50 epochs. For more details about the Ex-
pNet architecture and all the training parameters (learn-
ing rate, momentum, mini-batch size, etc), the reader
is referred to [26]. All the training experiments were
conducted with the deep learning framework Caffe [60].

Feature extraction: Given that the last pooling layer is
the nearest one to the classification layers (fully connected
and softmax layers), it is natural that it provides the most
discriminating features. Based on this motivation, we chose to
extract the deep features of each face from the last pooling
layer. The features extracted from this layer are organized as
512 FMs of size 7×7, which results in covariance descriptors
of size 512×512 according to Eq. (2). For the local treatment,
we first used the detected landmarks to localize the facial
regions (eyes, mouth and the two cheeks) on the input image.
Then, we mapped these regions to the FMs using Eq. (1) with
a ratio of s1 = s2 = 1/16. Note that, before the mapping,
we re-sized all the FMs to 14× 14, which allows us to better
map landmarks from the input image coordinates to the FM
coordinates and minimize the overlapping between the facial
regions. The local features extracted around each region are
explored to compute local deep covariance descriptors of size
512× 512. According to Eq. (2), despite the different sizes of
the extracted regions, the resulting covariance descriptors have
the same size (depending only on the FMs number) lying in
the same SPD manifold Sym++(512). Figure 3 shows some
FMs extracted with the last pooling layer of the ExpNet model
and their corresponding covariance descriptors.

Image Classification: Each static face image was repre-
sented by a covariance descriptor of size 512 × 512 in the
global approach, and by four local covariance descriptors in
the local approach. To efficiently compare these descriptors
in their manifold Sym++(512), it is empirically necessary to
ensure their positive definiteness by using their regularized
version, CΦ(f) + εI , where ε is a regularization parameter (set
to 0.0001 in all our experiments), and I is the 512 × 512
identity matrix. The classification of these static descriptors
was conducted using multi-class SVM with Gaussian kernel
on Sym++(512). The parameters involved by SVM and the
Gaussian kernel as well as those used for the fusion methods
that require weights, were set using cross validation with grid
search. To note that, except Table I, all the results reported

here are obtained using the ExpNet model since it provides
better results w.r.t. the VGG-face model according to Table I.

For the dynamic datasets (Oulu-CASIA and CK+), we
followed the setting of Ding et al. [26]. Accordingly, each
video was represented by its last three peak frames and the
distance between two videos was computed as the mean of
the distances between their three last frames. In Table I, we
considered a video as correctly classified by the softmax layer
if its three last frames were correctly recognized.

Video Classification: For the dynamic approach on CK+
and Oulu-CASIA, each video was represented as a trajectory
of 15 points in Sym++(512) and by four local trajectories
of 15 points for the local approach, where each point is a
regularized covariance matrix of size 512 × 512. Given that
the videos of the AFEW dataset contain more frames than the
other datasets, we chose to normalize its videos to 30 frames.
Accordingly, the trajectories of this dataset are composed of
30 points in Sym++(512). These trajectories were aligned
and classified with SVM using the kernel functions discussed
earlier. The fusion of local trajectories was performed with
kernel fusion, which has shown the best results in the static
approach.

C. Results and Discussion
1) Static Facial Expressions: As first analysis, we inves-

tigate the performance of using covariance descriptors to
encode global (G-FMs) and local (R-FMs) deep features. To
this end, we compare in Table I the results of our approach
with those obtained with classical DCNN classification (i.e.,
fully connected and softmax layers) using two DCNN models,
VGG-face and ExpNet. We did not include AFEW dataset in
this table since, in contrast to CK+ and Oulu-CASIA, we can
not localize the peak frames in its videos.

