N

N
N

HAL

open science

MNE: Software for Acquiring, Processing, and
Visualizing MEG /EEG Data

Lorenz Esch, Christoph Dinh, Eric Larson, Denis Engemann, Mainak Jas,

Sheraz Khan, Alexandre Gramfort, Matti Hamélainen

» To cite this version:

Lorenz Esch, Christoph Dinh, Eric Larson, Denis Engemann, Mainak Jas, et al.. MNE: Software for
Acquiring, Processing, and Visualizing MEG/EEG Data. Magnetoencephalography, Springer Inter-

national Publishing, pp.355-371, 2019, 10.1007/978-3-030-00087-5_59 . hal-02369299

HAL Id: hal-02369299
https://inria.hal.science/hal-02369299
Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-02369299
https://hal.archives-ouvertes.fr

MNE: Software for Acquiring, Processing and Visualizing
MEG/EEG Data

Lorenz Esch®P¢, Christoph Dinh®Y, Eric Larson®, Denis Engemannf, Mainak Jas?®, Sheraz
Khan®2h Alexandre Gramfort, Matti S. Himildinen®&"

“Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
b Institute of Biomedical Engineering and Informatics, Technische Universitiit llmenau, limenau, Germany
“Boston Children’s Hospital, Boston, MA, USA
Institute for Medical Engineering, Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
¢Institute for Learning and Brain Sciences, University of Washington, Seattle WA, USA
TINRIA, CEA, Université Paris-Saclay, Palaiseau, France
8 Massachusetts Institute of Technology, Cambridge, MA, USA
"Harvard Medical School, Boston, MA, USA

Abstract

The methods for acquiring, processing, and visualizing Magnetoencephalography (MEG) and
Electroencephalography (EEG) data are rapidly evolving. Advancements in hardware and software
development offer new opportunities for cognitive and clinical neuroscientists but at the same
time introduce new challenges as well. In recent years the MEG/EEG community has developed
a variety of software tools to overcome these challenges and cater to individual research needs.
As part of this endeavour, the MNE software project, which includes MNE-C, MNE-Python,
MNE-CPP, and MNE-MATLAB as its subprojects, offers an efficient set of tools addressing
certain common needs. Even more importantly, the MNE software family covers diverse use case
scenarios. Here, we present the landscape of the MNE project and discuss how it will evolve to
address the current and emerging needs of the MEG/EEG community.

Keywords: Magnetoencephalography (MEG), Electroencephalography (EEG), Software,
Analysis tools, Open-Source, Real-time analysis, Signal processing, Machine Learning

1. MEG/EEG Data Analysis in Research and Clinical Settings

The field of neuroscience is rapidly expanding through interdisciplinary efforts and has enabled
studies of the nervous system at several scales, starting from the molecular level and the study of
single neurons in animals and extending to recording and manipulating large-scale human brain
networks. Brain activity can be studied with a wide variety of temporal and spatial resolutions
using diverse techniques. The research community thus has access to a growing amount of
shared multi-modal as well as multi-scale brain data. MEG and EEG have a unique position in
this endeavor as the only non-invasive means for studying electrophysiological activity. Both
methods can track neuronal dynamics at millisecond resolution and, hence, capture behaviorally
relevant fast changes inaccessible to hemodynamic methods, e.g., functional magnetic-resonance
imaging (fMRI). While MEG can have a higher spatial resolution due to absence of the smearing
effects present in EEG, it is also more selective by favoring signals from cortical pyramidal
neurons in the walls of the sulci (Baillet, 2017). MEG and EEG, therefore, have a complementary
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nature, and it has been suggested that improved results can be obtained when combining the two
methods (Sharon et al., 2007). The research in non-invasive electrophysiology can be systematized
by considering at least two aspects.

First, how MEG and EEG are used depends substantially on the broader practical context of
data acquisition. Common settings range from basic academic research to clinical studies aiming
at diagnostics of individual patients to inform subsequent treatment choices. The interaction with
data and the optimal software tools will, therefore, assume a different form for the researcher
attempting to, e.g, decode low-level visual features from gamma band sensor level dynamics
(Westner et al., 2018) than for a clinician employing MEG for pre-surgical assessment of an
epileptic patient (De Tiege et al., 2012). In the first case, a researcher may want to compose an
appropriate sequence of processing operations that will preserve the effects of interest and lead to
best decoding performance. On the other hand, in clinical practice, a fixed set of tools are required
emphasizing interactive visualization for effective identification of the salient epileptiform activity.
For this purpose, a stand-alone medical software application with a graphical user interface (GUI)
with limited customization options is likely to be preferred.

