
HAL Id: hal-02369304
https://hal.science/hal-02369304

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

3D reconstruction from multi-view VHR-satellite images
in MicMac

Ewelina Rupnik, Marc Pierrot-Deseilligny, Arthur Delorme

To cite this version:
Ewelina Rupnik, Marc Pierrot-Deseilligny, Arthur Delorme. 3D reconstruction from multi-view
VHR-satellite images in MicMac. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,
�10.1016/j.isprsjprs.2018.03.016�. �hal-02369304�

https://hal.science/hal-02369304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ISPRS Journal of Photogrammetry and Remote Sensing 139 (2018) 201–211
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
3D reconstruction from multi-view VHR-satellite images in MicMac
https://doi.org/10.1016/j.isprsjprs.2018.03.016
0924-2716/� 2018 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: ewelina.rupnik@ign.fr (E. Rupnik), marc.pierrot-deseil-

ligny@ensg.eu (M. Pierrot-Deseilligny), delorme@ipgp.fr (A. Delorme).
1 www.intelligence-airbusds.com/www.satimagingcorp.com accessed 09/2017.
Ewelina Rupnik a,⇑, Marc Pierrot-Deseilligny a, Arthur Delorme b

a LaSTIG, IGN, ENSG, Univ. Paris-Est F-94160, Saint-Mande, France
b Institut de Physique du Globe de Paris, Sorbonne Paris Cité, UMR 7154 CNRS, F-75005, Paris, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 September 2017
Received in revised form 29 January 2018
Accepted 13 March 2018
Available online 20 March 2018

Keywords:
VHR-satellite imagery
Multi-view
Bundle block adjustment
Dense image matching
Depth map fusion
This work addresses the generation of high quality digital surface models by fusing multiple depths maps
calculated with the dense image matching method. The algorithm is adapted to very high resolution
multi-view satellite images, and the main contributions of this work are in the multi-view fusion. The
algorithm is insensitive to outliers, takes into account the matching quality indicators, handles non-
correlated zones (e.g. occlusions), and is solved with a multi-directional dynamic programming approach.
No geometric constraints (e.g. surface planarity) or auxiliary data in form of ground control points are
required for its operation. Prior to the fusion procedures, the RPC geolocation parameters of all images
are improved in a bundle block adjustment routine. The performance of the algorithm is evaluated on
two VHR (Very High Resolution)-satellite image datasets (Pléiades, WorldView-3) revealing its good per-
formance in reconstructing non-textured areas, repetitive patterns, and surface discontinuities.
� 2018 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
1. Introduction

The modern high resolution satellites are capable of frequent
revisit times thanks to their pointing agility. Imagery collected only
from nadir view is rich in details but has small ground footprints.
The pointing agility overcomes this potential limitation by allow-
ing the satellite to alter its look direction by a large angle and in
a rapid manner. Other benefits are that, e.g., by adapting the imag-
ing configuration the satellite can collect enhanced quality data by
searching for cloudless conditions; or by providing rapid response
in the event of natural or man-made disasters.

Examples of modern, well-established commercial satellites are
the WorldView 1–4, Pléiades 1A/1B and SPOT 6/7 satellites. Their
typical acquisition modes are (i) the consecutive imaging where
the ground is captured continuously, or (ii) the target mode that
samples the ground with non-contacting patches. Depending on
the adopted acquisition mode, a satellite can view an area covering
up to 1000 � 1000 km2, all in a single pass.1 This necessitates large
viewing angles (up to � 30� in the standard mode, 45� in the
extended mode but also 60� and more if desired) and manifests in
both, less controlled base to height ratio (B=H), varying ground sam-
pling distance (GSD), as well as possible multi-view acquisitions.
While the imaging configurations become more irregular, the
state-of-the-art automated algorithms for image dense matching
rely on a strong assumptions about visual resemblance of respec-
tive image patches Hirschmüller (2008); Pierrot-Deseilligny and
Paparoditis (2006). The resemblance, however, is violated for
wide-baseline, or diachronic acquisitions and the common dense
matching similarity measures are not apt to effectively model such
transformations. Paradoxically, from the standpoint of 3D recon-
struction precision, the larger the B=H, the better the point inter-
section angles, hence the more precise coordinates’ estimation.

The above, the increased availability, and the demand for versa-
tile datasets motivates the research presented in this work. We lay
down a 3D reconstruction pipeline focusing on a global 3D fusion
algorithm, implemented in the free open-source software tool for
photogrammetry – MicMac (Rupnik et al., 2017). The contributions
are:

– unlike most current approaches applied to satellite datasets the
approach is not limited to stereo-pairs processing (Reinartz
et al., 2005; Karkee et al., 2008; Hirschmüller, 2008; Xu et al.,
2010; Kuschk and dAngelo, 2013) but works with multi-view
configurations of varying base lengths and resolutions;

– it is defined in 3D and handles occlusions (Section 3.2);
– it is insensitive to outliers and weighted by the image matching
confidence indicator (Section 3.3.2);

– it is formulated as a discrete, semi-global optimization problem
therefore circumvents the artefacts pertinent to local methods
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while being computationally and memory-use efficient
(Section 3.3.3);

– no geometric constraints (e.g. surface planarity) are assumed
and no auxiliary data (e.g. ground control points) are required.