On Oulu-CASIA, the table shows that the G-FMs solution
improves the results of standard classification of the VGG-
face and ExpNet models with 3.7% and 1.26%, respectively.
More improvement is observed on CK+, where it reaches
7.16% and 6.69% for the VGG-face and ExpNet models,
respectively. Though less marked, a gain of 0.92% for ExpNet
and 0.69% for VGG-face has been also achieved on SFEW.
According to these results, we conclude that encoding linear
correlation of the deep features in covariance descriptors yields
more effective and discriminative representations. Moreover,
our results show that, even if the fully connected and softmax
layers were trained in an end-to-end manner with the other
layers of the model, the classification of deep covariance
descriptors using a Gaussian kernel on the SPD manifold is
more effective. Table I also shows that combining local (R-
FMs) and global features (G-FMs) attains a clear superiority
on the Oulu-CASIA and CK+ datasets outperforming the
global method (G-FMs) by 1.25% and 1.33%, respectively.
By contrast, local features do not show any improvement on
SFEW. This can be explained by the failure of facial landmark
detection in many cases on this challenging dataset (some
failure cases of landmark detection on this dataset are shown
in Figure 5), while our local method requires an accurate
detection of the facial landmarks to correctly extract local deep
features.
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TABLE I
COMPARISON OF THE PROPOSED CLASSIFICATION SCHEME (GLOBAL
(G-FMS), AND GLOBAL PLUS LOCAL (G-FMS AND R-FMS)) WITH
RESPECT TO THE VGG-FACE AND EXPNET MODELS WITH FULLY

CONNECTED LAYER AND SOFTMAX

Dataset Model FC-Softmax G-FMs G-FMs and R-FMs
Oulu-CASIA VGG Face 77.8 81.5 –

ExpNet 82.29 83.55 87.08
CK+ VGG Face 83.74 90.90 –

ExpNet 90.38 97.07 98.40
SFEW VGG Face 46.66 47.35 –

ExpNet 48.26 49.18 49.18

Table II compares the fusion modalities discussed in Sec-
tion IV-A. We found consistent results across the datasets,
indicating the kernel fusion and weighted sum late fusion
are the best methods to combine local and global covariance
descriptors.

We investigated in Table III, the contribution of each facial
region used in our method in recognizing the corresponding
facial expression. According to this table, the eye region is the
best performing facial region on CK+ and Oulu-CASIA. By
contrast, on SFEW and AFEW the eye region does not achieve
good performance. As previously discussed, this can be mo-
tivated by the less accurate landmark detection in non-frontal
views and the occlusions that are usually encountered in in-
the-wild environment, which badly affects the localization of
the region and its corresponding deep features. Concerning the
rest regions, the right and left cheeks show almost the same
score surpassing with a large gain the mouth score. On all the
datasets, the mouth region provides generally the worst score.
We may explain this result by the small size of this region
w.r.t. the other regions. Hence, the mouth region is usually
represented by a small number of deep features (sometimes
4 or 8 features), while the other regions are represented by a
larger number of features.

TABLE II
OVERALL ACCURACY (%) OF DIFFERENT FUSION SCHEMES ON THE

OULU-CASIA, CK+, AND SFEW DATASETS. RESULTS OF EARLY FUSION
METHODS ARE REPORTED IN THE FIRST GROUP FOLLOWED BY RESULTS

OF LATE FUSION METHODS IN THE SECOND GROUP

Fusion method Oulu-CASIA CK+ SFEW
Features fusion (R-FMs only) 84.38 96.70 45.70
Kernels fusion 87.08 98.28 48.72
Weighted-sum fusion 84.80 98.40 49.18
Product fusion 84.05 96.41 45.24

TABLE III
OVERALL ACCURACY (%) OF DIFFERENT REGIONS AND THE BEST FUSION

RESULTS ON THE OULU-CASIA, SFEW, AND CK+ DATASETS FOR THE
EXPNET MODEL

Region Oulu-CASIA CK+ SFEW AFEW
Eyes 84.59 93.47 38.05 40.32
Mouth 70.00 83.34 38.98 37.60
Right Cheek 83.96 84.56 43.16 42.23
Left Cheek 83.12 83.61 42.93 43.32
R-FMs fusion 86.25 98.28 45.70 46.04
G-FMs and R-FMs fusion 87.08 98.40 49.18 49.59

