Anton Gorodetski 
  
Victor Kleptsyn 
email: victor.kleptsyn@univ-rennes1.fr
  
  
  
  
PARAMETRIC FURSTENBERG THEOREM ON RANDOM PRODUCTS OF SL(2, R) MATRICES

We consider random products of SL(2, R) matrices that depend on a parameter in a non-uniformly hyperbolic regime. We show that if the dependence on the parameter is monotone then almost surely the random product has upper (limsup) Lyapunov exponent that is equal to the value prescribed by the Furstenberg Theorem (and hence positive) for all parameters, but the lower (liminf) Lyapunov exponent is equal to zero for a dense G δ set of parameters of zero Hausdorff dimension. As a byproduct of our methods, we provide a purely geometrical proof of Spectral Anderson Localization for discrete Schrödinger operators with random potentials (including the Anderson-Bernoulli model) on a one dimensional lattice.

Introduction

Random products of matrices appear naturally in smooth dynamical systems [V1, W1], probability theory [Bel, Ber, FurK, KS], spectral theory and mathematical physics [D15, S], geometric measure theory [HS, PT, Sh]. The main questions are usually focused on the rate of growth of these products. In this context an important step was made in 1960 by Furstenberg and Kesten [FurK]. They proved that products of random matrices generated by a stationary process have well defined asymptotic exponential growth rate. This rate of growth is usually called Lyapunov exponent. It corresponds exactly to the logarithm of the spectral radius when all the random matrices degenerate to a single matrix. In [START_REF] Furstenberg | Noncommuting random products[END_REF][START_REF] Furstenberg | Random walks and discrete subgroups of Lie groups[END_REF] Furstenberg showed that in most cases the Lyapunov exponent must be positive; see also [Vi] for a different proof. Here is the classical version of the Furstenberg Theorem.

Theorem 1.1. Let {X k , k ≥ 1} be independent and identically distributed random variables, taking values in SL(d, R), the d×d matrices with determinant one, let G X be the smallest closed subgroup of SL(d, R) containing the support of the distribution of X 1 , and assume that

E [log X 1 ] < ∞.
Also, assume that G X is not compact, and there exists no G X -invariant finite union of proper subspaces of R d . Then there exists a positive constant λ F such that with probability one

lim n→∞ 1 n log X n . . . X 2 X 1 = λ F > 0.
This result was generalized and improved in many different ways, see [BL, CKN, GM] for classical surveys, and [Fu] for a more recent one. For example, Oseledets Theorem [O] claims that Lyapunov exponent exists for large class of linear cocycles, not only for the random products of matrices, and describes the structure of subspaces of vectors with different growth rates. Dependence of the Lyapunov exponent λ F on the distribution in the space of matrices (e.g. continuous, Hölder continuous, or smooth dependence) was considered in [START_REF] Bonatti | Lyapunov exponents with multiplicity 1 for deterministic products of matrices[END_REF][START_REF] Furstenberg | Random matrix products and measures on projective spaces[END_REF][START_REF] Yu | Perturbations of random matrix products[END_REF][START_REF] Yu | Perturbations of random matrix products in a reducible case[END_REF][START_REF] Hennion | Loi des grands nombres et perturbations pour des produits reductibles de matrices aleatoires independantes[END_REF][START_REF] Peres | Analytic dependence of Lyapunov exponents on transition probabilities[END_REF][START_REF] El Tall | Moduli of continuity for the Lyapunov exponents of random GL(2)-cocycles[END_REF][START_REF] Duarte | Lyapunov exponents of linear cocycles. Continuity via large deviations[END_REF]. Also, in the case of random products of matrices that depend on a parameter the properties of λ F as a function of the parameter were heavily studied. In particular, it is known that for the uniformly hyperbolic case (the formal definition is provided below) λ F is an analytic function of the parameter [R1], but in general only Hölder continuity can be guaranteed [L].

The focus of our paper is also on the case when the matrices in the random product depend on a parameter. But instead of studying the properties of λ F as a function of the parameter, we want to fix a (generic) sequence of matrices, and ask whether the Lyapunov exponent exists for all parameters for the product formed by this specific sequence. In Section 1.1 below we present two examples to motivate this question, and discuss the case of uniformly hyperbolic set of matrices. Then in Section 1.2 we formulate our main result, a parametric version of Furstenberg Theorem. In order to illustrate the power of our approach, in Section 1.3 we consider the Anderson model (including the Anderson-Bernoulli model) in the case of discrete Schrödinger operators on one dimensional lattice, and give a purely geometrical proof of Anderson Localization (pure point spectrum and exponential decay of eigenfunctions). Finally, in Section 1.4 we complete the introduction with the statement of the result on properties of finite random products of SL(2, R) matrices; this result is the main technical part of the proof of parametric version of Furstenberg Theorem, but is also of interest by itself. 

{R α • A, R α • B}, where R α = cos α -sin α sin α cos α is a rotation by angle α, α ∈ [α 1 , α 2 ]. Denote A α = R α • A, B α = R α • B
and consider random products of A α and B α (chosen with some given probabilities p and 1 -p) . Assume that for each α ∈ [α 1 , α 2 ] the set of matrices {A α , B α } satisfies the Furstenberg genericity conditions, i.e. the group generated by A α and B α is not contained in any compact subgroup of SL(2, R), and there is no finite union of proper subspaces of R 2 that would be invariant under both A α and B α . Then due to Theorem 1.1 for any α ∈ [α 1 , α 2 ] for almost every sequence {C i (α)}, C i (α) ∈ {A α , B α }, there is a limit

(1) lim

n→∞ 1 n C 1 (α)C 2 (α) . . . C n (α) = λ F (α) > 0.
Is it true that for almost every sequence {C i } the limit (1) exists for all α ∈ [α 1 , α 2 ]?

Example 2. Let us consider Schrödinger cocycle associated with the onedimensional Anderson model, where the role of parameter is played by the energy.

Namely, we consider Schrödinger operators H acting on 2 (Z) via (2) [Hu](n) = u(n + 1) + u(n -1) + V (n)u(n).

We will assume that {V (n)} are i.i.d. random variables, distributed with respect to some compactly supported non-degenerate (support contains more than one point) probability measure µ. Notice that we do not require the distribution µ to be continuous; in particular, the Anderson-Bernoulli model (when potential V (n) can takes only two different values) is included in our setting. We will denote by V ω , where ω ∈ (supp µ) Z , the particular choice of the potential V , and by H ω the corresponding operator (2).

A sequence u ∈ 2 (Z) is an eigenvector of H, that is, satisfies Hu = Eu for some eigenvalue ("energy") E, if and only if it solves the difference equation ( 3)

u(n + 1) + u(n -1) + V ω (n)u(n) = Eu(n), n ∈ Z.
Now, u solves (3) if and only if (4) u(n + 1)

u(n) = E -V ω (n) -1 1 0 u(n) u(n -1)
, n ∈ Z.

One naturally defines

Π n,E,ω = E -V ω (n) -1 1 0 ,
so that (4) implies

u(n + 1) u(n) = Π n,E,ω × • • • × Π 1,E,ω u(1) u(0)
for n ≥ 1 and any solution u to (3). Thus, the study of spectral properties of H motivates the study of such random products; we set T n,E,ω = Π n,E,ω ו • •×Π 1,E,ω . Due to Theorem 1.1 for any E ∈ R for almost every ω ∈ (supp µ) Z there is a limit (5) lim

n→∞ 1 n log T n,E,ω = λ F (E) > 0.
However, from the spectral point of view it makes sense to fix the potential V ω first, and then vary the value of the energy E. Is it true that for almost every ω ∈ (supp µ) Z the limit (5) exists for all E ∈ R? For all E from a given interval J ⊂ R?

To give a comprehensive answer to the questions in both examples let us introduce a more general framework.

1.2. Parametric version of Furstenberg Theorem. Let (Ω, µ) be a probability space, J ⊂ R be a compact interval of parameters, and F : Ω × J → SL(2, R) be a bounded measurable (and continuous in second argument) map that to any ω ∈ Ω puts in correspondence a matrix F a (ω) that depends continuously on the parameter a ∈ J. In Example 1 above the role of parameter was played by the angle α, and in Example 2 -by the value of energy E. For a given sequence ω ∈ Ω N , ω = ω 1 ω 2 . . . denote T n,a,ω = F a (ω n )F a (ω n-1 ) . . . F a (ω 1 ).

Furstenberg-Kesten Theorem [FurK] implies that for each value of the parameter a ∈ J there is a subset Ω a ⊆ Ω N with µ N (Ω a ) = 1 such that for any ω ∈ Ω a the limit (6) λ F (a) := lim n→∞ 1 n log T n,a,ω exists.

Is it possible to choose Ω a uniformly in the parameter? In other words, is it true that µ N -almost surely the limit (6) exists for all values of the parameter a ∈ J?

Notice that the questions stated in Section 1.1 are partial cases of this one. It turns out that the answer to these questions is drastically different depending of presence or absence of uniform hyperbolicity.

Definition 1.2. A collection of SL(2, R) (or SL(k, R)) matrices {M α } α∈A is called uniformly hyperbolic if there exists a constant η > 1 such that for any finite sequence of matrices M α1 , M α2 , . . . , M αn we have M α1 M α2 . . . M αn > η n .

There is a number of equivalent ways to describe uniform hyperbolicity of SL(2, R) (or SL(k, R)) cocycles, such as an invariant splitting into stable and unstable directions, or the absence of a Sacker-Sell solution; compare, for example, [START_REF] Avila | Uniformly hyperbolic finite-valued SL(2, R) cocycles[END_REF][START_REF] Damanik | Uniform hyperbolicity for Szegő cocycles and applications to random CMV matrices and the Ising model[END_REF][START_REF] Yoccoz | Some questions and remarks about SL(2, R) cocycles[END_REF][START_REF] Zhang | Resolvent set of Schrödinger operators and uniform hyperbolicity[END_REF]. In particular, existence of invariant one-dimensional stable and unstable directions for uniformly hyperbolic SL(2, R) cocycles combined with Birkhoff Ergodic Theorem immediately implies the following statement: Proposition 1.3. In the setting above, assume that for each a ∈ J the collection of matrices {F a (ω)} ω∈Ω is uniformly hyperbolic. Then, for µ N -a.e. ω ∈ Ω N the limit lim n→∞ 1 n log T n,a,ω = λ F (a) > 0 exists for all a ∈ J.

Remark 1.4. In the case of SL(k, R), k > 2, even uniform hyperbolicity does not guarantee the convergence uniformly in parameter, or even pointwise convergence for all parameters. More restrictive assumptions (e.g. positivity of all entries of the matrices, as in [CN, Pol], or existence of a dominated splitting of index or co-index 1, see [BoGo]) are needed; see also [START_REF] Goldsheid | Asymptotic properties of the product of random matrices depending on a parameter[END_REF]Theorem 2.2].

The goal of this work is to provide the detailed description of the case complementary to the setting of Proposition 1.3. This case (positive Lyapunov exponent in absence of uniform hyperbolicity) is usually referred to as non-uniformly hyperbolic case.

From now on, we will proceed under the following standing assumptions: (A1) (Furstenberg condition) Denote by µ a the measure µ a = (F a ) * (µ). We assume that for each a ∈ J the measure µ a on SL(2, R) satisfies the (individual) Furstenberg non-degeneracy condition, that is, its support is not contained in any compact subgroup of SL(2, R), and there is no supp µ ainvariant finite union of proper subspaces of R 2 .

(A2) (C 1 -boundedness) The maps F a (ω) are C 1 -smooth in the parameter a ∈ J, with uniformly bounded C 1 -norm, i.e. there exists M > 0 such that for all ω ∈ Ω and all a ∈ J F a (ω) , d da F a (ω) ≤ M.

(A3) (Non-uniform hyperbolicity) For each a ∈ J the collection of matrices {F a (ω)} ω∈Ω is not uniformly hyperbolic.

(A4) (Monotonicity) There exists δ > 0 such that d da arg(F a (ω)v) > δ > 0 for all a ∈ J, ω ∈ Ω, v ∈ R 2 \{0}. In other words, as we increase the parameter, the image of any given vector v spins in the positive direction with a speed that is bounded from below.

Remark 1.5. The condition (A1) is sometimes referred to as strong irreducibility (non existence of proper subspaces invariant under the closed semigroup generated by the support of the measure µ a ) and contractivity (existence of matrices of arbitrarily large norm in that semigroup) assumptions. In it known that under these assumptions the Lyapunov exponent λ F (a) is continuous [FurK]. For the current state of art regarding continuity of Lyapunov exponents see the monographs [START_REF] Duarte | Lyapunov exponents of linear cocycles. Continuity via large deviations[END_REF] and [V1].

Our main result is the following theorem, describing the behaviour of the random parameter-dependent products of SL(2, R) matrices:

Theorem 1.6 (Parametric version of Furstenberg Theorem). Under the assumptions (A1) -(A4) above, for µ N -almost every ω ∈ Ω N the following holds:

• (Regular upper limit) For every a ∈ J we have lim sup n→∞ 1 n log T n,a,ω = λ F (a) > 0.

• (G δ -vanishing) The set S 0 (ω) := a ∈ J | lim inf n→∞ 1 n log T n,a,ω = 0 is a (random) dense G δ -subset of the interval J.

• (Hausdorff dimension) The (random) set of parameters with exceptional behaviour,

S e (ω) := a ∈ J | lim inf n→∞ 1 n log T n,a,ω < λ F (a) ,
has zero Hausdorff dimension:

dim H S e (ω) = 0.
Remark 1.7. Let us consider the properties (A1)-(A4) in the context of Examples 1 and 2 from Section 1.1 to show that Theorem 1.6 can be applied to both of them.

Example 1: The assumptions (A2) and (A4) obviously hold. It is also not hard to give an explicit example of {A α , B α } and an interval J such that {A α , B α } is not uniformly hyperbolic and satisfy Furstenberg non-degeneracy conditions for all α ∈ J, e.g. see [START_REF] Gorodetski | Some new robust properties of invariant sets and attractors of dynamical systems[END_REF]Example 2.2]. It is interesting to compare Theorem 1.6 in the context of Example 1 with [START_REF] Avila | A formula with some applications to the theory of Lyapunov exponents[END_REF]Corollary 4].

Example 2: Assumption (A2) is certainly satisfied. Notice that the Furstenberg conditions are satisfied automatically for transition matrices {Π n,E,ω }, e.g. see the proof of Theorem 2.17 from [D15]. As for assumption (A3), Johnson showed in [J] that the set of energies E for which the collection of matrices {Π n,E,ω } ω∈(supp µ) Z is uniformly hyperbolic, is equal to the resolvent set of H ω for µ Z -almost every ω. Besides, µ Z -almost surely the spectrum of H ω is a finite union of intervals of length at least four (more precisely, it is equal to [-2, 2] + supp µ), e.g. see Theorem 4.1 from [D16]. Therefore, an interval of energies inside of the spectrum corresponds to the non-uniformly hyperbolic case. Finally, notice that while the condition (A4) (monotonicity) does not hold in general for matrices Π n,E,ω , it is a straightforward calculation to check that it does hold for a product of two consecutive matrices Π n,E,ω Π n+1,E,ω , and this allows to apply Theorem 1.6 in the context of Example 2.

Notice that in this case existence of a dense subset of energies in the spectrum for which the limit that defines the Lyapunov exponent does not exist was shown in [START_REF] Goldsheid | Asymptotic properties of the product of random matrices depending on a parameter[END_REF]Theorem 6.2].

Remark 1.8. Monotonic cocycles (i.e. satisfying the property (A4)) were considered previously, for example, by Avila and Krikorian in [AvK]. There they developed, in particular, a dynamical analog of Kotani Theory, see [START_REF] Avila | Monotonic cocycles[END_REF]Theorem 1.7]. Theorem 1.6 also has some counterparts in spectral theory. Namely, the statement on "Regular upper limit" can be considered as a dynamical analog (and, in fact, improvement) of the result by Craig and Simon [START_REF] Craig | Subharmonicity of the Lyapunov index[END_REF]Theorem 2.3]. Also, "G δ -vanishing" part seems to be related to [START_REF] Del Rio | Operators with singular continuous spectrum. II. Rank one operators[END_REF]Theorem 2,Theorem 2.1], see also [START_REF] Gordon | Pure point spectrum under 1-parameter perturbations and instability of Anderson localization[END_REF]Theorem 2]. Namely, the set of exceptional parameters S e from Theorem 1.6 is analogous to the set of "exceptional energies" for rank one perturbations of a (continuous) Schrödinger operator without a.c. spectrum, see [START_REF] Del Rio | Operators with singular continuous spectrum. II. Rank one operators[END_REF]Example 5.2]. Moreover, one could extract from the proofs in [DJLS] the arguments needed to show that in the case of random potential the set of "exceptional energies" must have zero Hausdorff dimension [J]. We are grateful to Lana Jitomirskaya for this remark.

Remark 1.9. It is interesting to compare Theorem 1.6 with the result from [Bo] that claims that for any fixed invertible ergodic dynamical system over a compact space, there is a residual set of continuous SL(2, R)-cocycles which are either uniformly hyperbolic or have zero exponents a.e.; for related results on SL(k, R) cocycles see [START_REF] Bochi | Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps[END_REF][START_REF] Bochi | The Lyapunov exponents of generic volume-preserving and symplectic maps[END_REF]. In the opposite direction, denseness of SL(k, R) cocycles with non-zero Lyapunov exponents was shown in [Av]. Moreover, for a generic smooth (or Hölder) cocycle over a hyperbolic base positivity of Lyapunov exponents was shown in [START_REF] Viana | Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents[END_REF][START_REF] Bonatti | Genericity of non-zero Lyapunov exponents for deterministic products of matrices[END_REF]; see also [BV, BocV, VY] for other related results. The question about positivity of Lyapunov exponent for Schrödinger cocycles over a hyperbolic base in some specific cases was studied in [START_REF] Chulaevsky | Positive Lyapunov exponents for a class of deterministic potentials[END_REF][START_REF] Zhang | Uniform positivity of the Lyapunov exponent for monotone potentials generated by the doubling map[END_REF]; in full generality essential progress was also announced [D].

Remark 1.10. One of the powerful methods currently available to study the properties of cocycles with positive Lyapunov exponent is Avalanche Principle, see [GS], [START_REF] Duarte | Lyapunov exponents of linear cocycles. Continuity via large deviations[END_REF]. Notice that this is not an approach we are using in this paper. Indeed, Avalanche Principle allows to establish an inductive procedure by using estimates on the norms of products of "blocks" of matrices under an assumption that no critical cancelations happen between two subsequent "blocks". We do not establish any inductive procedure; instead we analyze the properties of large finite products of parameter dependent matrices directly, see Theorem 1.19 below. We are grateful to one of the referees for this remark.

1.3. Anderson Localization. One important application of Furstenberg's Theorem on random matrix products lies in the context of Anderson Localization for discrete Schrödinger operators with random potentials on one dimensional lattice; this model is described in Example 2 from Section 1.1. The following result is well known.

Theorem 1.11 (Spectral Anderson Localization, 1D). The spectrum of the operator H ω defined by ( 2) is µ Z -almost surely pure point, with exponentially decreasing eigenfunctions. The same statement holds for spectrum of discrete Schrödinger operator with random potential in 2 (N) with Dirichlet boundary condition.

Remark 1.12. In Example 2 above we assume that µ is a non-degenerate compactly supported measure on R. Theorem 1.11 is known to hold also for the case of µ with unbounded support (under some extra conditions), e.g. see Theorem 2.1 from [CKM]. We believe that our approach and results (including Theorem 1.6) can also be extended to the case of distribution with unbounded support under some reasonable conditions, but do not elaborate on it in this paper.

There are many different proofs of Theorem 1.11, see [GMP, KuS] the initial proofs of related statements, and [D15] for a survey. Most of the proofs rely either on Furstenberg Theorem (Theorem 1.1), or on Kunz-Souillard method [D15, Section 4] (but there are exceptions, e.g. see [START_REF] Froese | Localization for transversally periodic random potentials on binary trees[END_REF]Remark 4.2]). The Kunz-Souillard method requires absolute continuity of the distribution µ. The same condition (or at least existence of an absolutely continuous component) is needed for shorter proofs that use Furstenberg Theorem, e.g. the method of Spectral Averaging [SW] (see also [START_REF] Damanik | A Short Course on One-Dimensional Random Schrödinger Operators[END_REF]Section 3.2]). The first complete proof of Theorem 1.11 that would also cover the Anderson-Bernoulli model (the case when the support of µ consists of two points) was given by Carmona, Klein, and Martinelli in [CKM], see also [DSS] for continuum case. When this paper was at the final stage of preparation, we learned about two other proofs. The paper [BDFGVWZ] provides a proof of Anderson Localization in 1D that is relatively elementary and avoids multi-scale analysis, using Furstenberg Theorem as the main tool. Also, the very recent paper [JZh] gives a short proof of Theorem 1.11. Anderson Localization of random Jacobi operators (and related version of Large Deviation Estimates) was studied by Duarte and Klein in [START_REF] Duarte | Large deviations for products of random two dimensional matrices[END_REF].