The implemented methods are tested on numerous multi-view
satellite image configurations using two datasets – a rural zone
captured in a single epoch and an urban zone captured at various
epochs across the year. All results are evaluated qualitatively and
quantitatively by comparing them with ground truths of superior
quality (only urban area).

The publication is organized as follows: Section 2 provides a
concise literature review on state-of-the-art 3D fusion approaches;
Section 3 addresses the reconstruction pipeline available in Mic-
Mac with the focus on the theoretical aspects of the employed
fusion methodology; and finally, the experimental part is included
in Section 4.
2. Related work

Research on depth map fusion (or integration) has a long his-
tory and varies across the applications and scales (i.e. terrestrial,
aerial, satellite). Significant differences are in:

– local or global formulation of the fusion;
– description of the 3D point sample
(e.g. including the spatial context, the scale attribute, a point’s
orientation, a quality indicator).

Local methods perform the fusion considering 3D sample points
independently, or by taking into account a local context. As for the
global methods, the fusion is defined over the entire scene as an
energy functional. The energy typically contains the data term
reflecting the confidence of a 3D point to belong to the surface,
and the regularizing term which favours smooth surfaces. Inclu-
sion of the a priori in form of a regularizing term handles the miss-
ing data and attenuates the noise.

Complex 3D objects. Local approaches. Early examples of surface
fusion are local and based on filtering and averaging schemes. In
Volumetric Range Image Processing (VRIP) by Curless and Levoy
(1996) depths are accumulated in a voxel grid where each voxel
is described by a weighted signed distance of that point to the
nearest range surface along the line of sight of the sensor. The final
surface is an isosurface, i.e. for each surface point its distance value
is constant and equal to zero.

However, simple averaging is susceptible to outliers and
smooths the surface’s high frequency component. To overcome
such artefacts Fuhrmann and Goesele (2011) use the notion of a
point’s scale and calculate a weighted average of the signed dis-
tance functions for points at similar resolutions. Kuhn et al.
(2013) proposes an improved, hybrid version of both the VRIP
and the work of Fuhrmann and Goesele (2011). The authors differ-
entiate between changing 3D point’s quality due to image acquisi-
tion geometry by adding a stochastic component to the distance
function. Hence the fusion is rendered more rigorous. Despite
being precise, all three approaches suffer from a large computa-
tional burden making them inappropriate for big datasets.

Complex 3D objects. Semi-global and global approaches. If no reg-
ularization is adopted such averaging techniques effect in noisy
reconstructions or surface inconsistencies due to the mean dis-
tance field sign changes (Zach, 2008). Consequently, Zach et al.
(2007) and Zach (2008) adopt a global variational approach. The
data term is a signed distance function weighted with depth uncer-
tainty and the regulariser is the first order total variation. As both
methods work on a regular voxel grid kept in the memory, their
scalability to large scenes is questionable (Ummenhofer and
Brox, 2015). In contrast to Zach (2008), Pock et al. (2011) appoints
the total generalized variational (TGV) model with a signed dis-
tance function describing the data and a second order smoothness
term. It privileges piece-wise affine surface thus allows for recon-
struction of slanted surfaces. Ummenhofer and Brox (2015) borrow
the TGV formulation of the regularisation from Pock et al. (2011),
and upgrade the distance function by the surface normal. The
inclusion of the normal vector is said to better preserve surface dis-
continuities. A variational reconstruction and fusion was also stud-
ies by Vu et al. (2012). The pipeline consists of three main steps, i.e.
restitution of the sparse point cloud cloud, initial mesh building
while respecting the visibility constraint and the variational refine-
ment. The variational energy is a function of a mesh-patch photo-
consistency measure. The proposed sequence is suitable for large
scene 3D reconstruction at reasonable processing times.

There exist alternative ways to describe 3D points by implicit
functions. For instance, Papasaika et al. (2011) uses a sparse repre-
sentation for plausible terrain shapes. Local digital elevation model
(DEM) patches are represented as a weighted combination of basis
terrain shapes defined over a local support, allowing to eliminate
incoherent geometries from the fusion (Schindler et al., 2011).
Kazhdan and Hoppe (2013) introduce the so-called indicator func-
tion which takes non-zero values only close to the surface. The
algorithm accepts a set of oriented 3D samples as input, and seeks
the indicator function that best approximates the points’ orienta-
tions. Because it is formulated as a Poisson problem it provides a
global solution while considering all the points at once. Small
and big holes are filled, nonetheless, certain reconstruction arte-
facts are produced (e.g. merging of surface concave elements) as
no acquisition modality, the point’s scale and quality are consid-
ered. In Fuhrmann and Goesele (2011) the distance function is
replaced with a sum of support basis functions. The 3D point’s
scale and orientations are the necessary input as the functions
are derivatives of the Gaussian in the normal direction, parame-
trized by the samples’ scale. Because it is solved locally it is has a
good runtime performance, however, in places where few points
exist the hole-filling fails.