2) Dynamic Facial Expressions: In Table IV, we report
results of the dynamic approach on CK+ and Oulu-CASIA,
using either GAK with SVM or DTW with ppfSVM to align
and classify the deep trajectories. We divide the methods into
two groups: the first group uses global covariance descriptors
(G-Traj); the second group corresponds to the fusion of local
covariance trajectories (R-Traj). Unsurprisingly, on all the
datasets, GAK achieved the highest accuracy compared with
DTW. On CK+, GAK achieved an improvement of 4.62% and
3.12%, with global trajectories G-FMS and local trajectories
R-FMS, respectively. On the other hand, this improvement
reaches about 4.12% and 2.94%, with G-FMS and R-FMS,
respectively, on Oulu-CASIA. In consistency with this results,
GAK improved the results on the AFEW in-the-wild-dataset
by 5.16% and 6.54% w.r.t. DTW for global and local trajecto-
ries, respectively. These results indicate the effectiveness of the
proposed global alignment with RBF kernel on Sym++(m)
in classifying trajectories on their SPD manifold; they also
show the importance of using a symmetric positive definite
kernel instead of the pairwise proximity function used with
DTW. The same table shows consistent results with those of
the static approach, where the fusion of the local trajectories
surpasses the performance of the global trajectory by 3.83%
on CK+, 3.79% on Oulu-CASIA and 3.27% on AFEW,
using GAK. This improvement is also observed with DTW
by 5.33% on CK+, 4.97% on Oulu-CASIA and 1.91% on
AFEW, which confirms the contribution of the local analysis
of facial expressions. We notice that the degradation observed
between the static and dynamic approaches on CK+ and Oulu-
CASIA datasets can be explained by many factors, among
them the fact that video classification is more challenging
taking into account the temporal evolution and its challenges.
Furthermore, for the dynamic approach, the video contains
intermediate frames, which do not correspond to any facial
expression. Such frames have not been used during the training
of DCNN models. Thus, it is not surprising that the DCNN
model can perform worse on the intermediate frames of the
video.

TABLE IV
OVERALL ACCURACY (%) OF DIFFERENT DYNAMIC METHODS ON CK+

AND OULU-CASIA. RESULTS BASED ON GLOBAL COVARIANCE
TRAJECTORIES (G-Traj) ARE REPORTED IN THE FIRST GROUP, FOLLOWED
BY THE RESULTS OF THE FUSION OF REGION COVARIANCE TRAJECTORIES

(R-Traj) IN THE SECOND GROUP. KERNEL FUSION IS ADOPTED HERE AS
FUSION METHOD

Method Oulu-CASIA CK+ AFEW
G-Traj + DTW + ppfSVM 78.13 89.71 41.14
G-Traj + GAK + SVM 82.25 94.33 46.32
R-Traj + DTW + ppfSVM 83.10 95.04 43.05
R-Traj + GAK + SVM 86.04 98.16 49.59

3) Comparison with the State-of-the-Art: The performance
of several state-of-the-art approaches and that of our static
and dynamic methods on CK+, Oulu-CASIA, SFEW and
AFEW are given in Table V, VI, and VII, VIII, respectively.
In general, both our static and dynamic solutions achieved
competitive performance w.r.t. the most recent approaches.
Comparing the static approaches on CK+ and Oulu-CASIA
(Table V and VI, respectively), our method outperforms the
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TABLE V
COMPARISON WITH STATE-OF-THE-ART SOLUTIONS ON CK+.