We would like to present here a purely geometrical proof of Theorem 1.11 based on techniques similar to the parametric version of Furstenberg Theorem above, that shows that in 1D case Anderson Localization can arguably be considered as a dynamical rather than purely spectral phenomenon.

More specifically, we can show that the following statement holds:

Theorem 1.13. Under the assumptions (A1) -(A4) we have:

• For almost all ω ∈ Ω N , for all a ∈ J the following holds. If

(7) lim sup n→+∞ 1 n log |T n,a,ω ( 1 0 ) | < λ F (a),
then in fact |T n,a,ω ( 1 0 ) | tends to zero exponentially as n → ∞. Namely,

lim n→+∞ 1 n log |T n,a,ω ( 1 0 ) | = -λ F (a).
• For almost all ω ∈ Ω Z , for all a ∈ J the following holds. If for some v ∈ R 2 \ {0} we have

(8) lim sup n→+∞ 1 n log |T n,a,ω v| < λ F (a)
, and lim sup

n→+∞ 1 n log |T -n,a,ω v| < λ F (a),
where

T -n,a,ω := F a (ω -n ) -1 . . . F a (ω -1 ) -1 F a (ω 0 ) -1 ,
then both |T n,a,ω v|, |T -n,a,ω v| in fact tend to zero exponentially. Namely,

lim n→+∞ 1 n log |T n,a,ω v| = -λ F (a), and 
lim n→+∞ 1 n log |T -n,a,ω v| = -λ F (a).
Remark 1.14. In the first claim of Theorem 1.13 it is crucially important that the initial vector (in our case ( 1 0 )) is fixed. Otherwise the statement would not hold. In the context of Example 2 above this is related to results on rank one perturbations, see [DMS], [START_REF] Gordon | Pure point spectrum under 1-parameter perturbations and instability of Anderson localization[END_REF]Theorem 3].

Remark 1.15. It is interesting to notice that exponential decay of eigenfunctions (this is how Theorem 1.13 can be interpreted in the context of Example 2) is a specific property of Anderson Model that does not have to hold in general. For example, there are regimes where Almost Mathieu operator exhibits Anderson Localization with sub-exponential decay of eigenfunctions, see [START_REF] Jitomirskaya | Universal hierarchical structure of quasiperiodic eigenfunctions[END_REF]Theorem 1.2].

The following result is usually referred to as "Schnol Theorem", due to a similar result in the paper [Sch] (see also [START_REF] Glazman | On an application of the method of decomposition to multidimensional singular boundary problems[END_REF][START_REF] Glazman | Direct methods of the qualitative spectral analysis of singular differential operators[END_REF]):

Theorem 1.16. Let H : 2 (Z) → 2 (Z) be an operator of the form

Hu(n) = u(n -1) + u(n + 1) + V (n)u(n),
with a bounded potential {V (n)} n∈Z . If every polynomially bounded solution to Hu = Eu is in fact exponentially decreasing, then H has pure point spectrum, with exponentially decaying eigenfunctions. Similar statement holds for operators on 2 (N) with Dirichlet boundary condition.

In continuum case Theorem 1.16 follows also from [START_REF] Simon | Spectrum and continuum eigenfunctions of Schrödinger operators[END_REF]Theorem 1.1]. For the formal proof in the discrete case see, for example, [START_REF] Kirsch | An invitation to random Schrödinger operators, With an appendix by Frederic Klopp[END_REF]Theorem 7.1]; some improved versions of this result can be found in [START_REF] Jitomirskaya | Quantitative continuity of singular continuous spectral measures and arithmetic criteria for quasiperiodic Schrödinger operators[END_REF]Lemma 2.6] or [H]. Now Theorem 1.11 follows directly from Theorem 1.13, Remark 1.7, and Theorem 1.16. 1.4. Properties of finite matrix products and density of states measure.

Here we discuss the statement that forms the main technical part of the proof of Theorem 1.6, but is also of independent interest. Namely, we consider random matrices that depend on a parameter and satisfy the conditions (A1) -(A4), and study the growth of products of large but finite number of these matrices. It turns out that for most parameters the growth is "uniformly exponential" with exponent prescribed by Furstenberg Thereom, but there are exceptional parameters that have well defined asymptotic distribution. This asymptotic distribution is a generalization of the density of states measure, the key notion in the theory of ergodic Schrödinger operators.

To give the formal statement we need the notion of a rotation number. In our case this is given by the following construction. For each a ∈ J and each linear map F a (ω) ∈ SL(2, R) denote by f a,ω : S 1 → S 1 , S 1 ∼ = RP 1 , the projectivization of the map F a (ω) : R 2 → R 2 . Recall that the map F : Ω × J → SL(2, R) is measurable, continuous in a ∈ J, and bounded (due to (A2)). Therefore one can also choose the lifts fa,ω : R → R, fa,ω (x)(mod 1) = f a,ω (x (mod 1)), in a measurable way, depending continuously on a ∈ J, and such that the set { fa,ω (0)} ω∈Ω ⊆ R is uniformly bounded in a ∈ J.

Proposition 1.17. There exists a continuous function ρ : J → R such that for all a ∈ J, a.e. ω ∈ Ω N , and every x ∈ R the limit

lim n→∞ 1 n fa,ωn • fa,ωn-1 • . . . • fa,ω2 • fa,ω1 (x)
exists and is equal to ρ(a).

The number ρ (that depends on a parameter a ∈ J) from Proposition 1.17 is called rotation number. For iterates of a homeomorphism of the circle the notion of rotation number goes back to Poincare; for cocycles it appeared, for example, in [Her]. Notice that it depends on the choice of the lifts { fa,ω } ω∈Ω , but a different choice of the lifts will only add a constant to the function ρ. Also, it is clear that due to the monotonicity assumption (A4) the function ρ must be non-decreasing. Hence, it can be used to define a (non-atomic, non-probability) measure on J that we will denote DOS:

DOS([b, b ]) = ρ(b ) -ρ(b) ∀b < b , b, b ∈ J
(the notation reminds that this is a generalization of the Density of States Measure from the spectral theory of ergodic Schrödinger operators). Moreover, Theorem A.9 (generalized Johnson's Theorem) together with the assumption (A3) imply that DOS has the whole interval J as its support.

Remark 1.18. The rotation number of a Schrödinger cocycle is the distribution function of the density of states measure (that can be defined in purely spectral terms) of the corresponding ergodic Schrödinger operator. This holds for a large class of ergodic potentials, not only for random potentials, see [DS, JM].

In order to study the properties of finite products of matrices of length n, we split the interval of parameters J into N = [exp( 4 √ n)] equal intervals J 1 , . . . , J N , and denote

J i = [b i-1 , b i ], i = 1, . . . , N .
Notice that b 0 and b N are the endpoints of the interval J. To emphasize their independence of n, let us denote these endpoints by b -and b + , so J = [b -, b + ]. The number of small intervals N and the whole construction depend on the length of the products n; to simplify the formulas we do not reflect it in the notation.

By U ε (x) we denote the ε-neighborhood of the point x.

Theorem 1.19. For any ε > 0 there exist n 0 = n 0 (ε) and δ 0 = δ 0 (ε) such that for any n > n 0 the following statement hold. With probability 1 -exp(-δ 0 4 √ n), there exists a number M ∈ N, exceptional intervals J i1 , . . . , J i M (each of length |J| N ), and corresponding numbers m 1 , . . . , m M ∈ {1, . . . , n}, such that:

I (Quantity) The number M is nε-close to (ρ(b + ) -ρ(b -)) • n.
II (Uniform growth in typical subintervals) For any i different from i 1 , . . . , i M , for any a ∈ J i , and for any m = 1, . . . , n one has log T m,a,ω ∈ U nε (λ F (a)m).

III (Uniform growth in exceptional subintervals) For any k = 1, . . . , M , for any a ∈ J i k , and for any m = 1, . . . , m k one has log T m,a,ω ∈ U nε (λ F (a)m);

for any m = m k + 1, . . . , n one has

log T [m k ,m],a,ω ∈ U nε (λ F (a)(m -m k )),
where

T [m k ,m],a,ω := T m,a,ω T -1 m k ,a,ω = F a (ω m )F a (ω m-1 ) . . . F a (ω m k +1 ).
IV (Cancellation) For any k = 1, . . . , M there exists a k ∈ J i k such that for any m = 1, . . . , n

(9) log T m,a k ,ω ∈ U nε (λ F (a k ) • ψ m k (m)),
where

ψ m (m) =      m, m < m , 2m -m, m ≤ m < 2m , m -2m , m ≥ 2m ;
in other words, for m ≥ m k the parts of the product over the intervals [1, m k ] and [m k , m] cancel each other in the best possible way.

V (Measure) For each k = 1, . . . , M consider the point m k n , a k ∈ [0, 1] × J. The measure 1 n M k=1 δ ( m k n ,a k )
is ε-close (in Levy-Prokhorov metric 1 , i.e. in a metric that defines weak-* topology) to the measure Leb × DOS on [0, 1] × J.

Remark 1.20. The Levy-Prokhorov metric in Theorem 1.19 can be replaced by any other metric that induces the weak-* convergence, e.g. by "earth mover's distance" or, more generally, any of the Wasserstein metrics.

Remark 1.21. We expect that the statement on representation of DOS measure as distribution of "exceptional" intervals in Theorem 1.19 allows numerous and far reaching generalizations. For example, compare it with the notion of bifurcation current (supported on bifurcation locus) from [DD].

1.5. Structure of the paper. In Section 2 we show that almost surely the Furstenberg Lyapunov exponent gives an upper bound on upper Lyapunov exponent for all values of the parameter. This can be considered as a dynamical analog of Craig-Simon's result [START_REF] Craig | Subharmonicity of the Lyapunov index[END_REF]Theorem 2.3] on Schrödinger cocycles.

In Section 3 we deduce the main result of the paper, Theorem 1.6, from the properties of finite matrix products described in Theorem 1.19.

Section 4 is devoted to the proof of Theorem 1.19. This is the most technical part of the paper. In Section 4.1, we introduce the language of projective dynamics on the circle and study possible behaviors of an image of a given point under 1 If µ 1 , µ 2 are two measures on a compact metric space M , the Levi-Prohorov distance can be defined as infimum of ε > 0 such that for any Borel E ⊆ M one has µ

1 (E) ≤ µ 2 (E ε ) + ε and µ 2 (E) ≤ µ 1 (E ε ) + ε, where E ε is an ε-neighborhood of E.
finite random compositions of maps when the parameter is changing along a small interval. Proposition 4.1 gives the list of scenarios that exhaust all the possibilities with probability close to one. The rest of Section 4.1 provides an informal nontechnical explanation how Theorem 1.19 follows from Proposition 4.1, and the main idea of the proof of Proposition 4.1. Then, after providing technical tools (distortion control in Section 4.2, large deviation estimates in Section 4.3, and quantitative estimates on exponential contraction in Section 4.6), we deduce parts II and III of Theorem 1.19 from Proposition 4.1 in Section 4.4, part IV -in Section 4.5, and parts I and V -in Section 4.7. In Section 4.8 we give the formal proof of Proposition 4.1.

Dynamical analog of Anderson Localization, Theorem 1.13, is proven in Section 5.

Finally, in Appendix A we provide a dynamical analog of Johnson's Theorem, that in the context of ergodic Schrödinger operators claims that a given energy belongs to the spectrum if and only if the corresponding Schrödinger cocycle is not uniformly hyperbolic. While this statement is certainly not surprising to the experts in spectral theory of ergodic Schrödinger operators, it is probably less known to the dynamical community, and we include it here formulated in the form convenient for a reader with background in dynamical systems.

Upper bound for the upper limit

The following statement can be considered as a dynamical analog of Craig-Simon's result [START_REF] Craig | Subharmonicity of the Lyapunov index[END_REF]Theorem 2.3] on Schrödinger cocycles. Proof. This event is an intersection of a countable number of events of the type

(10) lim sup n→∞ 1 n log T n,a,ω ≤ λ F (a) + ε for all a ∈ J
along a sequence of values of ε > 0 that tend to zero. Hence, it suffices to show that each value ε > 0 the event (10) has full probability. Fix ε > 0. Note that (due to the subadditive ergodic theorem) for any fixed a ∈ J we have

λ F (a) = lim n→∞ 1 n |w|=n log T n,a,w dP (w).
In particular, for any a ∈ J there exists n 0 = n 0 (a) such that for any

n ≥ n 0 1 n |w|=n log T n,a,w dP (w) < λ F (a) + ε 2 .
As both λ F (a) and T n,a,w (for any fixed n) depend on a continuously (see Remark 1.5), any a is contained in a neighborhood J a such that for n 0 = n 0 (a) one has

(11) 1 n 0 |w|=n0 log max a ∈Ja T n0,a ,w dP (w) < min a ∈Ja λ F (a ) + ε.
Extracting a finite subcover, we see that the whole interval J is covered by finitely many such intervals J a . Let us recall the notation

T [m ,m ],a,ω = F a (ω m )F a (ω m -1 ) . . . F a (ω m ).
On each interval J a , we have for any a ∈ J a and n = n 0 (a) lim sup

N →∞ 1 N log T N,a ,ω = lim sup k→∞ 1 kn log T kn,a ,ω ≤ lim sup k→∞ 1 k k j=1 1 n log T [(j-1)n+1,jn],a ,ω ≤ lim sup k→∞ 1 k k j=1 1 n log max a ∈Ja
T [(j-1)n+1,jn],a ,ω .

The right hand side almost surely (and independently of a ) equals to 1 n |w|=n log max

a ∈Ja
T n,a ,w dP (w) < min

a ∈Ja λ F (a ) + ε.
Thus we get the desired estimate for the parameters from J a . Intersecting finitely many such events, associated to the chosen intervals that form the finite subcover, we get (10). Proposition 2.1 follows.

Remark 2.2. While we assume that the assumptions (A1) -(A4) hold throughout the paper, it is worth to note that the proof of Proposition 2.1 does not really use the monotonicity assumption (A4).

One can combine the above arguments with the Large Deviation Theorem. This gives the following useful finite-n upper bound: Proposition 2.3. For any ε > 0 there exists c 3 > 0 and n 1 ∈ N such that for any n > n 1 with the probability at least 1 -exp(-c 3 n) the following statement holds. For any a ∈ J and any m, m , 1 ≤ m ≤ m ≤ n one has

(12) log T [m,m ],a,ω ≤ nε + λ F (a) • (m -m).
Proof. It suffices to obtain an upper bound of the form 1 -P 2 (n) exp(-c 3 n) for some c 3 > 0 and a quadratic polynomial P 2 . Indeed, taking c 3 > 0, c 3 < c 3 , we have for all sufficiently large n exp(-c 3 n) > P 2 (n) exp(-c 3 n).

For any given ε > 0, set ε = ε 4 , and consider the finite cover of J by intervals of the form J a , constructed in the proof of Proposition 2.1. It is enough to obtain the desired estimate for each of them separately: indeed, the probabilities that (12) does not hold at most add up.

Fix an interval J a ⊂ J such that for some n 0 = n 0 (a) the inequality (11) holds. For all a ∈ J and ω ∈ Ω we have F a (ω) ≤ M . Therefore, if m -m < nε 2logM , the inequality (12) holds. So we have to handle less than

n 2 pairs (m, m ) with m -m ≥ ε 2logM n. Define Ψ : Ω n0 → R, Ψ(ω 1 , ω 2 , . . . , ω n0 ) = 1 n 0 log max a ∈Ja F a (ω n0 )F a (ω n0-1 ) . . . F a (ω 1 ) .
Given ω ∈ Ω N , set Ψ j (ω) = Ψ(ω jn0+1 , . . . , ω (j+1)n0 ). Then {Ψ j } is a sequence of i.i.d. random variables on Ω N . By (11) we have

EΨ < min a ∈Ja λ F (a ) + ε.
Therefore, if we denote P = µ N , then due to the Large Deviation Theorem for random matrix products we have

P    1 k k j=1 Ψ j (ω) > min a ∈Ja λ F (a ) + 2ε    ≤ e -ζk for some ζ = ζ(ε) > 0. Therefore, if m -m is large, m -m = n 0 k + r
, where 0 ≤ r < n 0 , a ∈ J a , and M > 0 is given by (A2), then

1 m -m log T [m,m ],a,ω ≤ 1 m -m   k-1 j=0 log T [m+n0j,m+n0(j+1)-1],a ,ω   + rlogM m -m ≤ 1 k k-1 j=0 Ψ j (ω * ) + ε,
where ω * = ω m ω m+1 . . ..

Hence P 1 m -m log T [m,m ],a ,ω > ε + λ F (a ) for some a ∈ J a ≤ P 1 m -m max a ∈Ja log T [m,m ],a ,ω > 4ε + min a ∈Ja λ F (a ) ≤ P   1 k k-1 j=0 Ψ j (ω * ) + ε > 4ε + min a ∈Ja λ F (a )   ≤ e -ζk ≤ e -ζ m -m n 0 < e -ζ n 0 ε 2logM n .
This completes the proof of Proposition 2.3.

Proof of parametric Furstenberg Theorem via parameter discretization

Here we derive Theorem 1.6 (parametric Furstenberg Theorem) from Theorem 1.19 (on properties of finite products of random matrices).

Proof of Theorem 1.6. Combining Borel-Cantelli Lemma with Theorem 1.19 we observe that for any ε > 0 µ N -almost surely there exists n 0 = n 0 (ε) such that for any n ≥ n 0 there are M n ∈ N and exceptional intervals J i1,n , J i2,n , . . . J i Mn ,n such that the properties I-V from Theorem 1.19 hold. Notice that comparing to the notation used in Theorem 1.19 we add n as an index to emphasize the dependence of these objects on n. Let us also define

V n ,ε := n≥n k=1,...,Mn J i k ,n , and 
H ε = n ≥n0(ε)
V n ,ε .

Regular upper limit: Due to Proposition 2.1 we only need to show that µ Nalmost surely for all a ∈ J we have

(13) lim sup n→∞ 1 n log T n,a,ω ≥ λ F (a).
If a given a ∈ J does not belong to H ε , then it does not belong to exceptional intervals J i k ,n for all sufficiently large n. Therefore due to property II from Theorem 1.19 for all sufficiently large n we have log

T n,a,ω ≥ (λ F (a) -ε)n, or 1 n log T n,a,ω ≥ λ F (a) -ε. Hence (14) lim sup n→∞ 1 n log T n,a,ω ≥ λ F (a) -ε.
If a ∈ H ε , there is an arbitrarily large n such that a ∈ J i k ,n for some exceptional interval J i k ,n . Consider the corresponding value m k,n and notice that the property III from Theorem 1.19 implies the following. If

m k,n n > √ ε, then log T m k,n ,a,ω ≥ λ F (a)m k,n -εn, or (15) 1 m k,n log T m k,n ,a,ω ≥ λ F (a) -ε n m k,n ≥ λ F (a) - √ ε. If m k,n n ≤ √ ε, then log T n,a,ω ≥ log T [m k,n ,n],a,ω -log T m k,n -1,a,ω ≥ λ F (a)(n -m k,n ) -εn -(λ F (a)m k,n + εn) = λ F (a)(n -2m k,n ) -2εn ≥ λ F (a)n -(2ε + 2λ F (a) √ ε)n, hence (16) 1 n log T n,a,ω ≥ λ F (a) -(2ε + 2λ F (a) √ ε).
Therefore, in any case from ( 15) and ( 16) we get

(17) lim sup n→∞ 1 n log T n,a,ω ≥ λ F (a) -max( √ ε, 2ε + 2λ F (a) √ ε).
Finally, applying ( 14) and ( 17) along a sequence of values of ε > 0 that tends to zero, we observe that µ N -almost surely (13) holds, and hence the first claim of Theorem 1.6 (on regular upper limit) follows.