Given several overlapping stereo reconstructions from multi-
views, Hirschmüller (2008) proposes to locally merge neighbour-
ing disparity images by the median average. Kuhn et al. (2016) pre-
sented another straight forward but efficient fusion technique. The
authors remove redundancy and noise via a probabilistic aggrega-
tion step over an octree-based occupancy grid. In analogy, Wenzel
et al. (2014) accumulates the result of multi stereo matching in an
out-of-core octree. The points in high density zones are then fil-
tered by investigating the imaging geometry.

Finally, there are also methods that perform fusion directly
from the image data. Strecha et al. (2006) simultaneously analyse
multiple overlapping images to obtain a complete and occlusion-
free reconstruction. The solution is global and constrained merely
by the photometric cues. Another global example was presented
in Vogiatzis et al. (2005). The energy becomes a function of the
photo-consistency between respective pixels, the distance function
and regularizing term defined over a Markov Random Field graph.
The final surface results from a discrete optimisation algorithm
such as Graph-cuts. Given a visual hull Vogiatzis et al. (2005) are
also capable of modelling the surface occlusions.

2.5D surface fusion. Whereas the above methods reflect the rich-
ness of existing solutions, they are mainly applied to complex 3D
scenes such as small, closed objects, cluttered indoor and outdoor
scenes or aerial acquisitions. Examples of local surface fusion
applied to satellite images are often based on filtering and mean
averaging. For instance, Reinartz et al. (2005) fuses digital surface
models (DSMs) generated from SPOT-5 and SRTM by mean averag-
ing, accompanied by the respective DSM quality indicator. Karkee
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et al. (2008) take two DEMs generated within the SRTM and ASTER
missions and completes them in void places with an erosion algo-
rithm. Xu et al. (2010) create a hybrid product being a weighted
average of a TerraSAR-X DEM and a DEM calculated from ALOS
imagery. In all cases 2.5D surfaces generated from heterogeneous
sensors are exploited to produce a more complete 3D surface.

Next, Papasaika et al. (2011) conceived a local fusion using a
dictionary of implicit functions. Kuschk and dAngelo (2013)
adopted a global energy formulation to fuse depth maps obtained
by heterogeneous satellite sensors. The algorithm is a variational
method, inspired by Pock et al. (2011). Using synthetic datasets
and a World-view 2 images they showed superiority of their
approach to the median-based fusion. Finally, Kuschk et al.
(2016) extend their previous work to implement a new framework
that is multi-resolution, allows for inclusion of quality indicators
and favours locally planar surfaces.

3. Reconstruction pipeline

The reconstruction pipeline divides into three parts: geoloca-
tion refinement, multiple multi-view dense 3D reconstruction
and the fusion (cf. Fig. 1).

The input geolocation parameters are first refined in a RPC-
based bundle block adjustment routine, with or without the
ground control points. Next, the per triplet depth maps are gener-
ated and transferred to the reference frame (RF) of the terrain
geometry. Since the y-parallaxes between all images in the block
had been removed, no further co-registration is necessary and
the reconstructions are perfectly aligned. Finally, the fusion algo-
rithm sweeps across the 2.5D scene to compress the data, remove
the outliers, and pick the most probable Z-value for each position.

3.1. Refinement of sensor’s geolocation

The physical mathematical model describing VHR satellites is
represented by the central perspective projection in the across-
track direction and the orthogonal projection along the track (i.e.
the pushbroom sensor). The time-dependent collinearity equations
describing this model are complex, therefore a common practice is
to replace it with an empirical model. The standard replacement
model is a set of rational polynomial functions (RPC) estimated
from the physical model, with a precision close to that of the refer-
ence model (Tao and Hu, 2001).

The RPCs are nowadays always furnished with the images.
Depending on the satellite’s platform, they guarantee an absolute
geolocation accuracy in range of a few meters (Oh and Lee,
2015), the errors being due to the inaccuracies of on-board direct
Fig. 1. The 3D reconstruction pipeline from satellite imagery in MicMac: a set of images i
the reconstructions are transferred to a reference frame of the terrain geometry (Nuage
georeferencing devices that measure position, attitude and the
velocity of the satellite (Fraser and Hanley, 2005). Moreover, for
large image blocks and multi-temporal acquisitions RPCs reveal
inconsistencies between the stereo-pair, triplets, etc., i.e. their rel-
ative orientation is poorly known, and subject to some refinement.