GEOMETRIC, APPEARANCE, AND HYBRID SOLUTIONS ARE REPORTED IN
THE FIRST THREE GROUPS OF METHODS, RESPECTIVELY; OUR SOLUTIONS

ARE GIVEN IN THE LAST TWO ROWS

Method Accuracy # classes D/S
Taheri et al. [41] 85.8 7 Dynamic
Jung et al. [40] 92.35 7 Dynamic
Kacem et al. [42] 96.87 7 Dynamic
Liu et al. [62] 92.22 8 Static
Liu et al. [39] 92.4 7 Dynamic
Liu et al. [63] 94.19 7 Dynamic
Cai et al. [64] 94.35 7 Static
Meng et al. [65] 95.37 7 static
Li et al. [66] 95.78 6 static
Chu et al. [67] 96.40 7 Dynamic
Yang et al. [21] 96.57 7 Static
Ding et al. [26] 96.8 8 Static
Mollahosseini et al. [32] 97.80 7 Static
Zhao et al. [68] 97.30 6 Dynamic
Yang et al. [9] 97.30 7 Static
Ding et al. [26] 98.60 6 Static
Jung et al. [40] 97.25 7 Dynamic
Ofodile et al. [59] 98.70 7 Dynamic
ours (ExpNet + G-FMs) 97.07 7 Static
ours (ExpNet + fusion) 98.40 7 Static
ours (ExpNet + G-FMs) 94.33 7 Dynamic
ours (ExpNet + fusion) 98.16 7 Dynamic

TABLE VI
COMPARISON WITH STATE-OF-THE-ART SOLUTIONS ON OULU-CASIA.
GEOMETRIC, APPEARANCE AND HYBRID SOLUTIONS ARE REPORTED IN

THE FIRST THREE GROUPS OF METHODS; OUR SOLUTIONS ARE GIVEN IN
THE LAST ROW

Method Accuracy # classes D/S
Jung et al. [40] 74.17 6 Dynamic
Kacem et al. [42] 83.13 6 Dynamic
Liu et al. [63] 74.59 6 Dynamic
Guo et al. [69] 75.52 6 Dynamic
Cai et al. [64] 77.29 6 Static
Ding et al. [26] 82.29 6 Static
Zhao et al. [68] 84.59 6 Dynamic
Jung et al. [40] 81.46 6 Dynamic
Yang et al. [9] 88.0 6 Static
Yang et al. [21] 88.92 6 Static
Ofodile et al. [59] 89.60 6 Dynamic
ours (ExpNet + G-FMs) 83.55 6 Static
ours (ExpNet + fusion) 87.08 6 Static
ours (ExpNet + G-FMs) 82.25 6 Dynamic
ours (ExpNet + fusion) 86.04 6 Dynamic

state-of-the-art with a significant gain. The method by Ding et
al. [26] outperforms our results on CK+ with an accuracy of
98.60%; however, this result is reported on 6 facial expressions
only, ignoring the challenging contempt expression of this
database. The approaches proposed in [9] and [21] outperform
our static method on Oulu-CASIA, while our results surpass
them on CK+. Concerning the dynamic approaches, we ob-
tained the second highest accuracy on both CK+ and Oulu-
CASIA datasets, outperforming several recent approaches. The
best accuracy on both datasets are reported by Ofodile et

al. [59]; however, the details of the frames used in the training
of their DCNN model, that are needed to effectively compare
the two approaches are not reported in their work. It is worth
noting that in order to better compare our static results with
those of Ding et al. [26] on the Oulu-CASIA dataset, we
reproduce the performance of their method also on a per-video
basis, classifying a video as accurately recognized when its
three last peak frames are correctly classified.

Although the multiple challenges imposed by the SFEW in-
the-wild dataset, our static method outperforms various state-
of-the-art approaches with a significant gain. In Table VII, we
did not include the approaches that use additional datasets to
train their DCNN model. For example, Yu et al. [34] (55.96%)
use the FER2013 dataset [70] that provides more than 35, 000
samples to train their DCNN model. In their work, Ding et
al. [26] show that this data augmentation can boost results
on SFEW by 6.86%. The same strategy was used in [35],
where the model was pre-trained on a subset of an additional
dataset (MS-Celeb-1M), while our model was trained only on
the training set of the SFEW dataset. We also did not include
some works that were conducted in different setting conditions
than ours. For example, Kaya et al. [14] have reported their
results (53.06%) only on 343 out of 436 images in the SFEW
dataset due to their data alignment algorithms as explained in
Section 4 of their paper, while their performance on the 427
images is only 42.15%. Kim et al. [8] have obtained 53.9%
using 216 DCNN models, while we only use a single model.