G δ vanishing: For each n, p ∈ N introduce the set

W n,p = a ∈ J | for some m ≥ n we have 1 m log T m,a,ω < 2 p .
We claim that W n,p is open and dense for any n, p ∈ N. Indeed, it is clear that each set W n,p is open. Apply Theorem 1.19 for ε = 1 p . Property V and the fact that DOS has the whole interval J as its support imply that the set of parameters

{a k } for which m k n ∈ (1/4, 1/2) is r(ε)-dense in J, where r(ε) → 0 as ε → 0 (or, equivalently, p → ∞).
For each sufficiently large n and each such k with m k n ∈ (1/4, 1/2), the property

IV of Theorem 1.19 implies that 1 2m k log T 2m k ,a k ,ω < nε 2m k = ε 2m k /n ≤ 2ε = 2 p
for some a k ∈ J i k ,n . Hence, for any n and any p the set W n,p is r(ε)-dense in J,

where ε = 1 p . Since W n,p ⊆ W n,p if p ≥ p, this implies that W n,p is dense in J. Since W n,p is open and dense in J, the intersection ∞ n,p=1 W n,p is a dense G δ - subset of J, and for any a ∈ ∞ n,p=1 W n,p we have lim inf n→∞ 1 n log T n,a,ω = 0.
Hausdorff dimension: First of all, notice that

H ε ⊆ J has zero Hausdorff di- mension. Indeed, H ε is contained in V n ,ε , which is covered by {J i k ,n } n≥n , k≤Mn .
Taking into account property I from Theorem 1.19, d-volume of this cover can be estimated as follows:

n≥n M n |J| N (n) d ≤ n≥n const • n |J| d N (n) d ≤ const n≥n n exp(-d 4 √ n).
Therefore it tends to zero as n tends to ∞. Since this holds for any d > 0, we have dim

H H ε = 0.
If a ∈ H ε , then due to property II from Theorem 1.19 for all sufficiently large n we have

1 n log T n,a,ω ≥ λ F (a) -ε, hence lim inf n→∞ 1 n log T n,a,ω ≥ λ F (a) -ε.
Taking a countable union of sets H ε over a sequence of values of ε > 0 that tend to zero, we get a set of zero Hausdorff dimension that contains all values of a ∈ J such that

lim inf n→∞ 1 n log T n,a,ω < λ F (a).
This proves the last part of Theorem 1.6.

On finite products of random matrices

In this section we prove Theorem 1.19.

4.1. Key proposition and the outline of the proof. Theorem 1.19 describes the "most-probable" behaviour of a finite long product of random matrices, handling "uniformly" sufficiently small intervals of parameter. Hence, it is natural to inquire how does such a product change as we change the parameter. The answer, stated in terms of the corresponding projective dynamics on the circle and its lift to the real line, is given by Proposition 4.1 below, and it is a key ingredient of the proof of Theorem 1.19. We will formulate it (with a geometric interpretation of its conclusion in Remark 4.2 below), and then provide an informal outline of the rest of the proof of Theorem 1.19.

First, together with the initial linear dynamics of SL(2, R)-matrices F a (ω), ω ∈ Ω, we consider their projectivizations that act on the circle of directions S 1 ∼ = RP 1 , and lift this action to the action on the real line R for which

S 1 = R/Z: let f a,ω : S 1 → S 1
be the map induced by F a (ω) : R 2 → R 2 , and let fa,ω : R → R be a lift of f a,ω : S 1 → S 1 . The lifts fa,ω can be chosen continuous in a ∈ J and measurable in ω ∈ Ω. Also, denote by

f n,a,ω : S 1 → S 1
the map induced by T n,a,ω : R 2 → R 2 , and define fn,a,ω : R → R to be the lift of f n,a,ω : S 1 → S 1 given by fn,a,ω = fa,ωn • . . . • fa,ω1 . For any fixed value of parameter a ∈ J, the (exponential) growth of norms of T m,ω,a is related to the (exponential) contraction on the circle of the projectivized dynamics. Namely, standard easy computation shows that for a unit vector v 0 in the direction given by the point x 0 , one has

(18) f n,a,ω (x 0 ) = 1 T n,a,ω (v 0 ) 2 .
Fix some point x 0 ∈ S 1 , for example, the point that corresponds to the vector

( 1 0 ). Denote by x0 ∈ [0, 1) its lift to R 1 . Recall that the interval J = [b -, b + ] was divided into N = [exp( 4 √ n)] equal intervals J 1 , .
. . , J N that were denoted by

J i = [b i-1 , b i ], i = 1, . . . , N .
Let xm,i be the image of x0 after m iterations of the lifted maps that correspond to the value of the parameter b i , xm,i := fm,bi,ω (x 0 ) (we omit here the explicit indication of the dependence on ω), and let

(19) X m,i := [x m,i-1 , xm,i ]
be the interval that is spanned by m-th (random) image of the initial point x0 while the parameter a varies in

J i = [b i-1 , b i ]. a m J b 0 b N 0 n xi,m m m Figure 1
. Left: a grid of parameters and numbers of iterations. Right: graphs of xm,i , where m varies in a subinterval 0 < m < m < m , with the occurring suspicious intervals marked with blue (dotted) lines and the jumping ones with red (dashed) lines.

Proposition 4.1 (Types of the behavior). For any ε > 0 there exists c 1 > 0 such that for any sufficiently large n with the probability at least 1 -exp(-c 1 4 √ n) the following holds. For each i = 1, . . . , N the lengths |X m,i | behave in one of the three possible ways:

T mk,a,ω T [mk;n],a,ω v 0 Figure 2.
Left: a unit circle with a marked point x 0 . Center: its image after m k iterations under two different values of parameter a = b i k -1 and a = b i k , together with a most contracted direction for T [m k ,n],a,ω for some a ∈ J i k , marked by a cross. Right: final image after n iterations; note that the images of x 0 are almost opposite, meaning that they have made a full turn on the projective line of the directions.

• (Small intervals) The lengths |X m,i | do not exceed ε for all m = 1, . . . , n; • (Opinion-changers) There is m 0 such that |X m0,i | > ε , and |X m,i |≤ε if m < m 0 or m > m 0 + ε n; • (Jump intervals) There is m 0 such that |X m0,i | > ε , and |X m,i |≤ε if m < m 0 , 1 < |X m,i |≤1 + ε if m > m 0 + ε n.
Remark 4.2. Let us explain the geometrical meaning of Proposition 4.1. Consider the images fn,a,ω (x 0 ) as a sequence of functions of the parameter a. As the number n of iterations grows, the increment of this function on J grows asymptotically linearly in n, and is roughly equal to (ρ(b + ) -ρ(b -)) • n. However, this increment is not distributed uniformly on J; rather, most of it comes from "jumps by one", when a very small increment of the parameter a leads to the increment of the image by 1; see Figure 1.

The latter happens exactly at the exceptional intervals J i k . Namely, when we increase the parameter from b i k -1 to b i k , the maps f m k ,a,ω and f [m k ,n],a,ω do not change much and continue to be hyperbolic. However, the image of x0 under f m k ,a,ω (that is exponentially close to the image of the most expanded direction for T m k ,a,ω ) moves past the most repelling point of f[m k ,n],a,ω (that corresponds to the most contracted direction for T [m k ,n],a,ω ); see Figure 2.

In particular, we find the values a k ∈ J i k (from property IV in Theorem 1.19) as those where the image of the most expanded direction under T m k ,a k ,ω coincides with the most contracted direction of T [m k ,n],a k ,ω . Proposition 4.1 provides the formal justification of (part of) this picture. Now the proof of Theorem 1.19 splits into two parts: deduction of Theorem 1.19 from Proposition 4.1, and the proof of Proposition 4.1. Since both of these parts are somewhat technical, we start here with a brief informal outline of the proofs.

First, let us discuss how Proposition 4.1 will be used to prove Theorem 1.19. Consider the random products of matrices for the parameter values b j , j = 0, 1, . . . , N .

For each individual parameter value a = b j , the growth (with large probability) is exponential, as prescribed by Furstenberg Theorem, hence the derivatives f m,bj ,ω (x 0 ) decrease exponentially. Moreover, due to the (uniform in parameter) Large Deviations Theorem ([T, Theorem 4], reproduced below as Theorem 4.5), the probability of "irregular behaviour" is exponentially small. Hence, as we have chosen the number N to be subexponential in n, with the probability exponentially close to 1 the derivatives f m,bj ,ω (x 0 ) admit a well controlled exponentially decreasing bound for all j = 0, 1, . . . , N ; this argument is formalized in Lemma 4.8 below.

Next, for each interval J i consider the increments of the images of x0 over J i , that is, the lengths of the corresponding intervals X m ,i , m = 1, . . . , m. A modification of the standard distortion control technique implies that if m m =1 |X m ,i | is sufficiently small, then the logarithms of the derivatives of all the maps fm,a,ω , a ∈ J j , at x0 are sufficiently close to each other. This implies that the derivatives at x0 stay exponentially decreasing uniformly in a ∈ J i , and hence the products T n,a,ω admit the desired exponential growth lower bound uniformly in a on such J i . This argument handles both the "small" and the "opinion-changing" intervals from Proposition 4.1: in both these cases, the sum of the lengths of X m ,i does not exceed 2ε n, which is sufficient to obtain the desired control (see Lemma 4.3 for the distortion control and Proposition 4.12 for the extension of the "hyperbolic" behavior inside the parameter intervals). In these cases the interval J i is not exceptional, and combining the obtained lower estimates with the upper estimates from Proposition 2.3 proves part II of Theorem 1.19.

The "jump" intervals from Proposition 4.1 correspond to the exceptional intervals J i k from Theorem 1.19. For these intervals, we still have a sufficient control on the distortion "before the jump", thus obtaining a uniform bound on the growth of the norm of the products T m,a,ω for m ≤ m k . At the same time, "after the jump" we consider intervals X m,i := [x m,i-1 + 1, x m,i ], that are again of controlled lengths for all m ≥ m k + ε n. Applying again the control of the distortion, we get a uniform lower bound for the norm of the product T [m k ,n],a,ω for all a ∈ J i k , thus establishing part III of Theorem 1.19.

The obtained description for the norms of the maps T m k ,a,ω and T [m k ,n],a,ω for a ∈ J i k together with the "jump by 1" from Proposition 4.1 implies that for some parameter value a k ∈ J i k the image of the most expanded by T m k ,a,ω direction will coincide with the most contracted by T [m k ,n],a,ω direction. This will imply the part IV (Cancellation) of Theorem 1.19, see Section 4.5 for details.

Finally, the parts I (Quantity) and V (Measure) of Theorem 1.19 are obtained by the same argument. Namely, most of the increment

x m,i -x m,i ≈ m(ρ(b i ) -ρ(b i ))
comes from the "jumps" that has already occurred at this moment. Hence, the number of exceptional intervals

J i k such that m k < m and a k ∈ [b i , b i ] can be approximated as m • (ρ(b i ) -ρ(b i )). Thus, if we denote Π = 0, m n × [b i , b i ] and ξ = 1 n M k=1 δ ( m k n ,a k ) ,
then (with large probability) we have

ξ(Π) ≈ m n • (ρ(b i ) -ρ(b i )) = Leb × DOS(Π).
These arguments are formalized in Section 4.7, which concludes the proof of Theorem 1.19.

Let us now describe the main idea of the proof of Proposition 4.1.

Consider the lengths of all the intervals X m,i , i = 1, . . . , N , m = 1, . . . , n. Let us say that an interval J i is suspicious if at some m we have |X m,i | > ε . All the non-suspicious intervals are automatically "small" and satisfy the conclusion of Proposition 4.1.

The sum of lengths of all |X m,i | over all i and m grows with n as

N i=1 n m=1 |X m,i | = n m=1 (x m,N -xm,0 ) ∼ m m(ρ(b + ) -ρ(b -)) ∼ (ρ(b + ) -ρ(b -)) n 2 2 = O(n 2 ),
hence there are at most

∼ n 2 2ε (ρ(b + ) -ρ(b -)) = O(n 2
) suspicious intervals. Suppose now that J i is a suspicious interval, and m is the first iterate when |X m,i | > ε . With large probability, under subsequent iterates the images of the points xm,i-1 and xm,i either quickly become very close, or diverge to a distance that is very close to 1, and stays exponentially close or at the distance close to 1 under all the remaining iterates. Indeed, for any specific value of the parameter a Furstenberg Theorem implies that with large probability a given pair of points on the circle converge exponentially fast under a random sequence of projective maps. In our case the points xm,i-1 and xm,i will be iterated by the sequence of maps that correspond to different values of parameter, namely b i-1 and b i , but since these values are very close to each other, it does not change the picture qualitatively. Finally, the probability of such a behavior approaches 1 faster than any inverse power of n, thus for all sufficiently large n with large probability this description holds simultaneously for all the suspicious intervals.

The formal presentation of these arguments is contained in Section 4.8.

Distortion control.

The distortion estimates is a standard tool in smooth one dimensional dynamics, e.g. see [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]Lemma 12.1.3] and [W2, Lemma 6.1].

In our case we need the distortion estimates for compositions of different but very close to each other maps. Here is the statement that we need:

Lemma 4.3 (Distortion control). For any ω ∈ Ω N , ω = ω 1 ω 2 . . . ω m .
. ., the following holds. Given m < m , y 1 < y 2 , and ā1 < ā2 , define the sequence of intervals

Y m = [y m,1 , y m,2 ], m = m , ..., m , by y m ,j = y j , y m+1,j = fāj,ωm (y m,j ), j = 1, 2, m = m , ..., m -1.
Then for any ā3 ∈ [ā 1 , ā2 ], any m = m , . . . , m , and any

y 3 ∈ [y 1 , y 2 ] we have log f [m ,m],ā3,ω (y 3 ) -log f [m ,m],ā1,ω (y 1 ) ≤ κ m -1 k=m |Y k | + C|ā 2 -ā1 | • (m -m ),
where the constants κ and C are defined by

κ := sup y∈R 1 , ω∈Ω, a∈J |∂ y log f a,ω (y)|, C := sup y∈R 1 , ω∈Ω, a∈J |∂ a log f a,ω (y)|.
Proof. By the monotonicity assumption, for any m and any a ∈ [ā 1 , ā2 ] we have fa,ωm (Y m ) ⊂ Y m+1 . The difference of logarithms can be estimated as

(20) log f [m ,m],ā3,ω (y 3 ) -log f [m ,m],ā1,ω (y 1 ) = = m-1 k=m log f ā3,ωk (y k,3 ) -log f ā1,ωk (y k,1 ) ≤ ≤ m-1 k=m log f ā3,ωk (y k,3 ) -log f ā1,ωk (y k,3 ) + log f ā1,ωk (y k,3 ) -log f ā1,ωk (y k,1 ) ≤ ≤ m-1 k=m |ā 3 -ā1 | • sup y,ω,a |∂ a log f a,ω (y)| + m-1 k=m |y k,3 -y k,1 | • sup y,ω,a |∂ y log f a,ω (y)| ≤ ≤ C|ā 2 -ā1 | • (m -m ) + κ m -1 k=m |Y k |.
Another estimate that we will need shows how fast nearby points can diverge under iterates of different but close maps.

Lemma 4.4. In notations of Lemma 4.3, we have 

(21) |y m ,1 -y m ,2 | ≤ L m -m |y m ,1 -y m ,2 | + L p (m -m ) • L m -m -1 |ā 2 -ā1 |,
|y m ,1 -y m ,2 | ≤ | fā1,ω m (y m -1,1 ) -fā1,ω m (y m -1,2 )| + | fā1,ω m (y m -1,2 ) -fā2,ω m (y m -1,2 )|.
The first summand does not exceed L|y m -1,1 -y m -1,2 |, the second one does not exceed L p • |ā 1 -ā2 |, as L and L p are Lipschitz constants in the circle-and parameter directions respectively. Applying the induction assumption (and using the inequality L ≥ 1), we finally get

|y m ,1 -y m ,2 | ≤ L|y m -1,1 -y m -1,2 | + L p |ā 1 -ā2 | ≤ L L m -m -1 |y m ,1 -y m ,2 | + L p (m -m -1)L m -m -2 |ā 2 -ā1 | +L p |ā 1 -ā 2 | = L m -m |y m ,1 -y m ,2 | + L p (m -m -1) • L m -m -1 |ā 2 -ā1 | + L p |ā 1 -ā2 | ≤ L m -m |y m ,1 -y m ,2 | + L p (m -m ) • L m -m -1 |ā 2 -ā1 |.
4.3. Large deviations: convenient versions. Here we formulate several versions of Large Deviation Theorem in the context of random matrix products that will be specifically useful in our setting.

Let us first formulate the classical Large Deviation Theorem for the random matrix products. Initially it was obtained in [L], see also [BL, BQ]. Improved versions of the Large Deviation Theorem, with explicit relation between ε and ζ (in the notations of Theorem 4.5) as well as with relaxed or removed conditions on irreducibility of the cocycle, were obtained by Duarte and Klein in [START_REF] Duarte | Lyapunov exponents of linear cocycles. Continuity via large deviations[END_REF][START_REF] Duarte | Large deviations for products of random two dimensional matrices[END_REF]. Here we will use the version of Large Deviation Theorem that is uniform in the parameter.

Theorem 4.5 (Proposition 3.6 from [BDFGVWZ], Theorem 4 from [T]). For each ε > 0 there exists an ζ > 0 such that for all u = 1,

P 1 n log T n,a,ω u -λ F (a) > ε < e -ζn
for all a ∈ J.

Let us recall that together with the random products of matrices {F a (ω)} we consider the random dynamics of corresponding projective maps {f a,ω } and their lifts { fa,ω }. By (18), if v 0 is a unit vector in the direction given by the point x 0 ∈ S 1 , and lim n→∞

1 n log T n,a,ω (v 0 ) = λ F (a), then lim n→∞ 1 n log| f n,a,ω (x 0 )| = -2λ F (a). Let us denote λ RD (a) = -2λ F (a).
From Theorem 4.5 one can deduce the following statement:

Lemma 4.6. For any ε > 0 there exists ζ 1 > 0 such that for all sufficiently large n ∈ N the following holds. For any a ∈ J, any given 0 ≤ m 1 < m 2 ≤ n, and x0 ∈ R with probability at least 1 -exp(-ζ 1 n) one has

(22) log f [m1,m2],a,ω ( fm1,a,ω (x 0 )) ∈ U ε n (λ RD (a) • (m 2 -m 1 )
). Remark 4.7. Notice that in the case m 1 = 0, m 2 = n the statement of Lemma 4.6 turns into Theorem 4.5.

Proof. Set ε * = min ε 2 sup x∈R,a∈J,ω∈Ω | log f a,ω (x)| , ε 2 max a∈J λ RD (a)
.

If m 2 -m 1 < ε * n, then log f [m1,m2],a,ω (x 0 ) ≤ m2 k=m1+1 log f a,ω k ( fk-1,a,ω (x 0 ) ≤ (m 2 -m 1 ) • sup x∈R sup ω∈Ω sup a∈J | log f a,ω (x)| ≤ (m 2 -m 1 ) ε 2ε * ≤ ε 2 n,
and

λ RD (a)(m 2 -m 1 ) < ε * λ RD (a)n ≤ ε 2 n. Therefore, log f [m1,m2],a,ω (x 0 ) ∈ U ε n (λ RD (a)(m 2 -m 1 )). If ε * n ≤ m 2 -m 1 ≤ n,
then by Theorem 4.5 we have

P log f [m1,m2],a,ω ( fm1,a,ω (x 0 )) ∈ U ε n (λ RD (a)(m 2 -m 1 )) ≤ P log f [m1,m2],a,ω ( fm1,a,ω (x 0 )) ∈ U ε (m2-m1) (λ RD (a)(m 2 -m 1 )) ≤ e -ζ(m2-m1) ≤ e -ζε * n .
Hence, Lemma 4.6 holds with Lemma 4.8. For any ε > 0 there exists ζ 2 > 0 such that for all sufficiently large n ∈ N the following holds. For a given x0 ∈ R with probability at least 1-exp(-ζ 2 n) one has

ζ 1 = ε * ζ. Let us recall that the interval J is divided into N = [exp( 4 √ n)] equal subintervals J 1 , . . . , J N detoted J i = [b i-1 , b i ], i = 1, . . . ,
(23) log f [m1,m2],bi,ω ( fm1,bi,ω (x 0 )) ∈ U ε n (λ RD (b i ) • (m 2 -m 1 )
). for all m 1 , m 2 with 0 ≤ m 1 < m 2 ≤ n and all i = 0, 1, . . . , N .

Proof. Let ζ 1 be given by Lemma 4.6, and take any positive ζ 2 < ζ 1 . For a given a ∈ {b 0 , b 1 , . . . , b N } and given m ∈ {1, . . . , n} the event ( 22) holds with probability at least 1 -exp(-ζ 1 n). Intersecting the events ( 22) for all a ∈ {b 0 , b 1 , . . . , b N } and all m 1 , m 2 = 0, 1, . . . , n with m 1 < m 2 we observe that (23) holds with probability at least 1 -n(n+1)

2 (N + 1) exp(-ζ 1 n). Since N = [exp( 4 √ n)] and ζ 2 < ζ 1 , we get 1 - n(n + 1) 2 (N + 1) exp(-ζ 1 n) > 1 -exp(-ζ 2 n)
for all sufficiently large n.

We will also need Large Deviation Theorem stated in the context of the rotation number.