MicMac resolves the refinement procedure similarly to the bias
compensation method (Fraser and Hanley, 2003; Grodecki and Dial,
2003). Two polynomial corrections functions are defined in image
space and estimated via a bundle block adjustment routine. The
pixel displacement caused by the polynomials are constrained to
be ‘‘explainable” by displacements a small sensor rotation would
have caused (Rupnik et al., 2016). Tie points and ground control
points are the two accepted observations groups.
3.2. Multi-view reconstruction and transfer to terrain geometry

With a set of oriented satellite images the 3D scene is inferred
with a semi-global multi-view stereo reconstruction algorithm
implemented in MicMac (Hirschmüller, 2008; Pierrot-Deseilligny
and Paparoditis, 2006; Rupnik et al., 2017). We choose to perform
the reconstruction in triplets as it is more robust than stereo pro-
cessing and permits to automatically detect the occlusions. For
each triplet the restitution is defined in the image coordinate sys-
tem of the selected master. MicMac calculates the cost of the can-
didate depths in numerous ways – as a function of the correlation
score calculated symmetrically between all possible pairs; calcu-
lated between pairs involving the master image only; or between
all possible pairs while privileging correlation scores that involve
the master. In the performed tests the first strategy was chosen,
e.g. for a triplet, the cost of a depth of a given master image posi-
tion depended on mean of three correlations scores. The triplets
were selected favouring the B=H around 0.15.

Next, the individual reconstruction are transferred to an abso-
lute RF defined as parallel to the ground, with the Z-coordinate
pointing towards the satellites (i.e. terrain geometry). The resolu-
tion of this RF is set to a mean GSD calculated on all satellite
images. The individual reconstructions are moved from image
geometry to the terrain geometry by constructing a triangulated
mesh in the image geometry, followed by linearly interpolating
the Z-values for each position in the absolute RF.

Occlusions caused by objects or shadows and non-textured
areas (e.g. water) introduce noise and outliers to the final 3D
reconstruction. If an initial scene geometry is known, a technique
known as Z-buffer can be adopted (Faugeras and Keriven, 2002)
to identify them and handle accordingly. In the SGM framework,
occlusions are typically predicted by performing a symmetric con-
sistency check in a stereo couple (Hirschmüller, 2008). Otherwise,
s grouped into n-tuples and local reconstruction are carried out (Malt GeomImage);
Bascule) and fused (SMDM).
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a default correlation threshold can be used to separate the corre-
lated from non-correlated zones (Goesele et al., 2006). A more
elaborate approach is to employ robust similarity statistics, for
instance by exploiting multi-views and formularing the correlation
score as a robust combination of each view (Vogiatzis et al., 2005).

MicMac handles occlusions (non-correlating zones in a more
general term) in numerous ways. Apart from the visibility check
based on the Z-buffer approach, or a mask defined by the user,
detection of occlusions is also embedded within the SGM. Similarly
to Campbell et al. (2008), an extra state eNC (cf. Fig. 2 and Eq. (2)) is
introduced to the multi-direction dynamic programming. The ini-
tial masks (i.e. at the lower-most level of the pyramid) contain
no occlusions, and the cost of assigning the eNC state as well as
the cost of transition are set to elevated values. As the matching
progresses to higher pyramid levels, the mask may evolve as the
solver may choose the eNC be the least cost state, hence, identify
occlusions. Once identified, to force the solver keep the already
identified masks as the least costs states, MicMac assigns them
an arbitrary zero cost while the remaining states are given inver-
sely an elevated cost.

Refer to Fig. 3 for an example representing the performance of
this SGM-embedded automated detection of non-correlated areas.
Note that the suppression of noise at the building edges and the
constant depths within the non-textured zones.
3.3. Fusion algorithm

At this stage the algorithm has at the disposal several depth
maps registered in some absolute RF, with their respective normal-
ized cross-correlation (NCC) maps and 2D occlusion masks. The
objective is to combine all this information in an optimal way
and obtain a single depth map.

The processing workflow is presented in Fig. 4. To start with, the
dataset is partitioned into smaller processing blocks that are in the
following executed in parallel. The algorithm starts by depth clus-
tering and outlier removal. It then identifies the most probable
depth within every cluster and launches the multi-directional
dynamic programming. The dynamic programming performs the
typical set of operation, i.e. initialization of the cost structure; cost
fill-in; cost aggregation; and lowest cost depth selection.
3.3.1. Parallelization
Prior to launching the algorithms relevant to fusion, the 3D

scene is partitioned into several blocks to be further processed in
parallel. It allows for a more efficient use of the processor’s cores
as well as avoids the memory overflow. To assure the continuity
at the borders, each block is dilated by � 10%. Within the final
fused depth map the dilated zones are ignored.
Fig. 2. The cost structure with N þ 1 states. The green states correspond to the
candidate depths/disparities, the red state is the extra state reserved for non-
correlated, masked-out areas. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
3.3.2. Depth clustering and outlier removal
The goal of the clustering and outlier removal is twofold:

– to reduce the data quantity
(as the fusion in Section 3.3.3 has a cost of P � k � N2 where P is
the number of pixels, k number of exploited directions and N
the number of depth maps);

– to robustly smooth the surface.