Second, the MEG and EEG communities follow the recent trend toward data-centric research
in the biomedical sciences (Leonelli, 2016). This trend is characterized by the increasing volume
of publicly available curated scientific data (Poldrack et al., 2017) and their reuse by teams who
have not been involved in the acquisition of the data. Accordingly, new consortia keep emerging
that curate large-scale MEG and EEG datasets (Niso et al., 2016; Zhang et al., 2018; Van Essen
et al., 2013; Taylor et al., 2017). As a result, researchers from diverse backgrounds can now
work on human electrophysiology data without having access to MEG and/or EEG acquisition
infrastructure. A researcher who acquires MEG data in a semantic auditory processing experiment
with a limited number of subjects would need a different set of tools than one who studies cognitive
aging employing thousands of MEG recordings from a database (Taylor et al., 2017; Van Essen
et al., 2013; Niso et al., 2016). The former would use a combination of GUIs for assessment of
data quality, setting annotations, scripting for preprocessing and data analysis backed by reporting
tools for quality assessment. The latter would almost solely rely on scripts, emphasize automated
processing (Engemann and Gramfort, 2015; Jas et al., 2017) and utilize dedicated libraries for
classical machine learning (Pedregosa et al., 2011), deep learning, and specialized forms of data
visualization.

In the following, we will discuss how the research and software development activities in the
MNE community have responded to the variety of needs. We will first briefly summarize the
history of the MNE software (Esch et al., 2018; Gramfort et al., 2014, 2013a; Jas et al., 2018)
and then cover the different MNE packages. We will detail how each of the MNE software
packages responds to the needs of different types of MEG/EEG users. Subsequently, we will
discuss emerging data analysis use cases that require novel innovations in software, or even some
rethinking of the way MEG/EEG data are visualized and analyzed. With this perspective, we
will discuss how the MNE software tools can already partially address these new needs and what
could be a path forward.

2. MNE and its history

MNE is a software package that provides complete data analysis pipelines for MEG/EEG
data processing. In comparison to other (MATLAB-based) software packages for MEG/EEG
data processing, e.g., Brainstorm (Tadel et al., 2011), EEGLAB (Delorme and Makeig, 2004;
Delorme et al., 2011), FieldTrip (Oostenveld et al., 2011), NutMeg (Dalal et al., 2011), and SPM
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(Litvak et al., 2011), MNE comes in multiple flavors, i.e., MNE-C (historically referred simply to
as MNE), MNE-CPP, MNE-MATLAB and MNE-Python, each addressing needs from different
segments of the academic and clinical communities. While the original MNE-C was started
by Matti Haméldinen at MGH in 2001 and made publicly available in 2006, the other MNE
packages started later (MNE-CPP in 2010 and MNE-Python in 2011), incorporating the same
core features as MNE-C, such as direct integration with the anatomical reconstruction provided
by the FreeSurfer software (Fischl et al., 1999).

Figure 1 illustrates the landscape of different MNE flavors and their different roles. All
MNE packages are currently engaged in the original context of MEG/EEG processing (second
quadrant), where “original context” refers to well-established workflows ranging from the actual
experimental design, data acquisition, processing, to analysis for basic research purposes. The
first quadrant includes the MNE-C and MNE-CPP packages that use the C and CPP, a.k.a. C++,
programming languages. Both are used in translational research bringing state-of-the-art methods
to clinical applications and practice. Here, high-level graphical user interface controls provide
tools for clinicians and researchers with minimal or non-existent programming background. The
need for large scale data (big data) analysis is covered by MNE-Python, paving the way for more
computer intensive data science and machine learning approaches (third quadrant). MNE-Python
and its growing support for EEG and machine learning methods has recently enabled large-scale
analysis of clinical EEG in neurology (Engemann et al., 2018). The future tools, discussed in
greater detail in section 4, could specifically respond to the needs of clinical practice powered
by data-driven methods and recycling of consortium data (quadrant four). Different features of
the MNE packages are summarized in Table 1: All packages read and write data in the same file
format, enabling users to use the tool that is best suited for each processing step. In this table, ECD
stands for equivalent current dipole, LCMV for linearly constrained minimum-variance (Van Veen
et al., 1997), DICS for dynamic imaging of coherent sources (Gross et al., 2001), MxNE for
mixed-norm estimates (Gramfort et al., 2013b), MVPA for multivariate pattern analysis (often
referred to as decoding) (KING et al., 2018), BEM for Boundary Element Method, MUSIC for
MU Itiple SIgnal Classification (Mosher and Leahy, 1999), and we refer to (Wipf and Nagarajan,
2009) for details on y-MAP.