Proposition 4.9. For µ N -almost every ω ∈ Ω N , the sequence 1 n fn,a,ω (x 0 ) converges to ρ(a) uniformly in a ∈ J. Moreover, for every ε > 0 there exists a constant ζ 3 > 0 such that for all sufficiently large n ∈ N P

1 n fn,a,ω (x 0 ) -ρ(a) > ε for some a ∈ J ≤ e -ζ3n .
Corollary 4.10. For any ε > 0 there exists ζ 4 > 0 such that for all sufficiently large n ∈ N P fm,a,ω (x 0 ) -mρ(a) > ε n for some a ∈ J and m ≤ n ≤ e -ζ4n .

Proof of Proposition 4.9. Take any fixed n 0 ∈ N. Note first that (upon replacing ε with a smaller value, e.g. 3ε /4) we can restrict ourselves to n that are multiples of n 0 . Indeed, taking k = [ n n0 ], we get fn,a,ω = f[kn0,n],a,ω • fkn0,a,ω , and as the increment f[kn0,n],a,ω (ỹ) -ỹ is uniformly bounded, the same holds for the difference fn,a,ω (x 0 ) -fkn0,a,ω (x 0 ) .

For n = kn 0 we can split the length n composition fn,a,ω into groups of length n 0 :

fn,a,ω = f[(k-1)n0,kn0],a,ω • . . . f[n0,2n0],a,ω • fn0,a,ω .
If we denote (compare with Section A)

ϕ a,n0 (ω, ỹ) := fn0,a,ω (ỹ) -ỹ, then we have fkn0,a,ω (x 0 ) -x0 = k-1 j=0 ϕ a,n0 (σ jn0 ω, fjn0,a,ω (x 0 )).
Now for any n 0 and ω ∈ Ω N we have osc ỹ∈R ( fn0,a,ω (ỹ

) -ỹ) ≤ 1. Define φa,n0 (ω) := max ỹ∈R ( fn0,a,ω (ỹ) -ỹ).
Notice that φa,n0 depends only on the first n 0 letters of the word ω. We have

1 kn 0 • ( fkn0,a,ω (x 0 ) -x0 ) - k-1 j=0 φa,n0 (ω jn0+1 , . . . , ω jn0+n0 ) ≤ 1 n 0 .
In particular, passing to the limit k → ∞ for an individual a, we see that

(24) ρ(a) - 1 n 0 E φa,n0 < 1 n 0 .
Now, take n 0 > 10 ε . Then, we have

1 kn 0 • fkn0,a,ω (x 0 ) -kn 0 • ρ(a) ≤ ρ(a) - 1 n 0 E φa,n0 + 1 kn 0 • ( fkn0,a,ω (x 0 ) -x0 ) - k-1 j=0 φa,n0 (ω jn0+1 , . . . , ω jn0+n0 ) + |x 0 | kn 0 + 1 k k-1 j=0 1 n 0 φa,n0 (ω jn0+1 , . . . , ω jn0+n0 ) - 1 n 0 E φa,n0 .
Each of the first three summands on the right hand side does not exceed ε 10 . Hence, for any a ∈ J the event

1 kn 0 fkn0,a,ω (x 0 ) -ρ(a) > ε is contained in the event (25) 1 k k-1 j=0 1 n 0 φa,n0 (ω jn0+1 , . . . , ω jn0+n0 ) - 1 n 0 E φa,n0 > 7ε 10 .
Now, for any fixed a the event in the left hand side of (25) can be estimated using the standard Large Deviations Theorem from the theory of probability: we have a sum of bounded i.i.d. random variables.

Let us now extend these argument to the full interval J. Notice that for a fixed n 0 the displacements ϕ a,n0 (ω, ỹ) are continuous in a uniformly in both ỹ and ω. Therefore, φa,n0 (ω) is also continuous in a uniformly in ω ∈ Ω N . Hence, any a ∈ J is contained in an open interval J a such that

| φa,n0 (ω) -φa ,n0 (ω)| < ε 10
for any a ∈ J a and ω ∈ Ω N . In particular, this implies that

|E φa,n0 -E φa ,n0 | < ε 10 ,
and, moreover, for any a ∈ J a the event ( 25) is contained in the similar event for a , ( 26)

1 k k-1 j=0 1 n 0 φa ,n0 (ω jn0+1 , . . . , ω jn0+n0 ) - 1 n 0 E φa ,n0 > 5ε 10 = ε 2 .
As J is compact, we can extract a finite cover J ai of J; for each a = a i , the event (26) has exponentially small probability: less than e -ζ (i) k for all sufficiently large k. As there is a finite number of them, we get the desired estimate with any

ζ 3 < 1 n0 min i ζ (i) . Finally, uniform convergence 1 n fn,a,ω (x 0 ) → ρ(a)
for µ N -a.e. ω directly follows from the Large Deviation estimate and Borel-Cantelli type arguments.

Remark 4.11. Since uniform limit of continuous functions is continuous, Proposition 4.9 implies continuity of the rotation number ρ(a). In fact, it is known that the function ρ(a) must be Hölder continuous, see [L], but we are not using this fact in our proof. First let us show that the distortion control given by Lemma 4.3 together with Proposition 4.1 allows us to use Lemma 4.8 to estimate the derivatives at x0 at all parameter values a ∈ J: Proposition 4.12. There exists a constant C 1 such that for any ε > 0 the following property holds for all sufficiently large n. Assume that ω is such that the conclusions of Lemma 4.8 and Proposition 4.1 hold. Then, for any a ∈ J:

• If a ∈ J i , and J i is either "small" or "opinion-changing" interval in terms of Proposition 4.1, then

(27) ∀ m = 1, . . . , n log f m,a,ω (x 0 ) ∈ U C1ε n (λ RD (a) • m). • If a ∈ J i ,
and J i is a "jump" interval in terms of Proposition 4.1, with the associated moment m 0 , then

(28) ∀ m = 1, . . . , m 0 log f m,a,ω (x 0 ) ∈ U C1ε n (λ RD (a) • m)
, where m 0 := m 0 + ε n, and

(29) ∀ m = m 0 + 1, . . . , n log f [m 0 ,m],a,ω (x 1 ) ∈ U C1ε n (λ RD (a) • (m -m 0 )), for any x1 ∈ X m0,i , where m 0 := m 0 + ε n and we denote X m 0 ,i := [x m 0 ,i-1 + 1, xm 0 ,i ].
Proof. In the first case, regardless of whether the interval J i is a "small" one or an "opinion-changer", we have an upper bound for the sum of the corresponding lengths

(30) n-1 m=0 |X m,i | = |Xm,i|<ε |X m,i | + |Xm,i|≥ε |X m,i | ≤ n • ε + nε • 1 = 2nε .
Lemma 4.3 implies that for all a ∈ J i and all m = 1, . . . , n we have

| log f m,a,ω (x 0 ) -log f m,bi,ω (x 0 )| ≤ 2κε n + C • |J| N n.
Since λ RD (a) is a continuous function of the parameter a ∈ J (see Remark 1.5), for a given ε > 0 and sufficiently large n we have:

|λ RD (a) -λ RD (b i )| ≤ ε , and |J| N < ε .
Together with the estimate (23) this gives

(31) | log f m,a,ω (x 0 ) -λ RD (a)m| ≤ | log f m,a,ω (x 0 ) -log f m,bi,ω (x 0 )|+ + | log f m,bi,ω (x 0 ) -λ RD (b i )m| + |λ RD (b i )m -λ RD (a)m| ≤ 2κε n + Cε n + ε n + ε m ≤ (2κ + C + 2)ε n. Therefore (27) holds once C 1 > 2κ + C + 2.
Suppose now that J i is a "jump" interval. Checking (28) goes exactly in the same way as in (30):

m 0 m=0 |X m,i | = m0-1 m=0 |X m,i | + m 0 -1 m=m0 |X m,i | ≤ n • ε + nε • 2 = 3nε .
Hence, in the same way as in (31), we have for any m ≤ m 0

| log f m,a,ω (x 0 ) -λ RD (a)m| ≤ 3κε n + Cε n + ε n + ε m ≤ (3κ + C + 2)
ε n, and we have the desired (28) once C 1 > 3κ + C + 2.

Finally, the intervals X i,m for m ≥ m 0 also satisfy the assumptions of Lemma 4.3. One has

n m=m 0 |X m,i | ≤ ε n,
and thus (again, together with ( 23)) we get

| log f [m 0 ,m],a,ω (x 1 ) -λ RD (a)(m -m 0 )| ≤ κε n + Cε n + ε n + ε m ≤ (κ + C + 2)ε n.
This proves (29) for any C 1 > κ+C +2, and thus concludes the proof of Proposition 4.12.

Proposition 4.12 implies the parts II and III of Theorem 1.19. Indeed, for any A ∈ SL(2, R) and for any vector v = 0 one has (32)

f A (x v ) = |v| 2 |Av| 2 ,
where x v ∈ S 1 is the direction corresponding to the vector v. Therefore, for any point x on the circle one has log A ≥ -1 2 log f A (x) (as the right hand side of (32) is not less than 1

A 2 ). In particular, for any m, a, ω we have

(33) log T m,a,ω ≥ - 1 2 log f m,a,ω (x).
If a belongs to "small" or "opinion-changing" interval J i , by joining this estimate with ( 27), we obtain a lower bound for the norm log T m,a,ω ≥ -

1 2 • (λ RD (a)m + C 1 nε ) = λ F (a)m - C 1 2 ε n.
Hence, to obtain the lower bound in the "Uniformity" part, it suffices to take

ε < 2ε C 1 .
On the other hand, Proposition 2.3 states that the upper bound log T m,a,ω < λ F (a)m + nε holds with the probability 1 -exp(c 3 n). We thus obtain the desired

log T m,a,ω ∈ U nε (λ F (a)m)
for all a ∈ J i , provided that the interval J i was "small" or "opinion-changing". Now, assume that a ∈ J i , and the interval J i is a "jump" interval. Set m := m 0 + ε . Then again, joining (33) with ( 28)-( 29 4.5. Cancellation lemmas. The arguments in this paragraph use in essential way the properties of projective dynamics. This is not an artifact of the proof. In fact, we expect the behavior of generic parameter-dependent random dynamical system on the circle to be different. For any A ∈ SL(2, R) denote by f A the corresponding projective map of S 1 . Also, for A / ∈ SO(2, R) let x -(A) ∈ S 1 be the point where f A has the largest derivative, and x + (A) ∈ S 1 be the image under f A of the point where f A has the smallest derivative. Equivalently, x + (A) is the direction of the large axis of the ellipse, obtained by applying A to the unit circle, and x -(A) = x + (A -1 ).

Let α and β be the angles of x -(A) and x + (A) respectively. Then, using singular value decomposition, we see that

A = ±R β A 0 0 A -1 R -1 α+π/2 .
In particular, one has the following useful Lemma 4.13 (Cancellation for matrices).

Let A, B ∈ SL(2, R) \ SO(2, R) be two matrices such that x + (A) = x -(B). Then BA = max( B A , A B
).

The proof of Lemma 4.13 is straightforward, and is left to the reader. We will also use the following lemma, saying, roughly speaking, that a direction that is expanded is sent close to the maximally expanded direction. Here we will measure a distance between two directions by a smallest angle between those directions, i.e. interpret the projective space as R/2πZ. Lemma 4.14. Let A ∈ SL(2, R) \ SO(2, R), x ∈ S 1 be a point on the circle, and v x be some vector in the corresponding direction. Then:

• dist(f A (x), x + (A)) ≤ π 2 • |Avx|/|vx| A , • dist(x, x -(A)) ≤ π 2 • |vx|/|Avx| A , • If we have f A (x) < 1 C , then A ≥ √ C and x + (A) belongs to π 2C - neighborhood of f A (x). v x v + u x u + α A Figure 3. Vectors v x , v + ,
their images u x , u + , and the angle between these images.

Proof. Take v + to be the unit vector in the most expanded direction, that is, |Av + | = A . Let u + := Av + , and let α be the angle between Av x and u + (see Fig. 3). In particular, u + is a vector in the direction given by x + (A), and we can assume (changing the sign of one of the vectors if necessary) that α is the distance between x + (A) and f A (x). Now, the area of the parallelogram defined by unit vectors v x and v + is at most |v x | • |v + |, hence the same holds for the area of the parallelogram defined by their images. We thus have |Avx| 2 , where v x is any vector in the direction given by x ∈ S 1 . Hence,

|v x | ≥ |Av x | • |u + | • sin α = A • |Av x | • sin α; hence sin α < |vx|/|Avx|
A ≥ |Av x | |v x | = 1 f A (x) > √ C;
joining this with the first part, we get the desired estimate:

π 2 |v x |/|Av x | A < π 2 1/ √ C √ C = π 2C .
Let us now prove the "Cancellation" part IV of the conclusions of Theorem 1.19; to do that, we have to handle the "jump" intervals. Namely, assume that the conclusions of Lemma 4.8 hold, and J i is a "jump" interval in terms of Proposition 4.1. Set m := m 0 + ε n, where m 0 is given by the definition of "jump interval" in Proposition 4.1. Notice (we will use it later) that ( 34)

|X m+1,i | ≥ 1 + δ |J| N ,
where δ > 0 is given by the standing assumption (A4). Indeed, the inequality x m,i ≥ x m,i-1 + 1 implies that

x m+1,i -x m+1,i-1 = fω m+1,bi (x m,i ) -fω m+1,bi-1 (x m,i-1 ) = ( fω m+1,bi (x m,i ) -fω m+1,bi-1 (x m,i )) + ( fω m+1,bi-1 (x m,i ) -fω m+1,bi-1 (x m,i-1 ));
the former summand is bounded from below by δ(b i -b i-1 ), and the latter is at least 1. We start by handling the case when the jump moment happens too close to the first or the last iteration.

Lemma 4.15. Let ε , ε > 0, and assume that the conclusions of Proposition 4.1 hold, and also that the conclusions of the part III of Theorem 1.19 hold with the value ε instead of ε. Suppose J i is a "jump" interval with associated index m 0 , and set m := m 0 + ε n. Assume that m ≤ ε n or m ≥ (1 -ε )n. Then the conclusions of the "Cancellation" part IV of Theorem 1.19 are satisfied for an arbitrary a ∈ J i , provided that one has 2ε + 2λ F (a)ε < ε.

Remark 4.16. Notice that using ε instead of ε in the part III of Theorem 1.19 does not lead to any problems. Indeed, largeness of n ∈ N needed for which the conclusions hold does depend on the value of ε, but those conclusions hold for all n larger than some threshold, so by increasing that threshold we can assume that the conclusions of Proposition 4.1 and the conclusions of the part III of Theorem 1.19 hold with the value ε instead of ε simultaneously for all sufficiently large n. 

≤ nε + λ F (a)ε n, log T [ m,m],a,ω ∈ U nε (λ F (a) • (m -m)), hence (35) log T m,a,ω ∈ U 2nε +λ F (a)ε n (λ F (a) • (m -m)).
Finally, the functions (m-m) and ψ m(m) differ by at most m, and we get from ( 35) the desired Let us now consider the case when the jump moment is sufficiently away from the endpoints of the interval of iterations, ε n < m < (1 -ε )n. First, we find the corresponding value of the parameter a ∈ J i . Denote

|log T m,a,ω -λ F (a)ψ m(m)| ≤ 2nε + λ F (a)ε n + λ F (a)ε n = (2ε + 2ε λ F (a))n < εn.
λ min := min a∈J λ F (a), λ max := max a∈J λ F (a). Lemma 4.17. Let ε , ε > 0 satisfy (36) λ min 2C 1 ε > ε ,
where C 1 > 1 is given by Proposition 4.12. For all sufficiently large n, the following statement holds. Assume that the conclusions of Lemma 4.8 and of Proposition 4.1 hold, J i is a "jump" interval with associated index m 0 , and set m := m 0 + ε n. Assume also that the conclusions of the part III hold with the value ε instead of ε. Then there exists a ∈ J i such that

x + (T m,a,ω ) = x -(T [ m, m ],a,ω ),
where m := min(2 m, n).

Proof. Note that the uniformity estimates imply that the products T m,a,ω and T [ m; m ],a,ω are of norm bounded away from 1 for all a ∈ J i . Indeed, the conclusions of the part

III imply that log T m,a,ω > mλ F (a) -nε > n(ε λ min -ε ) > 0, log T [ m, m ],a,ω > ( m -m)λ F (a) -nε > n(ε λ min -ε ) > 0,
where the last inequalities are due to (36).

Hence the directions x + (T m,a,ω ) and x -(T [ m; m ],a,ω ) depend continuously on a ∈ J i . To shorten the notations, we denote

x + (a) := x + (T m,a,ω ), x -(a) := x -(T [ m, m ],a,ω ).
Lemma 4.14 implies that x + (a) stays π 2 f m,a,ω (x 0 )-close to the image f m,a,ω (x 0 ) as a varies in J i . Also, for any a ∈ J i we have

π 2 f m,a,ω (x 0 ) < π 2 exp(-2λ F (a) m + C 1 nε ) < exp (-λ F (a) m) < δ|J| 2N ,
where the second inequality is due to the assumptions m ≥ nε and λmin 2C1 ε > ε , and the last one is due to the subexponential growth of

N = [exp( 4 √ n)]. At the same time, due to (34), we have |X m,i | ≥ δ|J| N , where X m,i = [x m,i-1 + 1, x m,i ].
Hence, as a varies over J, the point x + (a) passes through the midpoint r := π (x m,i-1 + 1) + x m,i 2 of the interval π(X m,i ) = π([x m,i-1 + 1, x m,i ]) at least twice, making the full turn in between; see Figure 4. We know from the distortion control estimates given by Proposition 4.12 that the derivatives of f [ m, m ],a,ω on X m,i do not exceed

exp(λ RD ( m -m)+C 1 ε n) = exp(-2nε λ F (a)+C 1 ε n) < exp((-2λ min ε +C 1 ε )n) < 1,
again using (36) for the last inequality.

Hence the point x -(a) never crosses r for a ∈ J i . Thus, we can choose the lifts x+ (a) and x-(a) on the real line of x + (a), x -(a) respectively such that the difference x+ (a) -x-(a) changes sign while a varies in J i . Hence, there exists a point a ∈ J i for which the directions x + (a) and x -(a) coincide.

We are now ready to conclude the proof of the "Cancellation" part IV. Take ε , ε > 0 such that (36) holds, as well as

ε < ε 4 , 2(ε + λ max ε ) < ε.
Assume that the conclusions of Lemma 4.8 hold and of Proposition 4.1 hold, that J i in its terms is a "jump" interval, with m := m 0 + ε n being the corresponding jump moment. Assume also that the conclusions of the part III hold with the value ε instead of ε.

Let us show that then the part IV of conclusions of Theorem 1.19 are satisfied. Indeed, if m ≤ ε n or m ≥ (1 -ε )n, this directly follows from Lemma 4.15.

x + (b i )

x + (b i-1 ) x -(b i-1 ) x -(b i )
x m,i-1

x m,i π(X m,i ) Otherwise we can apply Lemma 4.17; take a i to be the value of the parameter a given by Lemma 4.17, and let us check that ( 9) holds for all m = 1, . . . , n.