Each planimetric position of the 3D scene (equivalent of a pixel
in a 2.5D depth map) gets an associated cell (cf. Fig. 5). A cell is
composed of N ascending sorted piles, where N represents the
number of depth maps. Hence, each pile stores a depth value and
a corresponding weight. The weights are initialized as

Pds0 ¼ Corrccorr ð1Þ

where Corr is the image matching NCC score transformed to the RF,
ccorr is a parameter that can control the relative importance of high
Fig. 3. Handling non-correlated zones in non-textured, water-like zone (bottom);
and at building discontinuities (top). The gray shaded surface model calculated
from a WV-3 triplet stereo without (b, f) and with (c, g) the eNC state. (d, h) Are the
SGM-inferred masks.



Fig. 4. The fusion algorithm workflow. For each planimetric coordinate there are n-values, corresponding to n-depth maps (here n = 9) of m � k size. All together, as many as
m � k cell structures are composed. Each cell is smoothed with a recursive filter, then most probable depths are selected and passed to multi-directional dynamic
programming.

Fig. 5. Recursive exponential filtering. Vertical and horizontal axes correspond to Z-
and XY-coordinates (i.e. a noisy depth map profile). For each XY-coordinate there is
a cell with np ¼ 7. A group of unique symbols describe the Z values furnished by the
same depth map. The polylines are the filtering results, the line color is equivalent
of the symbols. Top: r ¼ 1; bottom: r ¼ 5. The latter is the value used in the
experiments. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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correlation scores (set to 1:0 in the performed tests). If the position
in question belongs to a mask (cf. Section 3.2) the weight is set to
zero.

To eliminate the outliers, the measurement noise, and limit the
number of candidate depths, a fast approximation of the Gaussian
filter is applied to each cell (both Pds and Z). The approximation is
realized by a recursive exponential filter, see Algorithm 1. The filter
is sensitive to the output GSD, and is parametrised by a r, where
the larger the r the more conservative the filtering (cf. Fig. 5). To
obtain a gaussian, the recursive filter is run two times in a row.

The end effect are smoothed clusters of depths along each cell.
Finally, within each cluster a depth of the highest weight is identi-
fied and selected as the one that will be further processed.
Algorithm 1. Recursive exponential filtering by a fast gaussian
approximation
np – number of piles in a cell

Resol – GSD in XYffiffiffip

Den ¼ r � Resol � 2
. Initialization
Pds0p ¼ Pds00

Z0
p ¼ Z0

0

Pdsnp�1
m ¼ Pdsnp�1

0

Znp�1
m ¼ Znp�1

0

. Propagation from

‘‘bottom to top”

for i ¼ 1; i < np; iþþ do
i i�1
Fac ¼ ðZ0 � Z0 Þ=Den

Pdsip ¼ Pdsi0 þ Pdsi�1

p � expFac
Zi
p ¼ Zi

0 þ Zi�1
p � expFac
end for

. Propagation from ‘‘top

to bottom”

for i ¼ np� 2; i >¼ 0; i��do
i iþ1
Fac ¼ ðZ0 � Z0 Þ=Den

Pdsim ¼ Pdsi0 þ Pdsiþ1

m � expFac
Zi
m ¼ Zi

0 þ Ziþ1
m � expFac
end for

. Ouput
for i ¼ 0; i < np; iþþdo
i i i i
Pds0 ¼ ðPdsp þ Pdsm � Pds0Þ=np

Zi
0 ¼ ðZi

p þ Zi
m � Zi

0Þ=ðnp � Pdsi0Þ

end for
3.3.3. Multi-directional dynamic programming

The fusion algorithm uses the implementation of the multi-
directional dynamic programming available in the MicMac library
(Pierrot-Deseilligny et al., 2016). The optimizer solves for the most
probable depths by minimizing an energy functional
(Hirschmüller, 2008):

CðSÞ ¼
XN
k¼1

CIðekSðkÞÞ þ CTðekSðkÞ; ekþ1
Sðkþ1ÞÞ ð2Þ



Fig. 6. The MVS benchmark dataset. Left: trajectories of the selected acquisitions; middle: the selected area; right: a LiDAR raster over the selected area.