Regarding the AFEW dataset, Table VIII shows that our
results on this challenging dataset are competitive with the
state-of-the-art. In this table, we reach the third highest accu-
racy after the two approaches that combine multiple DCNN
models, while we use just a single model. We note that our
results were not compared with the methods that also employ
audio features (e.g., [15], 51.20%; [37], 51.96%; [16], 51.96%;
[14], 58.22%). It is worth nothing that the results of [7] were
reported on AFEW 4.0. Their results reported in Table VIII
on AFEW 6.0 are given according to [35].

D. Challenge encountered with in-the-wild datasets.
When applied to in-the-wild datasets, our local approach is

greatly affected by the performance of the landmark detector.
Due to occlusions, non-frontal views and small size of the face
in the images of these datasets, it is often more challenging
to accurately localize different landmarks, while our local
approach relies on the landmarks position to extract the
features related to each region. For example, Figure 5 shows
some failure and success cases of facial landmark and region
detection on the input facial images. In the left panel of this
figure, we show examples from the Oulu-CASIA and SFEW
datasets, where the landmark and region detection succeeded.
In the right panel, we show four failure examples for landmark
and region detection in the SFEW dataset. We noticed that
this step failed on ∼ 30% of the facial images of SFEW. This
explains why we do not obtain improvements by combining
local and global covariance descriptors on this dataset.

Despite this limitation and according to Table VII and VIII,
our method is very competitive with respect to the state-of-
the-art and outperforms many recent works even when applied
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to in-the-wild datasets (i.e., SFEW and AFEW). On the one
hand, the results on the SFEW dataset after the fusion of local
features did not harm the overall performance since the global
features are maintained in all the fusion schemes. On the other,
we obtained an improvement of more than 3% on the AFEW
dataset when employing the fusion of local and global features.

TABLE VII
COMPARISON WITH STATE-OF-THE-ART SOLUTIONS ON THE SFEW

DATASET. OUR SOLUTIONS ARE GIVEN IN THE LAST ROW, FOR (EXPNET +
FUSION) WE HAVE REPORTED THE RESULTS OF THE BEST FUSION METHOD

USING G− FMs AND R− FMs. THE RESULTS OF THE APPROACHES
MARKED WITH + ARE USING ADDITIONAL DATASETS DURING THE

TRAINING OF THEIR MODEL.

Method Accuracy
Liu et al. [62] 26.14
Levi et al. [71] 41.92
Kaya et al. [14] 42.84
Mollahosseini et al. [32] 47.70
Ding et al. [26] 48.29
Ng et al. [33] 48.50
Cai et al. [64] 52.52
Bargal et al. [17] 59.42
Acharya et al. [35]+ 58.14
ours (ExpNet + G-FMs) 49.18
ours (ExpNet + fusion) 49.18

TABLE VIII
COMPARISON WITH STATE-OF-THE-ART SOLUTIONS ON THE VALIDATION

SET OF THE AFEW 6.0 DATASET FOLLOWING EMOTIW 2016. THE
RESULTS OF THE METHODS MARKED WITH ∗ WERE OBTAINED BY FUSION

OF MULTIPLE DEEP MODELS. OUR SOLUTIONS ARE GIVEN IN THE LAST
ROW, FOR (EXPNET + FUSION) WE HAVE REPORTED THE RESULTS OF THE