Note that for any m ∈ [1, m] the estimates of the part III imply

(37) log T m,ai,ω ∈ U ε n (λ F (a)m) = U ε n (ψ(m)).
We have now to handle the case m ∈ [ m, n]. The next steps depend on whether m is greater or less than n 2 . Consider first the case m ≤ n 2 (in this case m = 2 m). Then, applying Lemma 4.13 and the uniformity estimates on the intervals [1, m] and [ m, 2 m], we get

(38) log T 2 m,ai,ω = log T m,ai,ω -log T [ m,2 m],ai,ω ≤ |log T m,ai,ω -λ F (a i ) m| + log T [ m,2 m],ai,ω -λ F (a i ) m ≤ 2nε . For any m ∈ [ m, 2 m] we can represent T m,ai,ω = T -1 [m,2 m],
ai,ω T 2 m,ai,ω . The log-norm of the latter factor does not exceed 2ε n by (38), while the log-norm of the former factor is 2nε -close to λ F (a i )(2 m -m) = ψ(m) due to the conclusion of the part III and Proposition 2.3. Indeed,

T -1 [m,2 m],ai,ω = T [m,2 m],ai,ω , and 
T [m,2 m],ai,ω = T [ m,2 m],ai,ω T -1 [ m,m],ai,ω . Due to the part III of Theorem 1.19 log T [ m,2 m],ai,ω ∈ U ε n (λ F (a i ) m), log T [ m,m],ai,ω ∈ U ε n (λ F (a i )(m -m)), and hence log T [m,2 m],ai,ω ≥ log T [ m,2 m],ai,ω -log T [ m,m],ai,ω ≥ λ F (a i )(2 m -m) -2ε n.
On the other hand, by Proposition 2.3 log

T [m,2 m],ai,ω ≤ λ F (a i )(2 m -m) + ε n. Therefore, log T [m,2 m],ai,ω ∈ U 2nε (λ F (a i )(2 m -m)). Hence (39) log T m,ai,ω ∈ U 4nε (λ F (a i )ψ(m)).
Finally, for any m ∈ [2 m, n] we have

T m,ai,ω = T [2 m,m],ai,ω T 2 m,ai,ω .
Again, the log-norm of the latter factor does not exceed 2ε n by ( 38), while the log-norm of the former factor is 2nε -close to λ F (a i )(m -2 m) = ψ(m), due to the conclusion of the part III and Proposition 2.3. This implies the desired

(40) log T m,ai,ω ∈ U 4nε (λ F (a i )ψ(m)).
Together ( 37), ( 39) and ( 40) cover all possible m ≤ n, thus implying

∀m = 1, . . . , n log T m,ai,ω ∈ U 4nε (λ F (a i )ψ(m)).
As we have ε < ε 4 , we obtain the desired estimate. Finally, consider the case m > n 2 (in this case m = n). Then in the same way as in (38) the estimates of the part III imply log T m,ai,ω ∈ U nε (λ F (a i ) m), log T [ m,n],ai,ω ∈ U nε (λ F (a i )(n -m)), and thus finally

(41) log T n,ai,ω ∈ U 2nε (λ F (a i )(2 m -n)) = U 2nε (λ F (a i )ψ m(n)).
Now, for any m ∈ [ m, n] we have two representations for T m,ai,ω :

(42) 41) and ( 42) we get both the upper estimate

T m,ai,ω = T [ m,m],ai,ω T m,ai,ω = T -1 [m,n],ai,ω T n,ai,ω . By Proposition 2.3 we have log T [ m,m],ai,ω ≤ λ F (a i )(m -m) + nε , log T [m,n],ai,ω ≤ λ F (a i )(n -m) + nε , so from (
log T m,ai,ω ≤ log T n,ai,ω + log T [m,n],ai,ω ≤ ≤ (λ F (a i )(2 m -n) + 2nε ) + (λ F (a i )(n -m) + nε ) = λ F (a i )ψ m(m) + 3nε
and the lower one

log T m,ai,ω ≥ log T m,ai,ω -log T [ m,m],ai,ω ≥ ≥ ( mλ F (a i ) -2nε ) -(λ F (a i )(m -m) + nε ) = λ F (a i )ψ m(m) -3nε .
Thus, in this case we also get the desired log T m,ai,ω ∈ U 3nε (ψ m(m)λ F (a i )), concluding the proof of the "Cancellation" part IV of Theorem 1.19. 4.6. Contraction on average: quantitative statements. We will need a quantitative way to control the exponential contraction of the corresponding random dynamics. The Furstenberg Theorem implies that for the projective dynamics on the circle the points almost surely approach each other exponentially fast. Moreover, for a non-projective C 1 -smooth dynamics (under mild assumptions) such a statement also holds due to the Baxendale theorem [Bax], that implies negativity of the Lyapunov exponent. And even (quite surprisingly!) it was recently shown by D. Malicet [M] for the case of homeomorphisms, with no regularity assumptions at all.

However, here we will need a qualitative estimate that can be used for the dynamics involving a parameter, so we cannot make a pure reference to one of these papers. The main result of this section is the following proposition (that was also simultaneously and independently proven by Czudek, Szarek, and Zdunik [Cz]): Proposition 4.18. There are constants s ∈ (0, 1] and K ∈ N such that for any a ∈ J the function

(43) ϕ(x, y) := (dist S 1 (x, y)) s satisfies (44) E ϕ(f K,a,ω (x), f K,a,ω (y)) := ϕ(f K,a,ω (x), f K,a,ω (y))dµ N (ω) ≤ 1 2 ϕ(x, y).
Proof. Notice first that for any x ∈ S 1 we have

E 1 m log f m,a,ω (x) → λ RD (a) < 0 as m → ∞.
Moreover, the convergence here is uniform in x ∈ S 1 (this follows from the uniqueness of the stationary measure ν a on the circle, see [START_REF] Bougerol | Products of Random Matrices with Applications to Schrödinger Operators[END_REF]Theorem 4.1], in the same way as unique ergodicity implies uniform convergence of time averages, compare with the proof of [START_REF] Hasselblatt | Chapter 1 Principal structures[END_REF]Theorem 4.3.1]). Hence, taking K 0 to be sufficiently large, we can find δ 1 > 0 such that

(45) ∀x ∈ S 1 E log f K0,a,ω (x) < -δ 1 .
Compactness arguments show that K 0 and δ 1 > 0 in (45) can be chosen uniformly also in a ∈ J.

For any d > 0, as s → 0, Taylor's formula gives

d s = exp(s log d) = 1 + s log d + s 2 (log d) 2 d ξ 2! ,
for some ξ ∈ (0, s). Therefore we have

(f K0,a,ω (x)) s = 1 + s(log f K0,a,ω (x)) + s 2 (log f K0,a,ω (x)) 2 (f K0,a,ω (x)) ξ 2! ,
and, since |f K0,a,ω (x)| is uniformly bounded,

E (f K0,a,ω (x)) s = 1 + sE log f K0,a,ω (x) + O(s 2 ),
where O(s 2 ) is uniform both in x ∈ S 1 and a ∈ J. Hence (45) implies that for a sufficiently small s > 0 there exists δ 2 > 0 such that

(46) ∀a ∈ J ∀x ∈ S 1 E (f K0,a,ω (x)) s < 1 -2δ 2 .
Next, the Mean Value Theorem implies that for the function ϕ(x, y) defined by ( 43) for any sufficiently close x, y ∈ S 1 and any ω we have ϕ(f K0,a,ω (x), f K0,a,ω (y)) = (f K0,a,ω (z)) s ϕ(x, y) for some z on the shortest arc connecting x and y (closeness here is needed to ensure that the image of this arc is the shortest arc connecting f (x) and f (y)).

As the function (f K0,a,ω (z)) s is continuous in z uniformly in a, z, ω, there exists r > 0 such that if dist S 1 (x, y) < r, then

(f K0,a,ω (x)) s -(f K0,a,ω (z)) s < δ 2 .
Hence, for any x, y with dist S 1 (x, y) < r one has

E ϕ(f K0,a,ω (x), f K0,a,ω (y)) ≤ (1 -δ 2 )ϕ(x, y).
Let us fix K 0 , r and δ 2 as above.

Next, let us handle case of two initial points being far away from each other. The contraction of orbits for random dynamical systems on the circle is well-known: after many iterations the images of two initial points will be most probably very close to each other. We will need its version that is uniform in parameter a and in the initial points x, y.

Lemma 4.19. For any ε 1 , ε 2 > 0 there exists K 0 such that for any a ∈ J and any x, y ∈ S 1 we have

P (dist(f K0,a,ω (x), f K0,a,ω (y)) < ε 1 ) > 1 -ε 2 .
Let us show that it suffices to conclude the proof of Proposition 4.18. Note first that it implies the following Corollary 4.20. There exists K 1 > 0 such that for any x, y ∈ S 1 with dist S 1 (x, y) ≥ r and any a ∈ J one has

(47) E ϕ(f K1,a,ω (x), f K1,a,ω (y)) ≤ 1 2 ϕ(x, y).
Proof. Indeed, take

ε 1 := r 4 1/s , ε 2 := r s 4 ,
and let K 1 be the corresponding number of iterations from the conclusion of Lemma 4.19. Then for any a ∈ J and any x, y ∈ S 1 with dist(x, y) ≥ r we have ( 48) ϕ(x, y) ≥ r s , and

(49) E ϕ(f K1,a,ω (x), f K1,a,ω (y)) ≤ P (dist(f K1,a,ω (x), f K1,a,ω (y)) ≥ ε 1 ) • 1 s + + P (dist(f K1,a,ω (x), f K1,a,ω (y)) < ε 1 ) • ε s 1 ≤ ≤ ε 2 + ε s 1 = r s 4 + r s 4 = r s 2 .
Joining ( 48) and ( 49), we get the desired (47).

We are now ready to conclude the proof of Proposition 4.18 (modulo Lemma 4.19). Indeed, consider the following random process on the pairs of points (x, y): if they are closer than r, we do K 0 random iterations of f a,ω , otherwise K 1 iterations. Repeating this process untill the total number of random iterations exceeds a given number K, we define a random Markov moment t(ω) such that K ≤ t(ω) ≤ K + max(K 0 , K 1 ). Then (50) E ϕ(f t(ω),a,ω (x), f t(ω),a,ω (y)) ≤ λ K ϕ(x, y), where λ K = max((1 -δ 2 ) K/K0 , (1/2) K/K1 ). At the same time, application of any f a,ω (or its inverse) changes the distances with multiplier at most M 2 (recall that the norms of all the matrices T a,ω are uniformly bounded by M ). Hence (50) implies that if instead we stop the process exactly after K random iterations, we get

E ϕ(f K,a,ω (x), f K,a,ω (y)) ≤ M 2s max(K0,K1) λ K ϕ(x, y).
The first factor is constant, while λ K → 0 as K → ∞. Taking K such that M 2s max(K0,K1) λ K < 1/2, we obtain (44), as desired.

For the sake of completeness, we provide here a proof of Lemma 4.19.

Proof of Lemma 4.19. We start by recalling some standard general arguments from the theory of random dynamical systems. Namely, it is known that the Furstenberg's theorem implies an individual contraction of orbits: Proposition 4.21. For any a ∈ J, for any x, y ∈ S 1 for almost all ω one has

lim n→∞ dist(f n,a,ω (x), f n,a,ω (y)) = 0.
Note, that this automatically implies the (almost-sure) existence of a (random) "repelling" point r -(a, ω), such that all the points except for it approach each other: Lemma 4.22. For any a ∈ J, for almost all ω there exists a (random) point r -= r -(a, ω) ∈ S 1 such that (51) ∀x, y ∈ S 1 , x, y = r - lim n→∞ dist(f n,a,ω (x), f n,a,ω (y)) = 0.

Proof. Proposition 4.21 implies that for any two points x 0 , y 0 the length of the positive direction arc [x n , y n ], joining their images

x n := f n,a,ω (x 0 ), y n := f n,a,ω (y 0 ), tends either to 0, or to 1. Now, take an arbitrary l and consider l initial points x i 0 = i/l, i = 1, . . . , l on the circle. For any fixed l, the images

x (i) n := f n,a,ω (x (i)
0 ) of these points almost surely approach each other, and hence (almost surely) exactly one of the arcs [x

(i) n , x (i+1) n
] has its length tending to 1, while the length of the other ones tend to zero. We denote this arc by I l (omitting the dependence on a and ω). If neither of two initial points x and y does not belong to I l , the distance between their images also tends to zero. Now, as l becomes larger and larger, the arcs I l become smaller and smaller, and in the limit we see that there exists a random point r -such that (51) holds.

In fact, translating the above description, we see that the preimages of the Lebesgue measure by the dynamics converge to the Dirac measure:

(f -1 n,a,ω ) * Leb → δ r-(ω) as n → ∞.
The description above implies that the length of the composition that we have to apply to bring two points x and y close to each other with a high probability can be chosen uniformly in x and y, at least for any fixed parameter a: Lemma 4.23. For any a ∈ J and any ε 1 , ε 2 > 0 there exists K 0 such that

(52) ∀x, y ∈ S 1 P (dist(f K0,a,ω (x), f K0,a,ω (y)) < ε 1 ) > 1 -ε 2 .
Proof. Note that the point r -(a, ω) from the conclusion of Lemma 4.22 satisfies the relation r -(a, ω) = f -1 a,ω1 (r -(a, σ ω)); indeed, the application of f a,ω1 sends the conclusion (51) for ω to the conclusion (51) for σ ω. In particular, the distribution of values of r -, that is, the measure ν -defined as ν

-:= (r -(a, •)) * µ N satisfies ν = (f -1 a,ω ) * (ν) dµ(ω).
In other words, the measure ν is stationary for the system of the inverse maps f -1 a,• . Such a measure ν -is known to be non-atomic: otherwise, the set of atoms of highest possible weight would be completely invariant (e.g. see [START_REF] Kleptsyn | Convergence of orbits in random dynamical systems on a circle[END_REF]Proposition 6]), and this would contradict to the Furstenberg condition (A1). Hence, given ε 2 > 0, we can find a (sufficiently large) l such that

∀i = 1, . . . , l P r -(a, ω) ∈ [x (i) 0 , x (i+1) 0 ] < ε 2 3 .
In turn, for every i the lengths |[x

(i) n , x (i+1) n 
]| tend to 0 or 1. Hence, for a sufficiently large n one has with the probability at least 1 -ε2

3 ∀i |[x (i) n , x (i+1) n ]| < ε 1 or |[x (i) n , x (i+1) n ]| > 1 -ε 1 ,
and the second possibility happens for the interval that contains r -(a, ω). We will denote the index i for such an interval (if it exists) by i -= i -(a, ω). Denote such n by K 0 and show that for it the conclusion of the lemma holds. Indeed, for any two points x, y ∈ S 1 there are at most two indices i such that

x ∈ (x (i) 0 , x (i+1) 0 ) or y ∈ (x (i) 0 , x (i+1) 0 ).
Hence, with the probability at least 1 -ε2 3 -2 ε2 3 = 1 -ε 2 the index i -is defined, and we have

x, y / ∈ (x

(i-) 0 , x (i-+1) 0
). On the other hand, if this is the case, one of the two arcs [x, y] and [y, x] does not intersect (x

(i-) 0 , x (i-+1) 0
). Hence, its image, joining f K0,a,ω (x) and f K0,a,ω (y), does not intersect the image (x

(i-) 0 , x (i-+1) 0
), that is of length more than 1 -ε 1 . Hence, we get the desired dist(f K0,a,ω (x), f K0,a,ω (y)) < ε 1 .

Remark 4.24. Note that if for some a ∈ J the conclusions of Lemma 4.23 hold for some K 0 , they automatically hold for any K > K 0 . Indeed, we can decompose

f K,a,ω (x) = f K0,a,ω (x ), f K,a,ω (y) = f K0,a,ω (y ), where x = f K-K0,a,ω (x), y = f K-K0,a,ω (y), ω = σ K-K0 ω.
For any x, y ∈ S 1 conditionally to any ω 1 , . . . , ω K-K0 the points x , y are nonrandom, while ω is independent from them. Applying Lemma 4.23 to x , y and then averaging over ω 1 , . . . , ω K-K0 (in other words, applying the total probability formula), we get the desired estimate.

We are now ready to conclude the proof of Lemma 4.19. Namely, the interval J is a compact interval, and for any a ∈ J there exists the corresponding K 0 (a) in the sense of Lemma 4.23. On the other hands, its conclusion ( 52) is an open condition, hence due to the continuous dependence on a for the same value K 0 (a) the same conclusion holds in some open neighborhood I a a of a in J.

Such neighborhoods form an open cover of J. Due to the compactness of J there exists a finite subcover I a1 , . . . , I ap . Take

K = max i K 0 (a i ).
Then, for each of the neighborhoods I(a i ), we have K > K 0 (a i ), and due to Remark 4.24, the desired conclusion holds for all a ∈ I(a i ). As these neighborhoods form a cover of J, we finally get the conclusion of the lemma for all a ∈ J.

Finally, we use Proposition 4.18 to estimate the behavior of random iterations with different parameters:

Corollary 4.25. Fix constants K, s given by Proposition 4.18. There exists a constant C ϕ such that for any a, a ∈ J, x, y ∈ S 1 one has

(53) E ϕ(f K,a,ω (x), f K,a ,ω (y)) ≤ 1 2 ϕ(x, y) + C ϕ |a -a | s .
Proof. Since s ∈ (0, 1], we have

ϕ(f K,a,ω (x), f K,a ,ω (y)) = (dist(f K,a,ω (x), f K,a ,ω (y))) s ≤ (dist(f K,a,ω (x), f K,a,ω (y)) + dist(f K,a,ω (y), f K,a ,ω (y))) s ≤ (dist(f K,a,ω (x), f K,a,ω (y)) s + (dist(f K,a,ω (y), f K,a ,ω (y))) s ≤ ϕ(f K,a,ω (x), f K,a,ω (y)) + C ϕ |a -a | s .
Application of Proposition 4.18 completes the proof.

Iterating Corollary 4.25, we get

Corollary 4.26. There are positive constants C ϕ and C ϕ (that depend on K, s, and constants L, L p from Lemma 4.4) such that for any l ∈ N, k < K, and any a, a ∈ J, x, y ∈ S 1 we have

(54) E ϕ(f lK+k ,a,ω (x), f lK+k ,a ,ω (y)) ≤ C ϕ 2 l ϕ(x, y) + C ϕ |a -a | s .
Proof. Corollary 4.25 says that

(55) E ϕ(f K,a,ω (x), f K,a ,ω (y)) ≤ g(ϕ(x, y)),
where

g : d → d 2 + C ϕ |a -a | s .
The map g is linear, with the unique fixed point d * := 2C ϕ |a -a | s . Iterating the application of Corollary 4.25, we get

E ϕ(f lK,a,ω (x), f lK,a ,ω (y)) ≤ g l (ϕ(x, y)) = 1 2 l (ϕ(x, y) -d * ) + d * ≤ 1 2 l ϕ(x, y) + 2C ϕ |a -a | s .
Notice that this proves (54) for k = 0. To prove (54) for k > 0, use Lemma 4.4 to replace x and y by f k ,a,ω (x) and f k ,a ,ω (y). 4.7. Distribution of jump intervals. This section is devoted to the proof of the "Quantity" and the "Measure" parts of Theorem 1.19, i.e. parts I and V.

Let us recall that for a given large n, M is the number of exceptional ("jump") intervals on [b -, b + ], and those intervals were denoted by {J i k } k=1,...,M . Let us also recall that for a given exceptional interval J i k the value of the corresponding iterate m k from part IV of Theorem 1.19 was defined as m 0 + ε n, where m 0 is the index that corresponds to the first moment when |X m,i k | becomes larger than ε , as defined in Proposition 4.1.

We know that 1 n fn,a,ω (x 0 ) converges to ρ(a) uniformly on J as n → ∞. Moreover, we know that due to Proposition 4.9, the Large Deviation principle for the rotation number, with probability exponentially close to one for any a ∈ J

1 n fn,a,ω (x 0 ) -ρ(a) ≤ ε .
In particular, fn,b+,ω

(x 0 ) -fn,b-,ω (x 0 ) -(ρ(b + ) -ρ(b -)) n ≤ 2ε n.
On the other hand, below we prove the following statement. Recall that we denoted xm,i = fm,bi,ω (x 0 ), and intervals X m,i were defined by ( 19).

Proposition 4.27. For any ε > 0 there exists ζ 5 > 0 such that for any m ≤ n

(56) P (x m,N -xm,0 ) -#{j : |X m,j | ≥ 1} n > ε < exp(-ζ 5 4 √ n).
Proposition 4.27, applied to m = n, gives that with probability at least 1exp(-

ζ 5 4 √ n), M = #{j : |X n,j | ≥ 1} is ε n-close to fn,b+,ω (x 0 ) -fn,b-,ω (x 0 ) and, hence, 3ε n-close to (ρ(b + ) -ρ(b -)) n.
This gives the part I ("Quantity") of Theorem 1.19.

The part V ("Measure") follows from Proposition 4.27 and Corollary 4.10 in a similar way. Namely, define the measure

ξ n = 1 n M k=1 δ m k n , a i k .
Let us show that for arbitrarily small ε > 0, the measure ξ n is ε-close to Leb × DOS for sufficiently large n. In order to do that it is enough to show that for any a ∈ J, s ∈ [0, 1]

ξ n ([0, s] × [b -, a]) = 1 n #{k = 1, . . . , M | m i k ≤ ns, a i k ∈ [b -, a]} is sufficiently close to s • (ρ(a) -ρ(b -)).
From Corollary 4.10 we know that with probability exponentially close to one we have fm,a,ω

(x 0 ) -fm,b-,ω (x 0 ) -(ρ(a) -ρ(b -)) m ≤ 2ε n.
At the same time, with probability at least 1 -exp(-

ζ 5 4 √ n), for all m ∈ [0, n] the difference fm,a,ω (x 0 ) -fm,b-,ω (x 0 ) is ε n-close to the number of jump intervals on [b -, a] with the corresponding indices m k ≤ m. Hence, if we take m = sn, then ξ n ([0, s] × [b -, a]) is 3ε -close to m n (ρ(a) -ρ(b -)) = s • (ρ(a) -ρ(b -))
. This implies the part V ("Measure") of Theorem 1.19.