Fig. 7. Four processing scenarios of the MVS benchmark. S1: 4 triplets acquired from a single orbit (1-2-3, 2-3-4, 2-4-5, 4-5-6); S2: 5 triplets acquired from two orbits (S1 +
13-9-10); S3: 9 triplets (S2 + 1-13-2, 3-9-4, 5-10-6, 4-8-5); S4: 13 triplets (S3 + 16-15-13, 3-14-5, 10-11-12). The acquisition B=H ratios vary between 0.1 and 0.35 (e.g. 0.1, 0.2
and 0.35 for [1–2], [1–13] and [3–14], respectively).

Table 1
The MVS benchmark, vertical accuracy assessment on an industrial zone. l	 ;r	 are
the mean and standard deviations after removal of outliers. The outlier rejection
threshold was set to 3 m. All figures are given in [m].

Scenario l	 r	 median NMAD 68:3% quantile Rejection [%]

1 0.08 1.00 0.09 0.81 1.12 10.48
2 0.08 0.96 0.07 0.75 1.03 9.77
3 0.14 0.92 0.12 0.72 0.95 8.86
4 0.12 0.89 0.09 0.66 0.89 8.68

Table 2
The MVS benchmark, vertical accuracy assessment on an residential zone. l	;r	 are
the mean and standard deviations after removal of outliers. The outlier rejection
threshold was set to 3 m. All figures are given in [m].

Scenario l	 r	 median NMAD 68:3% quantile Rejection [%]

1 0.25 1.11 0.18 1.01 1.30 8.86
2 0.23 1.10 0.14 0.99 1.28 8.77
3 0.29 1.09 0.23 0.98 1.27 8.89
4 0.24 1.08 0.16 0.95 1.24 8.79

Fig. 8. MVS benchmark, an extract from the gray-shaded DSM over an industrial
zone. Green ROI is drawn on non-textured surfaces. Scenarios (1)–(4). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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where N is the number of positions (e.g. the sum of all planimetric
coordinates), ekSðkÞ corresponds to a candidate depth (i.e. a state) at

position k, and ekþ1
Sðkþ1Þ a candidate depth at position kþ 1, respec-

tively. CI is the cost of assigning a particular state to the position
k (the data term), and CT is the cost of transition between two states
of the most immediate neighbours k and kþ 1 (the regularizing
term). CðSÞ is the minimum cost of the optimal depths set S, calcu-
lated across all positions.

The multi-directional aspect is carried out along any number of
paths (set to 7 in the performed tests). For each depth candidate i
at position l along a path of length L, the minimum cost results
from an accumulation of the minimum costs along that path for
positions 1 . . . l� 1f g, cf. Eq. (4), and the minimum costs for posi-
tions L . . . lþ 1f g (in analogy to Eq. (4) but running backwards
the path), subtracted by data term as it had been added twice:

Cminðeki Þ ¼ Cþ
minðeki Þ þ C�

minðeki Þ � CIðeki Þ; ð3Þ

Cþ
minðekþ1

i Þ ¼ CIðekþ1
i Þ þMinj2½1;nk �ðCþ

minðekj Þ þ CTðekj ; ekþ1
i ÞÞ: ð4Þ

To avoid the memory overflow by the permanently growing
costs along the path without influencing the local minimum, the
cost of each candidate depth is reduced by the minimum cost at
the previous position:



Fig. 9. MVS benchmark, an extract (compare Fig. 8) from the LiDAR–photogrammetric DSM difference maps over an industrial zone. Scenarios (1)–(4).

Fig. 10. MVS benchmark, an extract from the gray-shaded DSM over an industrial zone. Green ROI is drawn on repetitive structures. Scenarios (1)–(4). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. MVS benchmark, an extract from the gray-shaded DSM over an industrial
zone. Green ROI is drawn over surface discontinuities. The intensities were
multiplied by a scalar to ease the visual interpretation. Scenarios (1)–(4). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12. MVS benchmark, an extract (compare Fig. 11) from the LiDAR–photogr
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Dminðeki Þ ¼ Cminðeki Þ � CðSminÞ: ð5Þ
Ultimately, the costs along all paths r 2 R are summed and the

optimal depth at position k becomes the one with the smallest cost
assigned, see Eq. (6). During the optimisation all costs Dmin are
stored in a dynamic structure, i.e. its size adapts to the number
of depth candidates at each position.

min
ek
i2SðkÞ

Xr¼R

r¼1

Dminðeki2SðkÞÞ
( )

ð6Þ

The fusion cost structure is initialized with the list of cells,
cleaned from noise and outliers in the previous processing steps
(see Section 3.3.2 and Fig. 5). The piles within a cell provide with

the possible states SðkÞ for each kth position, and their correspond-
ing weights form the data term:

CIðekSðkÞÞ ¼ 1� Pdsek
SðkÞ

: ð7Þ

The regularising term is a concave function parametrised by the
depth difference, r and a, cf. Eq. (8). The parameters implement
the following behaviour: the cost will decrease with the diminish-
ing r (i.e. more confidence will have more influence on the solu-
tion); on the contrary, bigger a values will increase the cost and
contribute to faster growing penalties for larger dZ entries (e.g.
applicable to smooth surfaces such as rural zones).
ammetric DSM difference maps over an industrial zone. Scenarios (1)–(4).