BEST FUSION METHOD USING G− FMs AND R− FMs

Method Accuracy
Baseline (provided by EmotiW organizers) [18] 40.47
Yan et al. [38] 44.46
Single Best CNN-RNN [37] 45.30
Single Best C3D [37] 39.69
Single Best HoloNet [38] 44.57
Baseline (RBF Kernel) [7] 45.95
Baseline (Poly Kernel) [7] 45.43
Acharya et al. [35] 46.71
Multiple CNN-RNN and C3D [37]∗ 51.80
VGG13+VGG16+ResNet [17]∗ 59.16
ours (ExpNet + G-FMs) 46.32
ours (ExpNet + fusion) 49.59

VII. CONCLUSIONS

In this paper, we proposed deep covariance descriptors and
deep covariance trajectories for facial expression recognition
from static and dynamic data, respectively. The idea consists
of encoding global and local DCNN features in compact
covariance matrices.

A DCNN model trained for facial expression recognition is
able to automatically characterize the relevant patterns specific
to each facial expression; these patterns are usually related
to Facial Action Units [72]. In the general approach, the
classification of these features is performed by using fully

Fig. 5. Examples of facial landmark and region detection on the SFEW and
Oulu-CASIA datasets, with some failure cases for the SFEW dataset. For each
example, the image on the left shows the aligned face with its landmark points,
while the image on the right represents the aligned face with its detected
regions.

connected layers to flatten these features, then a softmax layer
is explored to get a probability for each facial expression.
By contrast, in this work, we encode all linear correlations
between deep facial features extracted from the last convo-
lutional layer in compact covariance matrices. To respect the
nonlinear structure of covariance matrices as points on the SPD
manifold, we classified these static descriptors using SVM
with a Gaussian kernel defined on SPD manifold. Our results
show that this classification method is more effective than
the standard classification with fully connected and softmax
layers. Furthermore, we have shown how our approach can
deal with the temporal dynamics of the face. This is achieved
by modeling a facial expression video sequence as a deep
trajectory in the SPD manifold. To jointly align and classify
deep trajectories in the SPD manifold, while respecting the
structure of the manifold, a global alignment kernel is derived
from the Gaussian kernel, which was used to classify static
covariance descriptors. This yields a valid positive definite
kernel that is fed to SVM for the final classification of the
trajectories. By conducting extensive experiments on the Oulu-
CASIA, CK+, SFEW and AFEW datasets, we have shown that
the proposed approach achieves state-of-the-art performance
for facial expression recognition.

As future work, we aim to train our method in an end-to-
end manner to further boost the performance. In this direction,
Acharya et al. [35] have proposed a network trained in an end-
to-end manner that computes covariance descriptors on the
convolutional features. This paper exploits the SPD manifold
network proposed in [19] to conduct an end-to-end training.
By contrast, our approach relies on SVM with a Gaussian
kernel computed in the SPD manifold and takes advantage of
local features, which differ from [35]. Inspiring solutions for
designing an end-to-end network in our case are given in [36],
[19], [20].
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Supplementary Material to the Paper:
Automatic Analysis of Facial Expressions
Based On Deep Covariance Trajectories

In this supplementary material, we provide the algorithms of
our proposed approach, and we present further details on the
conducted experiments.

I. ALGORITHMS

For more clarity, we present in this section the algorithms
of the proposed approaches. For each face f , we compute
the global and local deep covariance descriptors according
to Eq. (2). Given these descriptors, Algorithm 1 summarizes
the steps followed to classify the static facial expressions in
Sym++(512).

Concerning the dynamic approach, given a sequence of
video frames, we use the same Eq. (2) to compute the local
and global covariance descriptors of each frame, which yields
to a global trajectory and four local trajectories for each video.
For simplicity, Algorithm 2 provides a summary of the steps
needed to classify the global deep trajectories in Sym++(m),
while the same strategy can be extended to classify the local
trajectories as in Algorithm 1. The equations cited in these
algorithms refer to those in the main paper.