Let us now prove Proposition 4.27. Note that the increments x m,N -x m,0 and x m+r,N -x m+r,0 differ by at most C f r, where C f is a uniform constant. Hence, instead of showing (56) it suffices to establish that for some ζ 5 > 0 for any n sufficiently large we have for all m ∈ [0, n]

(57) P (x m,N -x m,0 ) -#{j : |X m+r,j | ≥ 1} n ≥ ε 2 < exp(-ζ 5 4 √ n),
where r := [ √ n]. The main step in the proof of this proposition is the following lemma, allowing us to launch a "bisection" procedure.

Lemma 4.28. For all sufficiently large n the following holds. Let

b (1) < b (2) < b (3) , b (j) ∈ J, b (2) -b (1) ≥ |J| N , b (3) -b (2) ≥ |J| N . Also, let m ≤ n -[ 3 √ n]
, and let z (1) < z (2) < z (3) be points on the real line. Define

z t,j = f[m,t],b (j)
,ω (z (j) ), j = 1, 2, 3.

Then with probability at least 1 -exp(-

4 √ n) [z m ,2 -z m ,1 ] + [z m ,3 -z m ,2 ] ≥ [z (3) -z (1) ] where m = m + [ 3 √ n].
Let us first deduce Proposition 4.27 from Lemma 4.28.

Proof of Proposition 4.27. Let us prove (57). To do so, we define inductively a branching random process on the set of intervals of parameter of the form

[b i , b j ]. That is, to each moment m q := m + q[ 3 √ n], we associate a set of inter- vals {[b i q,l , b j q,l ]} lq l=1 , such that f[m,mq],bj q,l ,ω (x 0 ) -f[m,mq]
,bi q,l ,ω (x 0 ) > 0. This will at the end provide us the desired intervals X m+r,i of length more than one; however, we reserve a (small) chance for the construction to result instead in FAIL. Let I(i, j, m q ) := [x mq,bj -x mq,bi ] be the integer part of the increment at the moment m q over the parameter interval

[b i , b j ].
The branching process is defined in the following way:

• We start at the moment m with the only interval

[b 0 , b N ] = J. • For each interval [b i , b j ] that is present at some moment m q = m + q[ 3 √ n]
, at the next moment m q+1 we do as follows. If j = i + 1, we leave it as it is. If j > i + 1, we take p = i + [(j -i)/2] and consider two parameter subintervals, [b i , b p ] and [b p , b j ].

• For these intervals, if we have I(i, p, m q+1 ) + I(p, j, m q+1 ) < I(i, j, m q ) all the process results in FAIL.

• Otherwise, (58) I(i, p, m q+1 ) + I(p, j, m q+1 ) ≥ I(i, j, m q ) the descendants of this interval at the moment m q+1 will be those among

[b i , b p ], [b p , b j ],
for which the corresponding integer parts of the increment are positive. Note that in at most R := [log 2 N ] + 1 steps, if the process does not result in FAIL, all the descendants will be of the form [b i , b i+1 ] (as the difference j -i -1 is reduced at least twice on each step). On the other hand, for each interval present at some moment of time, the corresponding integer part of the increment is at least 1, hence there is at most C f n descendants present at any moment. Hence, due to Lemma 4.28 the total probability of the process resulting in FAIL is at most

C f n • ([log 2 N ] + 1) • exp(-4 √ n).
Then, by an induction on k we obtain that the sum of lq l=1 I(i q,l , j q,l , m q ) of the integer increments corresponding to the selected intervals is non-decreasing: the induction step is exactly (58). Thus, at the moment m R we find the desired parameter intervals

[b i R,l , b i R,l +1 ] for which |X m R ,i R,l | ≥ 1 and such that l R l=1 [|X m R ,i R,l |] ≥ [x m,N -x m,0 ].
Proposition 4.1 implies that the integer parts under the sum are not greater than 1 with the probability at least 1 -exp(-c 1 4 √ n), and if this is the case, the sum in the left hand side is equal to the number l R of summands. As the integer part of the increment cannot decrease, and r = [

√ n] > R[ 3 √ n],
we finally get the desired

#{i : |X m+r,i | ≥ 1} ≥ #{i : |X m R ,i | ≥ 1} ≥ l R = l R l=1 [|X m R ,i R,l |] ≥ [x m,N -x m,0 ],
concluding the proof of (57), as we have a lower bound for the probability

1 -C f n • ([log 2 N ] + 1) • exp(-4 √ n) -exp(-c 1 4 √ n) > 1 -exp(-ζ 5 4 √ n)
for any ζ 5 < min(c 1 , 1) for all n sufficiently large. Now, all that is left is to prove Lemma 4.28.

Proof of Lemma 4.28. Note that we can increase z (1) and decrease z (3) as soon as we do not change the value of [z (3) -z (1) ]: if the conclusion of Lemma 4.28 is satisfied for the new values, it is also satisfied for the old ones. Moreover, increasing z (1) by 1 increases all its images exactly by 1, and the same applies to z (3) . Hence, it suffices to consider the situation

z (1) < z (2) < z (3) = z (1) + 1,
to which a general case can be reduced. Let now x and y be the points on the circle that are projections of z (1) (and thus of z (3) ) and of z (2) respectively, i.e.

π(z (1) ) = π(z (3) ) = x, π(z (2) ) = y.
Consider the iterations of x and y under the random dynamical system on the circle corresponding to the parameter b (2) (for the same sequence of iterations defined by ω). Let us show that if they approach each other at the moment m at the distance less than |J|δ N , then we are done. Indeed, we have

z m ,1 = f[m,m ],b1,ω (z (1) ) = fω m ,b1 ( f[m,m -1],b1,ω (z (1) )) < fω m ,b (2) ( f[m,m -1],b (2) ,ω (z (1) )) -δ(b (2) -b (1) ) ≤ f[m,m ],b (2) ,ω (z (1) ) - |J|δ N ,
where we have used the monotonicity assumption (A4) and the assumption b

(2) - b 1 ≥ |J| N .
In the same way we have

z m ,3 ≥ f[m,m ],b (2) ,ω (z (3) ) + |J|δ N .
Now, if the points x and y approach each other in such a way that the (positive direction) arc [x, y] is expanded on almost all the circle (that is, becomes of length grater than (1

-|J|δ N )), then we have f[m,m ],b (2) ,ω (z (1) ) < f[m,m ],b (2) ,ω (z (2) ) -1 - |J|δ N and hence z m ,1 < f[m,m ],b (2) ,ω (z (1) ) - |J|δ N < f[m,m ],b (2) ,ω (z (2) ) -1 - |J|δ N - |J|δ N = z m ,2 -1, thus implying the desired [z m ,2 -z m ,1 ] ≥ 1.
In the same way, if the points x and y approach each other in such a way that the (positive direction) arc [y, x] is expanded on almost all the circle (that is, becomes of length more than (1

-|J|δ N )), then we have f[m,m ],b (2) ,ω (z (3) ) > f[m,m ],b (2) ,ω (z (2) ) + 1 - |J|δ N
and hence

z m ,3 > f[m,m ],b (2) ,ω (z (2) ) + |J|δ N > f[m,m ],b (2) ,ω (z (2) ) + 1 - |J|δ N + |J|δ N = z m ,2 + 1, thus implying the desired [z m ,3 -z m ,2 ] ≥ 1.
Let us now show that indeed the points x and y approach each other with the desired probability. Applying Proposition 4.18, we get that

(59) E ϕ(f [m,m ],b (2) ,ω (x), f [m,m ],b (2) ,ω (y)) ≤ 1 2 [(m -m)/K] = 1 2 [[ 3 √ n]/K] .
On the other hand, two points x , y are |J|δ N -close to each other if and only if

ϕ(x , y ) < |J|δ N s .
Combining the Chebyshev inequality with (59), we see that the probability that the random images

f [m,m ],b (2) ,ω (x), f [m,m ],b (2) 
,ω (y) of x and y will not be |J|δ N -close to each other is at most

P dist(f [m,m ],b (2) ,ω (x), f [m,m ],b (2) ,ω (y)) > |J|δ N < |J|δ N -s • 1 2 [[ 3 √ n]/K] = 1 |J| s δ s • [exp( 4 √ n)] exp([[ 3 √ n]/K] log 2) ,
and the right hand side is smaller than exp(-4 √ n) for all n sufficiently large. We have obtained the desired lower bound for the probability that the random images of x and y will be sufficiently close to each other. This concludes the proof of Lemma 4.28 (and hence of Proposition 4.27). 4.8. Intervals characterization. This section is devoted to the proof of Proposition 4.1, describing the behaviour of the intervals X m,i . Our first step will be to understand the behaviour of an individual interval, that is, for a specific index i.

To do so, we take an initial moment m < n, two points ỹm,1 , ỹm,2 ∈ R (that will be later interpreted as the end points of the interval X m,i ) and define

ỹk,1 = f[m,k],bi-1,ω (ỹ m,1 ), ỹk,2 = f[m,k],bi,ω (ỹ m,2 ),
where k = m + 1, . . . , n.

We then show that

• if this interval was small, it will stay small till the last (n-th) iteration with high probability (see Lemma 4.29 below); • for any initial interval, it quickly (in ε n steps) becomes either of length close to 0, or of length close to (and larger than) 1, and stays like that till the last (n-th) iteration (see Lemma 4.35).

Note that initially all the intervals are quite small (they vanish at m = 0, and are of length ∼ const N at the moment m = 1). But the above statements do not guarantee that they all will stay small: even if each individual interval stays small with high probability, there are too many of them (N = [exp( 4√ n)]), so among this huge number there may be ones making and "individually-improbable" growth. In fact, there should be: we know from Proposition 4.27 that there should be jump intervals, and that most of the increment xm,N -xm,0 is concentrated on them.

The key to the proof here is the following argument. Instead of considering the evolution of all the N intervals {X m,i } n m=1 , we consider only those among them that at some moment m become larger than ε ; we call such intervals suspicious. The non-suspicious intervals are automatically small in the sense of Prop. 4.1, and hence for them there is nothing to prove.

At the same time, at each moment m there is at most xm,N -xm,0 ε < const • m suspicious intervals, hence, there is at most const • n 2 of them in total. Thus, Lemmas 4.29, 4.35 can be applied to them simultaneously: the probability of a bad behavior of an individual interval is at most exp(-const 4 √ n). This is done in Corollary 4.38 and Lemma 4.39 below, and their application concludes the proof of Proposition 4.1.

We call this scheme the dystopia argument: as an analogy, even if a "dystopic state" does not have a power to control all of its "population" (exp( 4√ n) intervals), it suffices for it to control only those few (const • n 2 ) that it finds "suspicious". The reader is referred to [Za] for comparison. Let us realize this program. As we have already said, we first study the behavior of the end points of the intervals X m,i for a specific index i = 1, 2, . . . , N . In order to do that take some m < n and two points ỹm,1 , ỹm,2 ∈ R (that will be later interpreted as the end points of the interval X m,i ) and define

ỹk,1 = f[m,k],bi-1,ω (ỹ m,1 ), ỹk,2 = f[m,k],bi,ω (ỹ m,2 ),
where k = m + 1, . . . , n.

We first consider how the interval [ỹ k,1 , ỹk,2 ] can become longer than 1 (so that its projection covers all the circle). It is easy to see that at the first moment when it happens, the projections of ỹk,1 and ỹk,2 are very close to each other.

Let us denote γ := exp (-4 √ n); then the parameter increments b i -b i-1 = |J| N are comparable to γ. The next lemma shows that once these two orbits are sufficiently close to each other, they most probably stay close till the last (n-th) iteration: Lemma 4.29. For all sufficiently large n, if |ỹ m,1 -ỹm,2 | ≤ γ 1/3 , then with probability at least 1 -γ s/20 we have

|ỹ k,1 -ỹk,2 | ≤ γ 1/12 for all k = m, . . . , n. Proof. If |ỹ m,1 -ỹm,2 | ≤ γ 1/3 , then ϕ(y m,1 , y m,2 ) ≤ γ s/3 , and due to Corollary 4.26 for any k > m, k = Kl + k , k < K, E ϕ(y k,1 , y k,2 ) ≤ C ϕ 2 l ϕ(y m,1 , y m,2 ) + C ϕ |b i -b i-1 | s ≤ C ϕ 2 l γ s/3 + C ϕ |J| s γ s < γ s/6 for large n. Chebyshev inequality implies that (60) P ϕ(y k,1 , y k,2 ) > γ s/12 ≤ γ s/6 γ s/12 = γ s/12 . Notice that ϕ(y k+1,1 , y k+1,2 ) = |ỹ k+1,1 -ỹk+1,2 | s provided that |ỹ k,1 -ỹk,2 | < 1 2 . Since |ỹ m,1 -ỹm,2 | ≤ γ 1/3 , at the first moment k > m such that |ỹ k,1 -ỹk,2 | > γ 1/12
, if such moment exists, one has ϕ(y k,1 , y k,2 ) > γ s/12 . Hence, for any k = m+1, . . . , n the probability that this is the first such moment is upper bounded by

P |ỹ k,1 -ỹk,2 | > γ 1/12 |ỹ t,1 -ỹt,2 | ≤ γ 1/12 for m ≤ t < k ≤ γ s/12
due to (60). Summing it over k, we finally get

P |ỹ k,1 -ỹk,2 | > γ 1/12 for some k = m + 1, . . . , n = n k=m+1 P |ỹ k,1 -ỹk,2 | > γ 1/12 |ỹ t,1 -ỹt,2 | ≤ γ 1/12 for m ≤ t < k ≤ n k=m+1
P ϕ(y k,1 , y k,2 ) > γ s/12 ≤ nγ s/12 < γ s/20 .

Substituting ỹm,1 + 1 instead of ỹm,1 (shift by 1 commutes with the dynamics), we easily get the following Corollary 4.30. Similarly, if |ỹ m,1 + 1 -ỹm,2 | ≤ γ 1/3 , then with probability at least 1 -γ s/20 we have

|ỹ k,1 + 1 -ỹk,2 | ≤ γ 1/12
for all k = m, . . . , n.

Denote by y k,1 , y k,2 ∈ S 1 the projections of ỹk,1 , ỹk,2 ∈ R. Let K, s, and the function ϕ be as in Proposition 4.18. The following lemma shows that the projections on the circle of their images most probably quickly become close to each other (so that Lemma 4.29 and Corollary 4.30 become applicable).

Lemma 4.31. In the setting above, for any y m,1 , y m,2 ∈ S 1 and for all sufficiently large n ∈ N, with probability at least 1 -γ s/3 one has

(61) dist S 1 (y k,1 , y k,2 ) ≤ γ 1/3 , for all k ≥ m + K[ 3 √ n].
Proof. Let us apply Corollary 4.26. For any

k ≥ m + K[ 3 √ n] we get (62) E ωm+1,...,ω k ϕ(y k,1 , y k,2 ) ≤ C ϕ 2 [ 3 √ n] + C ϕ (b i -b i-1 ) s ≤ 3C ϕ |J| s γ s ; recall that b i -b i-1 = |J| N ∼ |J| • γ, γ = exp(-4 √ n)) 2 -3 √ n .
Due to Chebyshev inequality, we have

P dist S 1 (y k,1 , y k,2 ) > γ 1/3 = P ϕ(y k,1 , y k,2 ) > γ s/3 ≤ ≤ E ϕ(y k,1 , y k,2 ) γ s/3 ≤ 3C ϕ |J| s γ 2s/3
for large n; the last inequality here is due to (62). Therefore,

P dist S 1 (y k,1 , y k,2 ) > γ 1/3 for some k ≥ m + K[ 3 √ n] ≤ ≤ n • 3C ϕ |J| s γ 2s/3 < γ 1/3
for all sufficiently large n.

Let us remind that

L = sup y∈R 1 ,a∈J,ω∈Ω | f a,ω (y)|, L p = sup y∈R 1 ,a∈J,ω∈Ω
|∂ a fa,ω (y)| are the space-and parameter-wise Lipschitz constants respectively, and δ > 0 is a small constant from the monotonicity condition (A4). The next few lemmas guarantee that if the length of the interval X k,i becomes close to 1 (and thus stays close to 1), there will be an actual "jump", that is, the interval will become longer than 1 sufficiently quickly. The first two of these lemmas are devoted to the moment of the jump:

Lemma 4.32. Suppose for some k > m we have ỹk,1 < ỹk,2 ≤ ỹk,1 + 1 for k = m, . . . , k -1, and ỹk ,2 > ỹk ,1 + 1. Then

(63) ỹk ,2 -(ỹ k ,1 + 1) ≤ L p |J| N ≤ const • γ.
Proof. We have ỹk -1,2 ≤ ỹk -1,1 + 1, and hence

ỹk ,2 = fbi,ω k (ỹ k -1,2 ) ≤ fbi,ω k (ỹ k -1,1 + 1) = fbi,ω k (ỹ k -1,1 ) + 1. This implies that ỹk ,2 -(ỹ k ,1 + 1) ≤ fbi,ω k (ỹ k -1,1 ) -fbi-1,ω k (ỹ k -1,1 ) ≤ ≤ L p • (b i -b i-1 ) = L p |J| N .
The definition N = [exp( 4 √ n)] then implies the second inequality of (63).

Lemma 4.33. If x, ỹ ∈ R are such that |x -ỹ| < δ|J| L γ, then for any ω ∈ Ω and any i = 1, . . . N we have fbi,ω (ỹ) > fbi-1,ω (x).

Proof. Indeed, due to monotonicity assumption (A4) we have

fbi,ω (ỹ) -fbi-1,ω (x) = fbi,ω (ỹ) -fbi,ω (x) + fbi,ω (x) -fbi-1,ω (x) ≥ -L|ỹ -x| + δ|J| • γ > 0
Let us introduce the notation U + ε (x) := [x, x + ε) and U - ε (x) := (x -ε, x] for the right-and left-ε-neighborhoods of the point x ∈ R respectively.

Lemma 4.34. If ỹm,2 ∈ U - γ 1/3 (ỹ m,1 + 1), then with probability at least 1 -3γ s/20 we have ỹk,2

∈ U + γ 1/3 (ỹ m,1 + 1) for all k > m + K 3 √ n.
Proof. Since |ỹ m,2 -ỹm,1 -1| < γ 1/3 , Lemma 4.29 implies that with probability at least 1 -γ s/20 for all k ≥ m we have

|ỹ k,2 -ỹk,1 -1| < γ 1/12 .
Together with Lemma 4.31 this implies that with probability at least

1 -γ s/20 -γ s/3 > 1 -2γ s/20
we have

(64) |ỹ k,2 -ỹk,1 -1| < γ 1/3 for all k ≥ m + K[ 3 √ n]
; in other words, the images of ỹm,2 stay close to those of ỹm,1 + 1.

However, as b i > b i-1 , the images of ỹm,2 are in a sense "pushed forward" with respect to those of ỹm,1 + 1. That is, consider a sequence of points {z k } ⊂ R, k = m, . . . , n, given by zk = f[m,k],bi-1,ω (ỹ m,2 ).

Then monotonicity assumption (A4) implies that for all k > m we have ỹk,2 > zk .

Due to Corollary 4.26 (applied for a = a = b i-1 ) for

k 0 = m + K[ 3 √ n] we have E ϕ(z k0 , y k0,1 ) ≤ C ϕ 2 3 √ n ϕ(z m , y m,1 ) ≤ C ϕ 2 3 √ n
Now (in the same way as before), we have an lower bound for the probability that the images z k0 and y k0,1 are close to each other. Indeed, by Chebyshev inequality

P dist S 1 (z k0 , y k0,1 ) ≥ δ|J| L γ = P ϕ(z k0 , y k0,1 ) ≥ δ|J| L s γ s ≤ ≤ C ϕ L s δ s |J| s • exp (-3 √ n log 2) exp (-s 4 √ n) < exp - log 2 2 3 √ n = 1 2 3 √ n/2
Hence with probability at least

1 -2γ s/20 - 1 2 3 √ n/2 > 1 -3γ s/20 we have ỹk0,2 > zk0 ≥ ỹk0,1 + 1 - δ|J| L γ.
Hence, either ỹk0,2 > ỹk0,1 + 1, or, due to Lemma 4.33, ỹk0+1,2 > ỹk0+1,1 + 1. In both cases, ỹk,2 > ỹk,1 + 1 for for k = k 0 + 1, and hence, by monotonicity, for all k > m + K 3 √ n. Joining it with (64), we finally get the desired ỹk,2 ∈ U + γ 1/3 (ỹ k,1 + 1) for k = k 0 + 1, . . . , n.