Fig. 13. IARPA’s Multi-View Stereo 3D Mapping Challenge contest results presented in Bosch et al. (2017), the LiDAR ground truth and the MicMac result.

Fig. 14. Video dataset. First, middle and last images of the video sequence. The green
ROI corresponds to the area used in the experiments. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 15. Four processing scenarios of the video dataset. S1: a single triplet with
B=H � 0:1; S2: 3 triplets, within triplet B=H � 0:2, between triplets B=H � 0:2; S3: 4
triplets, within triplets B=H � 0:1, between triplets B=H � 0:2; S4: 7 triplets, within
& between triplets B=H � 0:1.

Table 3
Video dataset, vertical accuracy assessment. l	;r	 are the mean and standard
deviations after removal of outliers. The outlier rejection threshold was set to 3 m. All
figures are given in [m].

Scenario l	 r	 median NMAD 68:3% quantile Rejection [%]

1 0.34 0.53 0.35 0.52 0.57 0.25
2 0.12 0.56 0.0 0.38 0.42 2.30
3 – – – – – –
4 0.17 0.22 0.17 0.25 0.22 0.08
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CTðekj ; ekþ1
i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dZ

rreg

s
� 1

" #
� 2 � rreg � a ð8Þ

where dZk;kþ1
i;j ¼ ðekj � ekþ1

i Þ=GSD.
4. Results

The reported results are quantitative and qualitative. The quan-
titative measures correspond to the vertical accuracy calculated as
a difference of LiDAR (DSMLiDAR) and photogrammetric DSMs
(DSMPho). The mean l and standard deviation r are two quality
indicators adapted to errors following a normal distribution. Since
photogrammetric DSMs typically contain outliers, we remove
them with a 3 m-threshold and report the l	;r	 on the filtered
data.

Another approach considers sample quantiles to take into
account non-normal distributions and resist the outliers. The med-
ian (50% quantile), Normalized Median Absolute Deviation
(NMAD), and 68.3% quantile fall in this category (Höhle and
Höhle, 2009).

As for qualitative results, gray shaded DSMs and LiDAR–pho-
togrammetric DSM difference maps are shown.

All computations were done in MicMac. Conversion of the
LiDAR point cloud to a raster format was done in LASTools
(Isenburg et al., 2006).



Fig. 16. Video dataset, the gray-shaded DSMs. Then intensities were multiplied by a scalar in order to ease the visual interpretation. The green ROI corresponds to an extract
presented in Fig. 17. Scenarios (1)–(4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Video dataset, an extract from the gray-shaded DSM (compare Fig. 16). Then intensities were multiplied by a scalar in order to ease the visual interpretation. Scenarios
(1)–(4).

Fig. 18. Video dataset, DSM difference maps with the ‘‘reference” DSM (scenario3).
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Urban area. The urban dataset is a collection of multi-temporal,
multiple view stereo panchromatic images captured with the
WorldView-3 satellite (GSD = 30 cm), accompanied by a LiDAR
ground truth (20 cm raster) (cf. Fig. 6). It was made available pub-
licly within the framework of IARPA’s Multi-View Stereo 3D Map-
ping Challenge2 (Satellite Benchmark JHU/APL, 2016). We refer to it
as the MVS benchmark.

The RPC parameters of the entire dataset (i.e. including images
from all scenarios) were adjusted in a single bundle adjustment
2 www.jhuapl.edu/satellite-benchmark.html.
routine without the use of ground control points. Four acquisition
scenarios were selected for the evaluation, see Fig. 7. In each sce-
nario the multi-view reconstructions are grouped in image triplets,
starting with a 4-triplets combination in a single orbit (S1) and
ending with 13 triplets from multiple orbits (S4). Moreover, within
all scenarios we distinguish industrial and residential area types
(cf. Tables 1, 2).