II. CONFUSION MATRICES

In order to better evaluate our approach, we report in this
section the confusion matrices obtained for each dataset used
in our experiments. The confusion matrices reported here are
obtained with the best DCNN model (ExpNet) and our best
fusion strategy (Kernel fusion). Figures 6, 7, 8 and 9 represent
the confusion matrices for Oulu-CASIA, SFEW, CK+ and
AFEW, respectively.

For Oulu-CASIA, the happy and surprise expressions are
better recognized over the rest, while anger and disgust
expressions are more challenging. The happy expression is
the best recognized one also for SFEW and AFEW, followed
by the neutral and sad one, while surprise, disgust and fear
expressions are harder to recognize. This is encountered in
many other works, and it is related to the unbalanced number
of expression examples for the different classes included in
theses databases as explained in [33].

Concerning CK+, our approach is able to recognize the
majority of the expressions with an accuracy of about 100%,
except contempt and sadness. As for SFEW, this can be
explained by the relatively small number of samples for these
expressions with respect to the other ones. Table IX provides
the number of samples representing each facial expression in
each dataset.
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Algorithm 1: Classification of local covariance descriptors
in Sym++(m)

Data: N training samples with their associated labels,
{{CRiΦ(fj)

}4i=1, yj}Nj=1 and one testing sample
{CRiΦ(f)}

4
i=1;

Result: Predicted label y of the testing sample
/* iterate over four regions */

1 for i = 1 . . . 4 do
/* iterate over training examples */

2 for j = 1 . . . N do
3 for k = 1 . . . N do
4 Compute dLERM (CRiΦ(fj)

, CRiΦ(fk)) according
to Eq. (3);

5 Compute KRi(j, k)← K(CRiΦ(fj)
, CRiΦ(fk))

given by Eq. (4);
end

6 Compute dLERM (CRiΦ(f), C
Ri
Φ(fj)

) according to
Eq. (3);

7 Compute KRi
test(j)← K(CRiΦ(f), C

Ri
Φ(fj)

) given by
Eq. (4);

end
end

8 if Late fusion then
9 Train a SVM with each kernel KRi ;

10 Combine local information using one of Eq. (5) or
Eq. (6);

11 else if Early fusion then
12 Compute kernel K given by one of Eq. (7) or Eq. (8);
13 Train one SVM with the kernel K;

end
14 y ← SVM with RBF kernel on Sym++(m) using

features vectors {KRi
test}4i=1 fused with the desired

fusion strategy;
15 return y

Fig. 6. Confusion matrix on Oulu-CASIA using ExpNet with Kernel fusion.
The left panel corresponds to the static approach, while the right one
represents the dynamic approach.

Algorithm 2: Classification of global deep trajectories in
Sym++(m)

Data: Nu training trajectories U = {(T i, Y i)}Nu1 with
their associated labels and one testing trajectory
Ttest

Result: Ytest Predicted label of Ttest
/* iterate over training samples */

1 for i = 1 . . . Nu do
2 for j = 1 . . . Nu do
3 Align T i and T j with Global Alignment;
4 K(i, j)← KGA(T i, T j) according to Eq. (13);

end
5 Ktest(i)← KGA(Ttest, T

i) according to Eq. (13);
end

6 Train SVM using kernel K;
7 Ytest ← SVM using vector Ktest;

Fig. 7. Confusion matrix on SFEW for ExpNet with weighted-sum fusion.

Fig. 8. Confusion matrix on CK+ using ExpNet with Kernel fusion. The left
panel corresponds to the static approach, while the right one represents the
dynamic approach.

TABLE IX
NUMBER OF SAMPLES FOR DIFFERENT FACIAL EXPRESSIONS IN THE

OULU-CASIA, CK+, AND SFEW DATABASES

An Co Di Fe Ha Ne Sa Su Total
Oulu-CASIA 80 - 80 80 80 - 80 80 480

CK+ 45 18 59 25 69 - 28 83 327
SFEW 255 - 75 124 256 234 150 228 1322
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Fig. 9. Confusion matrix on AFEW for ExpNet with weighted-sum fusion.