Lemma 4.35. If ỹm,2 ∈ (ỹ m,1 , ỹm,1 + 1), then with probability at least 1 -5γ s/20 either ỹk,2

∈ U + γ 1/3 (ỹ m,1 ), or ỹk,2 ∈ U + γ 1/3 (ỹ m,1 + 1) for all k > m + 2K 3 √ n.
Proof. Due to Lemma 4.31, with probability at least 1 -γ s/3 we have ỹk,2

∈ l∈N∪{0} U γ 1/3 (ỹ k,1 + l).
Lemma 4.32 implies that in this case for some

k ≤ m + K[ 3 √ n] we have ỹk ,2 ∈ U + γ 1/3 (ỹ k ,1
) U γ 1/3 (ỹ k ,1 + 1) . Lemma 4.29 now implies that with probability at least

1 -γ s/3 -γ s/20 > 1 -2γ s/20 we have ỹk,2 ∈ U + γ 1/12 (ỹ k,1 ) U γ 1/12 (ỹ k,1 + 1) for all k ≥ m + K[ 3 √ n].
Since we assume that (61) holds, this in fact implies that ỹk,2

∈ U + γ 1/3 (ỹ k,1 ) U γ 1/3 (ỹ k,1 + 1) for all k ≥ m + K[ 3 √ n]. Now Lemma 4.34 implies that if ỹk,2 ∈ U - γ 1/3 (ỹ k,1 + 1) for k = m + K[ 3 √ n],
then with probability at least 1 -3γ s/20 for all k > m + 2K[ 3 √ n] we have ỹk,2 ∈ U + γ 1/3 (ỹ k,1 + 1). Summarizing, with probability at least

1 -3γ s/20 -2γ s/20 = 1 -5γ s/20 for all k > m + 2K[ 3 √ n] either ỹk,2 ∈ U + γ 1/3 (ỹ k,1 ), or ỹk,2 ∈ U + γ 1/3 (ỹ k,1 + 1).
Now we are ready to prove Proposition 4.1. Fix ε > 0.

Definition 4.36. Let us say that an interval

J i = [b i-1 , b i ] is m 0 -suspicious if |X k,i | ≤ ε for k = 1, 2, . . . , m 0 -1, and |X m0,i | > ε .
Definition 4.37. Let us say that an interval

J i = [b i-1 , b i ] is good if it satisfies the claim of Proposition 4.1, i.e. it is either small (|X m,i | ≤ ε for all m = 1, . . . , n), or opinion-changer (J i is m 0 -suspicious, and |X m,i | < ε for all m > m 0 + ε n), or jump interval (J i is m 0 -suspicious, and 1 < |X m,i | < 1 + ε for all m > m 0 + ε n).
Otherwise J i will be called bad.

In these terms, we get from Proposition 4.35 an immediate Corollary 4.38. For any i, m 0 we have

P ( J i is bad | J i is m 0 -suspicious) ≤ 5γ s/20 .
In other words, (65) P (J i is bad and m 0 suspicious) ≤ 5γ s/20 • P (J i is m 0 suspicious) .

Now, the number of suspicious intervals is easily bounded from above:

Lemma 4.39. For any m 0 = 1, . . . , n, and any ω ∈ Ω n , number of m 0 -suspicious intervals is not greater than M * ε m 0 , where

M * = [L p • |J|] + 1. Proof. Indeed, xm,N -xm,0 = fm,b+,ω (x 0 ) -fm,b-,ω (x 0 ) ≤ M * m,
and at the same time

xm,N -xm,0 = N i=1 |X m,i | ≥ ε • #{i = 1, . . . , N | J i is m 0 suspicious}.
Applying this lemma, for any m 0 = 1, . . . , n we get an upper bound for the probability of the presence of a bad m 0 -suspicious interval:

P (∃i ∈ {1, . . . , N } | J i is bad and m 0 -suspicious) ≤ E (# {i ∈ {1, . . . , N } | J i is bad and m 0 -suspicious}) = = N i=1 P (J i is bad and m 0 -suspicious) ≤ ≤ N i=1 5γ s/20 P (J i is m 0 -suspicious) = = 5γ s/20 E (# {i ∈ {1, . . . , N } | J i is m 0 -suspicious}) ≤ ≤ 5γ s/20 • M * m 0 ε ≤ 5M * ε • nγ s/20 ,
where the last inequality comes from Lemma 4.39. Finally, summing over m 0 , we get the desired P (at least one of the intervals J i is bad)

≤ n m0=1 P (∃i ∈ {1, . . . , N } | J i is bad and m 0 -suspicious) ≤ ≤ n • 5M * ε • nγ s/20 < exp - s 40 4 √ n
for large n. This completes the proof of Proposition 4.1.

Anderson localization

In this section we prove Theorem 1.13.

The following two lemmas use only linear algebra. We assume that a sequence of matrices A j ∈ SL(2, R), A j ≤ M , and an initial vector v 0 ∈ R 2 \ {0} are given. Then, we consider the corresponding sequence v m of images, defined by ( 66)

v m = A m v m-1 , m = 1, . . . , n,
and describe its possible behavior. For instance, the conclusion II of Theorem 1.19 combined with Proposition 2.3 implies (2nε, λ F )-hyperbolicity for the corresponding product F a (ω n ) . . . F a (ω 1 ). At the same time, the conclusion III implies (2nε, λ F )-hyperbolicity of both products F a (ω m k ) . . . F a (ω 1 ) and F a (ω n ) . . . F a (ω m k +1 ).

Let us first prove the following lemma.

Lemma 5.2 (line-shape). For any M, λ, ε > 0 there exists ε > 0 with the following property. Assume that v 0 has the norm smaller than any other vector in the Geometrically speaking, the conclusion this lemma states that if we plot the graph of log |v m | for m = 0, 1, . . . , n, and then contract this graph n times (both vertically and horizontally), then it will be in the ε-neighborhood of a line with slope λ (see Fig. 5).

Proof. Without loss of generality, we can assume that v 0 is a unit vector. Take another unit vector, u 0 , that realizes the norm of the full product,

|T [0,n] u 0 | = T [0,n] ,
and consider the associated sequence of its intermediate images,

u m = A m u m-1 , m = 1, . . . , n.
Then, we have a lower bound for their norms: as

u n = T [m,n] u m , (67) log |u m | ≥ log |u n | T [m,n] = log T [0,n] -log T [m,n] ≥ mλ -2nε .
Next, v 0 and u 0 form a parallelogram of area at most 1, hence the same holds for the parallelogram formed by v m and u m for any m. As |v m | ≥ 1 by assumption and |u m | ≥ exp(mλ-2nε ), the angle between the lines passing through v m and u m does not exceed π 2 exp(-mλ + 2nε ). Here we are using the inequality arcsin x ≤ π 2 x. Now, we have

log |v m | = m j=1 log |A j v j-1 | |v j-1 | = m j=1 φ Aj ([v j-1 ]),
where φ A is a function on the projective line RP 1 , defined by

φ A ([v]) = log |Av| |v|
for any nonzero vector v (where [v] is the corresponding point of RP 1 ). The family of the functions φ A for A ∈ SL(2, R), A ≤ M , is equicontinuous on RP 1 . Hence, for any ε > 0 there exists δ > 0 such that

(68) |φ A ([u]) -φ A ([v])| < ε 2
for all A ∈ SL(2, R) with A ≤ M and all u, v with the angle between the corresponding lines less than δ. At the same time,

(69) log |v m | = log |u m | + m j=1 ϕ Aj ([v j-1 ]) -ϕ Aj ([u j-1 ]) .
The first summand is within 2nε from mλ due to (67) and the assumption on (nε , λ)-hyperbolicity. The sum in the second summand can be decomposed into two parts: where the angle between u m-1 and v m-1 is greater than δ and where it is smaller than δ. The summands of the second type give the contribution of at most m ε 2 due to (68), while there will be at most 2nε

+ log π 2 + | log δ| λ ≤ 3ε λ F n
summands of the first one (assuming n to be sufficiently large), giving their total contribution of at most 2 log M • 3ε λ F n. Adding up, we get an estimate

| log |v m | -mλ| ≤ 2nε + m ε 2 + 2 log M • 3ε λ n ≤ 2 + 6 log M λ ε + ε 2 n. Fix ε = 2 + 6 log M λ -1
• ε 2 , and we get the desired

| log |v m | -mλ| ≤ εn.
This completes the proof of Lemma 5.2.

Remark 5.3. In fact, the proof of Lemma 5.2 uses only the exponential growth of the product of lengths |v m | • |u m |. Hence, the assumption of v 0 being the shortest vector of a sequence {v m } can be weakened to a mere lower bound on the allowed exponential decrease speed. Namely, it suffices to assume that for some c > 0, λ < λ we have |v m | ≥ ce -mλ |v 0 | all m = 1, . . . , n for the conclusion of Lemma 5.2 to hold for all sufficiently large n.

The next lemma allows to get rid of the assumption of v 0 being the shortest vector in the sequence of iterations.

Lemma 5.4 (V-shape). For any M, λ, ε > 0 there exists ε > 0 with the following property. Assume that the product A n . . . A 1 is (nε , λ)-hyperbolic, and v m be a sequence of intermediate images associated to some v 0 ∈ R 2 \ {0} given by (66). Then there exists m ∈ {0, . . . , n}, such that

∀m = 0, 1, . . . , n log |v m | -log |v m | ∈ U nε (λ • |m -m |).
Again, this lemma admits a geometric interpretation in terms of the graph of log |v m |: plotting this graph for m = 0, 1, . . . , n, and then contracting it n times in both directions, we get a graph that is contained in the ε-neighborhood of a Vshaped piecewise-linear function with slopes ±λ (see Fig. 5).

Proof. We will choose m so that v m is a least-norm vector in this sequence: Due to the standard argument of a countable intersection (considering a sequence of positive values of ε 0 that tends to zero) it suffices to show that the conclusion of the theorem holds with (7) replaced with (70). From now on, fix small ε 0 > 0.

|v m | = min
Take the point x 0 on the circle to be the projectivization image of the vector v 0 := 1 0 . Note that the series

n exp(-δ 0 4 √ n)
converges for any δ 0 > 0. Hence, due to Borel-Cantelli lemma, for any ε, ε > 0 almost surely for all sufficiently large n the conclusions of Theorem 1.19 and of Proposition 4.12 (for this specific choice of the point x 0 ) hold. We will fix sufficiently small values of ε and ε for the arguments below to work; in fact, as the reader will see, it suffices to take an arbitrary

(71) ε < ε 0 20 and ε := 1 10C 1 ε,
where C 1 is given by Proposition 4.12. Assume now that for some a ∈ J the inequality (70) holds; it also implies that for all sufficiently large m (72) 1 m log T m,a,ω ( 1 0 ) < λ F (a) -ε 0 .

Let n 1 be such that conclusions of both Theorem 1.19 and of Proposition 4.12, as well as (72), hold for all m, n > n 1 . For any n > n 1 consider the interval J i that contains a. Note that for all sufficiently large n it is one of the exceptional intervals in the sense of Theorem 1.19, in other words, it cannot be neither small nor opinion-changing in terms of Proposition 4.1. Indeed, otherwise Proposition 4.12 would imply the derivatives control (27), and thus the derivatives at x 0 would satisfy the exponential contraction with almost fastest possible speed:

log f m,a,ω (x 0 ) ≤ λ RD (a) • m + C 1 ε n.
Recalling the relation (18) between the derivative and the norm change, we thus would get an almost fastest possible expansion:

log |T m,a,ω (v 0 )| ≥ - 1 2 (λ RD (a) • m + C 1 ε n) = λ F (a) • m - 1 2 C 1 ε n.
However, once C1ε 2 < ε 0 , we would get a contradiction with (72) at m = n. Hence, J i should be an exceptional interval.

Moreover, the same arguments imply that for all sufficiently large n the index m 0 defined in (28), associated to this n, satisfies m 0 < 1 10 n. Indeed, otherwise from (28) for m = m 0 we would get

1 m log |T m,a,ω (v 0 )| ≥ 1 m (λ F (a) • m - C 1 ε 2 n) ≥ λ F (a) -5C 1 ε > λ F (a) -ε 0 ,
thus again obtaining a contradiction with (72).

Finally, the product T [m 0 ;n],a,ω is also (2nε , λ F )-hyperbolic. Thus, we can apply to it Lemma 5.4, obtaining from the conclusion of this lemma the corresponding m ∈ [m 0 , n].

Note now that the above arguments can be applied for all n > n 1 , so for each such n we get the corresponding exceptional interval J in,(n) , the corresponding m 0,(n) and the moment m (n) ∈ [m 0,(n) , n] obtained by the application of Lemma 5.4.

We then have the following auxiliary Lemma 5.5. m (n) ≥ 1 2 n for any n > n 1 . Proof. It is easy to show that if the statement of Lemma 5.5 does not hold for some n, it does not hold also for 2n. Indeed, assume m (n) < 1 2 n. Then due to Lemma 5.4 we have

(73) log |v n | -log |v n/2 | ≥ λ F n 2 -4nε .
We already know that m 0,(2n) ≤ 2n 20 < n 2 , so having m (2n) ≥ 2n 2 = n would imply that from n/2 to n we are on the "decreasing" branch of the V -shaped graph for log-length, and thus

log |v n | -log |v n/2 | ≤ -λ F n 2 + 8nε .
This would contradict (73) as ε < 

| n = -λ F .
This completes the proof of the first part of Theorem 1.13.

Remark 5.6. If the initial vector was not fixed, the statement of the one-sided version of Theorem 1.13 would not hold. Moreover, almost surely there exists a residual set of parameters a ∈ J, for each of which there exists a nonzero vector v 0 such that for the norms of its images v n one has lim sup 1 n log |v n | = 0. Now, the conclusions II and III of Theorem 1.19 together imply that for any a ∈ J the product T n,a,ω either is (nε, λ F )-hyperbolic itself, or can be divided into two hyperbolic products. Thus, under the conclusions of Theorem 1.19 we have Lemma 5.7 (W-shape). For any ε > 0 there exists ε > 0 with the following property. Assume that the conclusions of Theorem 1.19 with the given ε are satisfied for some finite product F a (ω n ) . . . F a (ω 1 ). Then for any sequence vm of nonzero vectors such that vm = F a (ω m )(v m-1 ), there exists a continuous piecewise-linear function ϕ(•) with slopes ±λ F and at most one "upwards" break point, such that

∀m = 0, 1, . . . , n log |v m | ∈ U nε (ϕ(m)).
As earlier, this lemma can be seen geometrically in terms of the corresponding graphs (see Fig. 5).

Let us now conclude the proof of Theorem 1.13. As before, (75) implies that for all sufficiently large n we have

(76) 1 n log |v n | < λ F (a) -ε 0 , 1 n log |v -n | < λ F (a) -ε 0 .
Also as before, we can assume that for any ε, ε > 0 for all n sufficiently large the conclusions of Theorem 1.19 hold for the product

T [-n;n],a,ω = F a (ω n ) . . . F a (ω -n ),
and hence Lemma 5.7 can be applied. We will take ε and ε as in (71), and let n 2 be such that the mentioned above statements hold for all n > n 2 .

From now on, for any n > n 2 let m -,(n) < m 0,(n) < m +,(n) be the breakpoints of the function ϕ (n) given for it by Lemma 5.7, the central one being the upwards break point.

Note first that one has m -,(n) < 0 < m +,(n) . Indeed, if one had m +,(n) ≤ 0, this would imply that ϕ (n) is linear on [0, n], and thus ϕ

(n) (n) -ϕ (n) (0) = nλ F . On the other hand, (77) log |v n | -log |v 0 | ≥ (ϕ (n) (n) -ϕ (n) (0)) -2εn
Proposition A.1. In this setting above the following statement holds. There exists a number ρ ∈ R such that for m-a.e. ω ∈ M and every x ∈ R the limit

(82) lim n→∞ 1 n ( Gn,ω (x) -x)
exists and is equal to ρ.

Definition A.2. The number ρ from Proposition A.1 is called rotation number.

Remark A.3. Notice that the rotation number ρ depends on the choice of lifts gω .

Remark A.4. It can happen that the lifts {g ω } cannot be taken continuous in ω.

At the same time, in the case when {g ω } are projectivizations of the transfer matrices of a Schrödinger cocycle defined by a continuous potential, the lifts {g ω } can always be chosen continuously in ω (since any Schrödinger cocycle is homotopic to a constant one).

Remark A.5. Some of the assumptions in Proposition A.1 can be essentially relaxed. For example, one can start with a probability space (M, m) and a measure preserving transformation σ instead on a measure preserving homeomorphism of a compact metric space, or relax the assumption on continuity of g ω . To keep the presentation more transparent, we are not trying to give the statements in the most general form.

Remark A.6. While the case that we consider in this paper in a sense corresponds to the case of linear cocycle (i.e. the maps g ω are projective maps of the circle), in Proposition A.1 the cocycle is non-linear (i.e. we allow arbitrary homeomorphisms of the circle, not necessarily projective). Notice that in fact many of the questions and results that we consider here can also be posted for non-linear case as well. For example, if one reformulates the Furstenberg Theorem as a statement on almost sure exponential convergence of vectors in projective space under random projective dynamics, then non-linear analogs of Furstenberg Theorem are known [A, Bax, DKN, KN, GGKV, M].

Proposition A.1 is certainly well known (see [START_REF] Herman | Une methode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractere local d'un theoreme d'Arnold et de Moser sur le tore de dimension 2[END_REF]Section 5] and [R2] for similar statements), but we provide the proof here for the convenience of a reader. Moreover, note that the function ϕ(ω, x) is in fact 1-periodic in the x variable, and hence as a function of x can be considered as a function on the circle. Indeed, if y = x + k, k ∈ Z, then ϕ(ω, y) = gω (x + k) -(x + k) = gω (x) -x = ϕ(ω, x).

Hence, a function ψ : M × S 1 → R, ψ(ω, t) = ϕ(ω, π -1 (t)), is well defined, and the sum in (83) can be written as is a time-average of a bounded function ψ on a compact space M × S 1 . Now, Krylov-Bogolyubov arguments imply that the map F (ω, t) = (σω, g ω (t)) has an invariant measure η such that the projection of η to the first coordinate of the product M × S 1 gives the measure m. Birkhoff Ergodic Theorem then implies the existence of the limit (84) for η-a.e. point (ω, x) ∈ M × S 1 .

Finally, note that Gn,ω is the lift of G n,ω , and hence for any x, y ∈ R one has ( Gn,ω (x) -x) -( Gn,ω (y) -y) < 1.

Hence, if the limit (84) exists for some point (ω, x), it also exists and takes the same value for any other point (ω, y) on the same fiber. This limit thus defines a function ρ(ω) on M. Finally, as this function σ-invariant, and the measure m is ergodic, this function is m-almost everywhere equal to some constant ρ.

Let us now consider the dependence of the rotation number on a parameter. Namely, assume now that we are given a continuous family g •,• : M × J → Homeo + (S 1 ) of maps as above. Then, we can consider their lifts ga,ω : R → R to be chosen continuously in parameter a ∈ J. The corresponding skew products G a and Ga as well as the fiberwise compositions F n,a,ω and Fn,a,ω then can be defined in the same way as before. The notion of monotonicity can then be applied in this situation, too.

Definition A.7. The family is monotonous if for any ω ∈ M, x ∈ S 1 the function ga,ω (x) is monotonous increasing in a ∈ J.

An important note is that the increments of the images Gn,a ,ω (x) -Gn,a,ω (x) do not depend on a particular choice of lifts ga,ω . Moreover, this increment is a continuous in ω and x (and in fact is a well-defined function of the point x on the circle, not on the real line). Also, dividing by n and passing to the limit, one gets that the difference of the corresponding rotation numbers ρ(a ) -ρ(a) does not depend on the choice of lifts ga,ω , thus getting the following important note.

Remark A.8. Even though the rotation number ρ depends on a particular choice of the lifts ga,ω , the differences of rotation numbers ρ(a )-ρ(a) do not. In particular, different choice of lifts ga,ω leads to a shift of the rotation number ρ(a) by a constant, and intervals of constancy of ρ are independent of the choice of the lifts.

The following result is known in many particular cases, e.g. see [START_REF] Geronimo | Rotation Number Associated with Difference Equations Satisfied by Polynomials Orthogonal on the Unit Circle[END_REF]Theorem 4.8], [Le]. For example, the ergodic Schrödinger cocycles satisfy the assumptions of Theorem A.9; the corresponding statement in the context of Schrödinger cocycles is known as Johnson's Theorem, see [J]. Generalizations to the cases of Jacobi matrices [Ma] and CMV matrices [START_REF] Damanik | Characterization of uniform hyperbolicity and spectra of CMV matrices[END_REF] are also available. Monotone SL(2, R) cocycles homotopic to a constant were treated in [START_REF] Avila | Opening gaps in the spectrum of strictly ergodic Schrödinger operators[END_REF]Proposition C.1]. For the convenience of a reader we provide here the proof of the statement that is just slightly more general, but covers many of those cases.