The positions of the LiDAR and the photogrammetric DSM ras-
ters are of different resolutions and do not coincide in space. The
DSMPho was hence resampled to the resolution of the DSMLiDAR,
whereas the new positions were interpolated with a bilinear inter-

http://www.jhuapl.edu/satellite-benchmark.html
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polator. Note the theoretical accuracy of the derived difference
maps: r2

DSMLiDAR�Pho
¼ r2

DSMLiDAR
þ r2

DSMPho
, thus if we assume

rDSMPho
¼ 0:75 m and rDSMLiDAR

¼ 0:2 m, then rDSMLiDAR�Pho
� rDSMPho

.
Quantitative results of the fusion on the MVS benchmark in an

industrial zone are given in Table 1. The systematic shift between
DSMLiDAR and DSMPho encoded in the means and medians revolves
around 1=3 GSD. The standard deviations and NMADs range from
1.0 m (r	; SC1) to 0.66 m (NMADs, SC4), with the tendency to
decrease when more triplets are merged. The same tendency
applies to the amount of the detected and removed outliers. The
magnitude of NMADs is generally smaller than that of the standard
deviations suggesting that the underlying error distribution does
not follow a gaussian curve. As far as the residential zone is con-
cerned, similar trends manifest with slightly elevated quality indi-
cators as a consequence of the smaller but denser housing (cf.
Table 2).

Visual assessment of the gray shaded DSMPho and the difference
maps reveal details not captured by the quantitative measures. In
Figs. 8 and 9 it is observed that employing additional triplets
improves reconstruction on non-textured surfaces. The perfor-
mance on repetitive structures is also excelled as is visible in
Fig. 10, where merely SC3 and SC4 manage to restitute the checker-
board nature of the rooftop. Finally, the results where multiple
orbit acquisitions are fused prove superior on surface discontinu-
ities by mitigating the smoothing effects on building edges as seen
in Figs. 9, 11, 12.

In Fig. 13 additional comparison against the IARPA’s Multi-View
Stereo 3D Mapping Challenge contest results are shown. Following
the evaluation methodology in Bosch et al. (2017), the metrics
obtained are: ½0:66;0:90;�0:77�m in offsets on XYZ, 0.82 m as
the horizontal RMSE, 4.12 as the errorrms, 0.91 as the errormedian

and 0.53 in the completeness score. Visual inspection reveals a
noisier but apparently more detailed surface reconstruction by
our algorithms.

Rural area. The rural dataset is a Pléiades video acquisition (cf.
Fig. 14) comprising of 18 images, and we refer to it as the video
dataset. The RPC parameters of the 18 images were adjusted in a
single bundle adjustment routine with the use of a few ground
control points. Again, four acquisition scenarios were chosen (cf.
Fig. 15) with the objective to identify the optimal results in terms
of accuracy, by comparing them with a reference dataset. Since no
ground truth was available, out of four scenarios we picked as ref-
erence the DSM of best visual quality (scenario3, cf. Fig. 17).

Quantitative results are presented in Table 3. The figures are
relative and communicate that with the growing number of tri-
plets the noise is diminished. Another message is that larger B=H
within the triplets (scenario2) contribute to higher percent of out-
liers as well as a non-gaussian error distribution.

More interesting is to visually inspect the outcome DSMs. It is
clear from Figs. 16 and 17 that the fused products can handle sur-
faces of little or no texture (see the presence of smoothing artefacts
in Fig. 17, scenario1). Adding more views completes the reconstruc-
tions but generates noise for too large B=H ratios, see scenario2. The
same behaviour can be decoded from the difference maps in
Fig. 18: flat patches in scenario1 characteristic of the smoothing
artefacts; noise and lack of detail in scenario2. Scenarios3 and sce-
nario4 with smaller B=H, especially within the triplets, are indis-
putably the most optimal results.
5. Conclusions

This publication presents a 3D reconstruction pipeline adapted
to modern multi-view satellite acquisitions. The pipeline follows a
refinement of the sensor’s geolocation (via bundle block adjust-
ment), per n-tuplet image dense matching, the terrain geometry
transfer phase and finally the fusion of individual depth maps.
The fusion – the essence of this work – is formulated in a semi-
global optimization framework, takes into account the occlusions
and other non-correlated zones as well as quality indicators result-
ing from n-tuplet image dense matching. The algorithmmakes no a
priori on the resolution of the to-be-fused depth maps hence han-
dles DSMs resulting from different resolution sensors. All the above
is implemented in the free open-source software for photogram-
metry – MicMac.

The pipeline was tested on two datasets acquired with Pléiades
and WordView-3 satellites, and evaluated in a quantitative and
qualitative manner. A slight improvement in the accuracy of the
fused DSMs is observed as the number of merged views increase.
The quantitative assessment, nonetheless, is incapable of revealing
the true advantages of the approach. Qualitative results in form of
gray shaded DSMs show that non-textured areas, and surface dis-
continuities are much better resolved using the fusion approach.

The tested acquisition scenarios also exposed the importance of
the B=H ratios within the individual n-tuplets and between the
neighbouring reconstructions. It was observed that for the former,
ratios revolving around 0.1 provide best outcomes. On the other
hand, the quality of results is less sensitive to the ratios between
reconstructions hence with values relaxed to 0.2 optimal perfor-
mance was achieved.

Future research will concentrate on the automated selection of
image n-tuplets used in the image dense matching as well as their
combination in the fusion process.
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