As illustrated in Figure 1, MNE-Python offers a unique opportunity to connect the data science
and machine learning communities with the MEG and EEG data processing challenges. This
is presently possible thanks to the modern open source Python tools that are now available for
advanced statistical computations and analysis of big data.

3. The scope and features of the MNE packages

3.1. Off-line analysis with MNE-C GUIs and command line tools

The original MNE-C, conceived and written at the Martinos Center at Massachusetts General
Hospital, consists of command line programs that can be used in shell scripts for automated
processing and two GUI applications for interactive data processing and inspection. MNE-C
supports band-pass, low-pass, and high-pass filtering. The GUI mne_browse_raw also allows
previewing the filtered data, so one can investigate the impact of the filter on the signal, as well as
the interactive creation of the projection operator for the Signal-Space Projection (SSP) method
using a Singular Value Decomposition (SVD) of a selected portion of the data (Uusitalo and
Ilmoniemi, 1997). The same software module can also be used for computing averages over
multiple trials and for the estimation of the noise-covariance matrix.
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Figure 1: The MNE landscape. The quadrants are populated by the four MNE packages based on their individual scope
and key qualifications. The individual MNE packages have slightly different mission statements focusing on difterent user
needs and research questions.

The other GUI mne_analyze allows the interactive alignment of the MRI and MEG coordinate
systems, the so-called coregistration step, as well as the interactive exploration of cortically
constrained source estimates obtained by MNE, dSPM, and sLORETA inverse methods. The
command line tools can be assembled in Unix shell scripts for non-interactive analysis. The usage
of the MNE-C software is primarily described in the PDF manual: https://www.martinos.
org/meg/manuals/MNE-manual-2.7.pdf.

3.2. Off-line analysis with MNE-MATLAB

The MNE-MATLAB toolbox (compatible with MATLAB versions 7.0 or later) started from
a desire of the MNE user community to go beyond the possibilities made available by the
compiled MNE-C tools. It is a collection of m-files to facilitate interfacing with binary file
formats of the MNE software and is redistributed as a part of several MATLAB-based MEG/EEG
software packages (Brainstorm, FieldTrip, NutMeg, and SPM). The included functionality can
be roughly divided into following four categories: (1) High-level reading and writing routines,
which provide interfacing with binary file formats like .fif, .stc, .label, and .w files. (2)
Signal processing routines, which implement the software gradient compensation and signal-space
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Table 1: Overview of the features provided by the different MNE packages (v'= supported).

MNE-
Software package MNE-C MATLAB MNE-CPP  MNE-Python
Data acquisition v
Stand-alone applications with GUI v v
Real-time analysis and visualization v v
Filtering v v v
Signal space projection (SSP) v v v v
Maxwell filtering (SSS) v
Indep. component analysis (ICA) v
Coregistration of MEG and MRI v v
Forward modeling (BEM) v v v
Time—frequency analysis v v
Dipole modeling (single ECD) v v v
Minimum-norm estimation (¢,) v v v v
Beamforming (LCMYV, DICS) v
MUSIC v v
Sparse source imaging (MxNE, y-MAP) v
Surface- and volume-based
spatial morphing v v v
Connectivity estimation v v
Statistics (Univariate, MVPA) v

projection. (3) Utility functions, which include auxiliary functions to reading and writing binary
files, transforming data between coordinate systems, assembling inverse operators, proving coil
definition for various sensor types, etc. (4) Examples demonstrating the use of the toolbox, which
form a basis for user-specific processing routines. The MNE-MATLAB code is available online at
https://github.com/mne-tools/mne-matlab.

3.3. Off-line analysis and scripting with MNE-Python

The growing popularity of the Python stack for data science in academia and industry has
prompted the development of MNE in Python as an alternative for the MNE-C tools. Since its
inception, MNE-Python (Gramfort et al., 2014) has grown from replicating most of the MNE-
C functionality to implementing many popular but also novel advanced analysis tools while
fully supporting EEG analysis. MNE-Python was built to support analysis of multiple imaging
modalities beyond MEG/EEG and now has some support for stereotactic electroencephalography
(sEEG), functional near-infrared spectroscopy (fNIRS), and electrocorticography (ECoG) data as
well.