Theorem A.9. Suppose that a family of SL(2, R) cocycles is given by a continuous map A : M × J → SL(2, R),

where J ⊂ R is an interval of parameters, and A a = A(•, a) : M → SL(2, R) is a cocycle corresponding to the parameter a ∈ J.

Assume that for each ω ∈ M and any vector v ∈ R 2 \{0}, arg A a (ω)v as a function of the parameter a is strictly increasing.

Let g a,ω : S 1 → S 1 be a projective map induced by A a (ω) : R 2 → R 2 , and choose a family of lifts ga,ω : R 1 → R 1 as in Proposition A.1 that depend continuously on the parameter a for each ω. Let ρ(a) be the corresponding rotation number. Then ρ is constant on an open interval U ⊂ J if and only if the cocycle A a is uniformly hyperbolic for all a ∈ U .

The first step in the proof of this theorem does not require the cocycle to be projective: Lemma A.10. Let ga,ω be a monotonous family as above, and assume that for some m, a, a , x, ω one has (85) Gm,a ,ω (x) -Gm,a,ω (x) > 2.

Then ρ(a ) > ρ(a).

Note that a lower bound of an increment by 1 in the assumptions of Lemma A.10 would not suffice, even in the case of one circle homeomorphism. Indeed, consider a very strong North-South map g, and a family of its perturbations g ε := R ε • g • R ε . Then, on the one hand, the rotation number vanishes in a neighborhood of ε = 0. On the other hand, the images of the repelling fixed point x can gain more than a full turn in such a neighborhood: see Fig. 6. In fact, Proposition A.11 below shows that this example is quite instructive. Proof of Lemma A.10. It suffices to consider the case m = 1, otherwise passing to the m-th iteration of the initial system. Now, as ga,ω = G1,a,ω is a lift of a circle homeomorphism, inequality (85) implies that ∀y ga ,ω (y) -ga,ω (y) > 1.

Postponing for the moment the proof of this lemma, let us see that it implies Theorem A.9. Indeed, due to (87) it can be applied to both forward and backward iterations of the vector v. Thus, for an arbitrary α > 0 there exist n, n > 0 such that Gn,α,ω (x v ) -Gn,-α,ω (x v ) > 1, and G-n ,-α,ω (x v ) -G-n ,α,ω (x v ) > 1.

Take an arbitrary y ∈ [ G-n ,α,ω (x v ); G-n ,-α,ω (x v ) -1], and let ω := σ -n ω. Then, Gn ,-α,ω (y) < x -1, Gn ,α,ω (y) > x v , hence Gn+n ,-α,ω (y) < Gn,-α,ω (x v ) -1, Gn+n ,α,ω (y) > Gn,α,ω (x v ), and finally

Gn+n ,α,ω (y) -Gn+n ,-α,ω (y) > Gn,α,ω (x v ) -( Gn,-α,ω (x v ) -1) > 2.

An application of Lemma A.10 concludes the proof.

Proof of Proposition A.11. We will consider the following two cases separately:

Case 1. There is a constant C > 0 and a sequence {n k } of indices such that n k → +∞ as k → +∞, and A 0,n k ,ω ≤ C.

Case 2. We have A 0,n,ω → ∞ as n → +∞.

Consider Case 1 first. Suppose A 0,n k ,ω ≤ C. Let us show (by induction in k ∈ N) that for any small α > 0 there is δ 1 = δ 1 (α, C) > 0 such that for any x ∈ R (88) G-1 0,n k ,ω • Gα,n k ,ω (x) -x ≥ kδ 1 .

Since Ga,m,ω are strictly increasing functions of the parameter a, by compactness arguments for some ε 1 = ε 1 (α) > 0, any ω ∈ M, and any x ∈ R we have gα,ω (x) -g0,ω (x) ≥ ε 1 . and hence (considering the last iteration) for any m > 0, (89) Gα,m,ω (x) -G0,m,ω (x) ≥ ε 1 .

Since G-1 0,n k ,ω is a projectivization of a matrix of a norm at most C, it is a monotone function with derivative bounded away from zero by some constant that depends only on C. Thus we have for some δ 1 = δ 1 (α, C) (90) if y 2 -y 1 ≥ ε 1 , then G-1 0,n k ,ω (y 2 ) -G-1 0,n k ,ω (y 1 ) ≥ δ 1 . In particular, G-1 0,n k ,ω • Gα,n k ,ω (x) -x = G-1 0,n k ,ω • Gα,n k ,ω (x) -G-1 0,n k ,ω • G0,n k ,ω (x) ≥ δ 1 . Take and fix such δ 1 . Assume now that for some k ∈ N and for any y ∈ R we have G-1 0,n k-1 ,ω • Gα,n k-1 ,ω (y) -y ≥ (k -1)δ.

Then using ( 89) and ( 90) we have G-1 0,n k ,ω • Gα,n k ,ω (x) -x = ( G-1 0,n k ,ω • Gα,n k ,ω (x) -G-1 0,n k-1 ,ω • Gα,n k-1 ,ω (x))+ + ( G-1 0,n k-1 ,ω • Gα,n k-1 ,ω (x) -x). The second summand in the right hand side is no less than (k-1)δ 1 by the induction assumption. At the same time, the first one can be rewritten as G-1 0,n k ,ω (y 2 ) -G-1 0,n k ,ω (y 1 ), where y 1 = G0,n k -n k-1 ,σ n k-1 ω (y 0 ), y 2 = Gα,n k -n k-1 ,σ n k-1 ω (y 0 ), y 0 = G0,n k-1 ,ω (x). and joining ( 89) with ( 90) we see that it is greater than δ 1 . We finally get G-1 0,n k ,ω • Gα,n k ,ω (x) -x > δ 1 + (k -1)δ 1 = kδ 1 . This completes the step of induction, and hence proves (88). Now, taking k > 1 δ , we have kδ > 1, and thus (88) implies that Gα,n k ,ω (x) = G0,n k ,ω G-1 0,n k ,ω • Gα,n k ,ω (x) ≥ G0,n k ,ω (x + kδ) > G0,n k ,ω (x + 1) = G0,n k ,ω (x) + 1, proving the conclusion of the Proposition in this case.

Let us now consider Case 2. First, decreasing ε 1 = ε 1 (α) if needed we can be sure that additionally to (89) we also have that for any ω ∈ M, any x ∈ R, and we have g-1 0,ω (g α,ω (x)) > x + ε 1 , gα,ω (g -1 0,ω (x)) > x + ε 1 . Joining the two together (applying one for the first and one for the last iteration), for any m ≥ 2, any x and any ω we get (91) Gα,m,ω (x) ≥ G0,m,ω (x + ε 1 ) + ε 1 .

In the same way (again, reducing the value of ε 1 if necessary) we get for all x, ω , and m ≥ 2 G-α,m,ω (x) ≤ G0,m,ω (x -ε 1 ) -ε 1 .

Now, take n such that the norm A 0,n,ω becomes sufficiently large (we will choose the lower bound later). As we will see, the point x v is close to a lift of the point x-:= x -(A 0,n,ω ) ∈ R. Let x+ < G0,n,ω (x -) < x+ + 1 be the two lifts of the image of the most expanded direction. We will show that, assuming appropriate lower bound for the norm A 0,n,ω , we have (92) Gα,n,ω (x v ) > x+ + 1, G-α,n,ω (x v ) < x.

Together, these estimates will imply the desired Gα,n,ω (x v ) -G-α,n,ω (x v ) > 1.

Let us obtain the first of them. Indeed, due to Lemma 4.14 we have

|x v -x-| ≤ π 2
|A 0,n,ω v|/|v| A 0,n,ω ≤ πK 2 A 0,n,ω .

In particular, provided that A 0,n,ω > πK ε1 , we have |x v -x-| ≤ ε1 2 .

x - x v

x = x v + ε 1

x +

x = Gn,0,ω (x )

x + ε 1 Figure 7. Point x v on the circle and a lower bound G0,n,ω (x v + ε 1 ) + ε 1 for its image Gα,n,ω (x v ).

Hence, x := x v + ε 1 > x-+ ε1 2 . Now, an easy corollary to Lemma 4.14 is that for any A, x we have

(93) dist(f A (x), x + (A)) • dist(x, x -(A)) ≤ π 2 A 2
(it suffices to multiply the first two conclusions, and the numerators cancel out). As x -x-> ε1 2 , we get an upper estimate for the distance from its image to x+ + 1. Indeed, if we have Gα,n,ω (x ) ≤ x+ + 1 -ε1 2 , the left hand side of ( 93) is at least (ε 1 /2) 2 . If A 0,n,ω ≥ π ε1 , having this would imply a contradiction. Adding up, once A 0,n,ω ≥ π max(K,1) ε1 , we have G0,n,ω (x v + ε 1 ) > x+ + 1 -ε 1 2 , and thus we get the desired Gα,n,ω (x v ) > G0,n,ω (

x v + ε 1 ) + ε 1 > x+ + 1 + ε 1 2 > x+ + 1.
The second inequality of ( 92) is absolutely analogous. We have obtained (92), and thus have concluded the proof of the proposition.

As Proposition A.11 is proven, so is Theorem A.9.

1. 1 .

 1 Two examples. Before providing the formal statement of our results let us consider two examples. Example 1. Consider two matrices A, B ∈ SL(2, R), and the family of matrices

Proposition 2. 1 .

 1 For a.e. ω ∈ Ω N and any a ∈ J one has lim sup n→∞ 1 n log T n,a,ω ≤ λ F (a).

  where L = sup y∈R 1 ,a∈J,ω∈Ω | f a,ω (y)| and L p = sup y∈R 1 ,a∈J,ω∈Ω |∂ a fa,ω (y)| are the Lipschitz constants for the maps fa,ω (y) in space and parameter directions respectively. Proof. By induction. The base, m = m , is evident: in this case, left and right hand sides of (21) coincide. For the induction step, once m > m , we decompose the difference |y m ,1 -y m ,2 | = | fā1,ω m (y m ,1 ) -fā2,ω m (y m ,2 )| into two parts:

  N . With large probability (22) holds simultaneously for all possible m 1 , m 2 with 0 ≤ m 1 < m 2 ≤ n and all parameter values that form the grid {b 0 , b 1 , . . . , b N }. Namely, the following statement holds:

4. 4 .

 4 Uniform growth estimates. Here we deduce parts II and III of Theorem 1.19 from Proposition 4.1. Let us recall that "jump intervals" in terms of Proposition 4.1 correspond to the exceptional intervals in Theorem 1.19.

  ), we obtain ∀m = 1, . . . , m log T m,a,ω ≥ λ F (a)m -C 1 2 ε n > λ F (a)m -εn and ∀m = m+1, . . . , n log T [ m;m],a,ω ≥ λ F (a)(m-m)-C 1 2 ε n > λ F (a)(m-m)-εn, where the last inequalities come from the choice of ε . Again, Proposition 2.3 gives the upper bounds ∀m = 1, . . . , m log T m,a,ω < λ F (a)m + nε and ∀m = m + 1, . . . , n log T [ m;m],a,ω < λ F (a)(m -m) + nε. This implies the desired "Uniformity" estimates ∀m = 1, . . . , m log T m,a,ω ∈ U nε (λ F (a)m) ∀m = m + 1, . . . , n log T [ m;m],a,ω ∈ U nε (λ F (a)(m -m)), thus concluding the proof of parts II and III of Theorem 1.19.

A,

  and we get the desired α <π 2 • |vx|/|Avx| A .The second part is obtained from the first one by replacing A with A -1 . For the last part, recall that f A (x) = |vx| 2

Proof.

  Consider first the case m ≤ ε n. For m ≤ m, due to the conclusions of part III we have log T m,a,ω ≤ nε + λ F (a) m, ψ m(m) = m ≤ m, and hence |log T m,a,ω -λ F (a)ψ m(m)| ≤ nε + 2λ F (a) m ≤ (ε + 2λ F (a)ε )n < εn thus guaranteeing the desired (9). On the other hand, once m ≥ m, we have log T m,ai,ω

  The case m ≥ (1 -ε )n is handled in the same way: for m ≤ m, the conclusions of part IV coincide with the conclusions of part III. At the same time, if m ≥ m, one has T m,a,ω = T [ m,m],a,ω T m,a,ω , and hence log T m,a,ω is 2nε + λ F (a)nε -close to λ F (a) m. And the latter is λ F (a)nε -close to λ F (a)ψ m(m), finally implying the desired |log T m,a,ω -λ F (a)ψ m(m)| ≤ (2ε + 2λ F (a)ε )n.

Figure 4 .

 4 Figure 4. While the parameter a varies over a jump interval J i , the x + (a) := x + (T m,ω,a ) makes more than a full turn, staying in a neighborhood of the corresponding image f m,a,ω (x). At the same time, the point x -(a) := x -(T [ m, m ],a,ω ) never enters the interval π(X m,i ) (the arc shown in bold).

Definition 5. 1 .

 1 Given matrices A 1 , . . . , A n ∈ SL(2, R) with A j ≤ M , we say that the product A n . . . A 1 is (r, λ)-hyperbolic if for any 0 ≤ m < m ≤ n for the product T [m,m ] := A m . . . A m+1 one has log T [m,m ] ∈ U r (λ(m -m)).

Figure 5 .

 5 Figure 5. Behaviour of log-norm of iterations of a given vector as in Lemmas 5.2, 5.4, 5.7. Dashed region corresponds to the εnneighborhood

  0≤m≤n |v m |. Now apply previous Lemma 5.2 separately on the intervals [0, m ] and [m , n]. Lemma 5.4 allows us to prove the first part of Theorem 1.13, on one-sided products.Proof of the first part of Theorem 1.13. If (7) holds, then for some ε 0 > 0 λ F (a) -ε 0 .

  Proof of the second part of Theorem 1.13. Let v n := T n,a,ω (v) for all n. Without loss of generality, we can assume that |v 0 | = 1. As in the proof of the first part, it suffices |v n | = -λ F (a).

  Proof of PropositionA.1. Define the displacement function ϕ : M × R → R by ϕ(ω, x) = gω (x) -x.Then, the displacement under n iterations in (82) can be rewritten as a sum of n individual displacements:

Figure 6 .

 6 Figure 6. Behavior of the family R ε • g • R ε with a strong North-South map g; dashed arrows indicate the image of the repeller x of g for positive (left) and negative (right) values of ε.

  λ F 24 . Hence, assuming m (n) < 1 2 n we also get m (2n) < 1 2 • 2n, and by induction m (2 k n) < 1 2 • 2 k n for all k. Note now that (73) can be rewritten as a lower bound for the slope log |v n | -log |v n/2 | n/2 ≥ λ F -8ε .

	Joining such inequalities for n, 2n, 4n, etc., we get
		lim sup k→∞	1 2 k n	log |v 2 k n | ≥ λ F -8ε ,
	and we thus have a contradiction with (72), as 8ε < ε 0 . This completes the proof
	of Lemma 5.5.			
	Now, the inequality m (n) ≥ 1 2 n implies that
	(74)	log |v n/2 | -log |v n/4 | ≤ -λ F	n 4	+ 4nε ,
	or in terms of a slope,			
		log |v n/2 | -log |v n/4 | n/4	≤ -λ F + 16ε .
	Joining such inequalities for n, n/2, n/4, etc., until we hit n 1 , we get the desired
		lim sup n→∞	log |v n | n	≤ -λ F + 16ε .
	Finally, as ε can be chosen arbitrarily small, we finally get
		lim sup n→∞	log |v n | n	≤ -λ F
	and hence, due to Proposition 2.1,
		lim

n→∞ log |v n
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and thus we would get log |v n | -log |v 0 | ≥ (λ F -2ε)n, and this would contradict (76) as 2ε < ε 0 . In the same way we get m -,(n) < 0. Now, in the same way as in the first part, we are going to prove that (78) |m 0,(n) | < 1 10 n.

Indeed, we have

and from (76) we know that

Hence,

and thus

Now, in the same way as in the first part, we are going to prove the auxiliary

Proof. We will prove the conclusion for m +,(n) , the statement for m -,(n) is absolutely analogous. The proof goes in the same way as in Lemma 5.5. Namely, we first note that if its conclusion does not hold for some n > n 2 , it does not hold for 2n neither. Indeed, if we had m +,(n) ≤ n 2 , then we would have

Then, we have m 0,(2n) ≤ n 5 , and if we had m +,(2n) > n, this would imply that ϕ (2n) is linear on the interval [ n 2 , n], and hence

And as ε < λ F 3 , the inequalities ( 79) and (80) contradict each other. Thus, if the conclusion of Lemma 5.8 did not hold for some n > n 2 , it would also be wrong for 2n, and by induction m +,(2 k n) < 1 2 • 2 k n for all k. Note now that (79) can be rewritten as a lower bound for the slope

Joining such estimates for 2 k n, we get

thus obtaining a contradiction with (75). This contradiction proves Lemma 5.8.

Let us now conclude the proof of the second part of Theorem 1.13. Lemma 5.8 together with (78) imply that the function ϕ

in terms of a slope, it means that

Joining such inequalities for n, n/2, n/4, etc., until we hit n 2 , we get the desired lim sup

As ε > 0 can be chosen arbitrarily small, we finally get lim sup

and hence, due to Proposition 2.1,

The asymptotics at -∞ can be handled in the same way. This completes the proof of Theorem 1.13.

Appendix A. Generalized Johnson's Theorem

Suppose that M is a compact metric space, σ : M → M is a homeomorphism, and m is an ergodic invariant Borel probability measure supported on M. Assume also that we are given a continuous map g • : M → Homeo + (S 1 ). Then, one can consider an associated skew product

Next, let us choose for any ω ∈ M a lift gω : R → R of the map g ω ∈ Homeo + (S 1 ),

where π : R 1 → S 1 = R/Z is a natural covering map, in such a way that {g ω (0)} is a bounded measurable (in ω) function (e.g. one can require g ω (0) ∈ [0, 1) for all ω ∈ M). We then can consider the associated lift of the skew product:

Finally, let G m,ω and Gm,ω be the length m fiberwise compositions associated to these skew products:

so that for m > 0 we have Gm,ω = gσ n-1 ω • . . . • gσω • gω .

Then, we have the following

The continuity of the increment in ω thus implies, that there exists a neighborhood V ω such that (86) ∀ω ∈ V, ∀y ga ,ω (y) -ga,ω (y) > 1.

Finally, for a generic ω * ∈ M, its orbit {σ n ω * } visits V with an asymptotic frequency of m(U ) > 0. On the other hand, if during n iterations the orbit has visited U at k moments n 1 < • • • < n k , then it is easy to see from (86) that ∀y Gn,a ,ω * (y) -Gn,a,ω * (y) > k.

Taking a generic ω * , dividing by n and passing to the limit, we get

Let us now pass to the proof of Theorem A.9: the arguments below will start using the projective nature of the cocycle. Denote by A m,a,ω the corresponding fiberwise composition: let

a,ω is the projectivization of A m,a,ω , and Gm,a,ω is the corresponding lift.

Proof of Theorem A.9. If the cocycle is uniformly hyperbolic for some parameter a ∈ J, then the cone condition holds for all parameters from some neighborhood U of a (with stable/unstable cones independent of parameter). Therefore, for all values a ∈ U for any ω ∈ M and any x ∈ S 1 that corresponds to a vector from an unstable cone, the values of Gn,a ,ω will remain on bounded distance from Gn,a,ω for all n ∈ N. Hence, ρ(a) is locally constant for uniformly hyperbolic cocycles. Now assume that the cocycle is not uniformly hyperbolic for some value of the parameter. Without loss of generality we can set this value of the parameter to 0 ∈ J. We need to show that the rotation number ρ(a) cannot be constant in any interval containing 0.

Theorem A.9 certainly holds if M consists of just one periodic orbit of σ. Therefore we assume that this is not the case.

It is known that a cocycle is not uniformly hyperbolic if and only if there exists a Sacker-Sell solution, i.e. for some ω ∈ M, some K > 0, and some unit vector v ∈ R 2 we have (87) |A 0 (σ n ω) • . . . • A 0 (ω)v| ≤ K, and |A -1 0 (σ -n ω) • . . . • A -1 0 (σ -1 ω)v| ≤ K for all n ∈ N, e.g. see [START_REF] Damanik | Characterization of uniform hyperbolicity and spectra of CMV matrices[END_REF]Theorem 1.2].

We will need the following statement.

Proposition A.11. In the setting of Theorem A.9, let ω, v be such that the forward iterations of the vector v, associated to ω, are bounded:

∃K : ∀n ∈ N |A n,0,ω v| ≤ K.

Then for an arbitrary small α > 0 there exists n > 0 such that Gn,α,ω (x v ) -Gn,-α,ω (x v ) > 1, where x v ∈ R is one of the lifted points associated to the direction of the vector v.