Figure 2 highlights some of the key features of MNE-Python. It implements input/output
(I0) routines for reading a variety of MEG/EEG file formats (http://martinos.org/mne/
stable/manual/io.html), advanced preprocessing tools such as the Signal Space Separation
(SSS) algorithm, and XDAWN (Taulu and Kajola, 2005; Rivet et al., 2009), a dedicated decoding
module for MEG/EEG (King et al., 2018), Bayesian and sparse source imaging methods (Gramfort
et al., 2013b; Wipf and Nagarajan, 2009), beamforming, and scanning methods such as LCMYV,
DICS or RAP-MUSIC (Van Veen et al., 1997; Mosher and Leahy, 1999; Gross et al., 2001),
statistics (Maris and Oostenveld, 2007; Kriegeskorte et al., 2008), real-time analysis of data (http:
//martinos.org/mne/stable/auto_examples/#real-time-m-eeg-acquisition), and
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Figure 2: MNE-Python: processing and visualizing electrophysiology data

quality assurance and reporting tools (Jas et al., 2018). The decoding module is built to fa-
cilitate the use of the popular scikit-learn (Pedregosa et al., 2011) software, which provides
simple and effective programmatic access to a wide array of classical machine learning algorithms
and procedures in Python. Like scikit-learn, MNE-Python is distributed under a permissive Berke-
ley Software Development (BSD) license and readily supports academic as well as commercial
reusage.

The code is available online at https://github.com/mne-tools/mne-python. More
than 80 people have so far contributed to the MNE-Python source code. Online documentation
is available at http://martinos.org/mne/stable/documentation.html with examples
continuously updated thanks to sphinx and sphinx-gallery (https://sphinx-gallery.
readthedocs.io/en/latest/) packages.

3.4. Acquisition and real-time analysis with MNE-CPP

MNE-CPP provides a cross-platform framework which allows the development of software
applications for real-time MEG/EEG data acquisition, processing and visualization. The project
is open-source BSD licensed (3-clause). It can be used to develop stand-alone applications
on Windows, MacOS, and Linux. MNE-CPP builds upon two external dependencies: The Qt
framework (QtProject, 2018) for GUI programming and the Eigen library (Guennebaud et al.,
2018) for linear algebra. All MNE-CPP tools are designed to function in off-line as well as
in real-time scenarios. In addition to giving experienced C++ developers the opportunity to
create their own applications, MNE-CPP offers pre-developed stand-alone applications with GUIs.
Currently, three applications are being developed: MNE Scan (Esch et al., 2018), MNE Browse,
and MNE Analyze. All three are available as pre-built binaries for Windows, MacOS, and Linux.

MNE Scan is a plug-in based tool that can be used to acquire data from MEG/EEG devices and
store the received data to a file and/or provide real-time data streams. Acquisition and processing
tasks are developed as individual units. The workflow follows a pipeline approach where the user
can select and connect the acquisition plug-in and subsequent real-time processing plug-ins. The
acquisition plug-ins offer connections to MEG (Elekta Neuromag, BabyMEG) and EEG (TMSI
Refa, EEGoSports, gTec USB, BrainAmp, and Natus) devices. It is also possible to stream in
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recorded data from a file to imitate an ongoing measurement session. This is especially useful
when debugging and testing new plug-ins. The processing plug-ins include real-time capable
implementations for temporal filtering, SSP, SPHARA (Graichen et al., 2015), software gradients,
averaging, source localization, connectivity estimation, and a Brain Computer Interface (BCI). A
clinically oriented use case for MNE Scan is its use in the BabyMEG system. The BabyMEG
(Okada et al., 2016) is a 375-channel, whole-head pediatric MEG instrument. It is used in a
clinical environment at Boston Children’s Hospital for both patients and healthy neonates, infants,
and preschool children up to three years of age. Another use case of MNE Scan is the computation
and visualization of source estimates in real-time (Dinh et al., 2015, 2018) via a dedicated plug-in.
The estimated source activity is visualized on a cortical surface reconstructed with the Freesurfer
software (Fischl et al., 1999). Fig. 3 shows a snapshot of MNE Scan during real-time source
localization setup. MNE Scan can also be used in neurofeedback research and applications. For
example, the SSVEP BCI plug-in provides a visual reactive BCI to control a virtual keyboard.

Similar to MNE Scan’s offline counterparts, MNE Browse and MNE Analyze are also inspired
by their MNE-C counterparts. With their reimplementation MNE-CPP targets to make them
future proof, available on Windows machines, more community driven and extensible with new
state-of-the-art analysis methods. Both MNE Browse and MNE Analyze are designed to process
and visualize MEG/EEG data offline and are solely based on MNE-CPP libraries, Eigen and
Qt. MNE Browse functions as a lightweight analysis tool and features basic processing steps
such as the loading and visualization of data, channel management, annotation and temporal
filtering. On the contrary, MNE Analyze provides more sophisticated analysis tools such as dipole
fitting, distributed source localization, and computation of confidence intervals. MNE Analyze’s
underlying architecture implements plug-ins for maintainability and easy feature inclusion. MNE
Browse and MNE Analyze, as part of the MNE-CPP project, are still in an early development
phase. The MNE-CPP code is available online at https://github.com/mne-tools/mne-cpp
and www.mne-cpp.org.

4. The needs for future MEG/EEG data processing

The MNE environment with its different packages is able to cover a wide variety of use
case scenarios. MNE-C will continue to function as the code backbone of MNE-Python and
MNE-CPP. Its longstanding acceptance and tested features throughout the community will keep
guiding new and ported features. MNE-MATLAB will continue to ensure the usage of MNE data
structures in the MATLAB ecosystem dominated by the Fieldtrip, Brainstorm, NutMeg, and SPM
toolboxes. We envision new usage scenarios will emerge at the intersection of already known
practices, imposing new demands for acquiring, processing, and visualizing MEG/EEG data. In
the following we shall discuss a few likely scenarios.

Browsing of remote databases. The advent of large datasets poses new challenges for interac-
tive visualization. In particular, it will not be feasible to duplicate the data on a local workstation.
Currently, users who want to browse through large data sets must restrict themselves to a subset
of data. Subsequently, they would need to load each file separately from the command line
or the GUI menu, disrupting the workflow. Future versions of MEG/EEG data browsers will
therefore have to operate over the network and include functionality that facilitates navigation
through thousands of MEG/EEG recordings. This would at least include an effective file-search,
scheduling functionality to specify a set of files to visit sequentially, as well as cross-data set
navigation controls to enable seamless browsing. In the current software ecosystem, MNE-Python
could most naturally extend to this domain given how much the Python language is used for web

7


https://github.com/mne-tools/mne-cpp
www.mne-cpp.org

O ©O00 0 won P ®mam

x
Plugins. 8 Deslay

MEGO113. W

MEGO112

>

MEGOT11

MEGO122 eI e It
{oenm A vt

§?? {

et

MEGO123
MEGO121 weillb/
MEGO132

MEGO133 Aethirigh
MEGO131 vaw
MEGO143 v»,qw

MEGO142 ywbvy

[ —rr o
1

MEGO141

MEGO213 ay M
MEG212 APram
MEGO211 s~ A n
MEG0222 ~yhulofont
MEG0223 Mty
MEGO221 M WM ApA,
MEGO232 VA
MEG0233
MEG221 A o AN

AT Ty TT YT

- MNE Scan - 0 X

File View Help

O 0000 O wos

&
Phugns. x Display

0 View

Data
[N v [ASubject
v Hbata
v FAMNE data
[ stream data on/off
Interpolation based

Jet
3.70514,7.08226,8.16693
36

[OLoop last data
1

Cubie

Clustered

[430 Plot - Left
230 Plot - Right

Noise
Reduction

View options
[0 Show full sreen
[ Automated rotation
00 show coord. axis

Change scene color:

Light options.
Change lght color:
Change ight ntensity: (0,000 E]
Mnimumiorm Settings
Method:  |dsPm -
Trigger type: |4 -

Figure 3: Real-time source localization setup in MNE Scan: In the presented pipeline (see blue rectangle) the FiffSimulator
imitates a real-time data stream based on pre-recorded data (see upper screenshot). After the data was filtered the data
stream is forwarded to an averaging and covariance plug-in. Subsequently, the averaged (25 moving average) and noise
covariance results are send to the RTC-MNE plug-in. Finally, the source estimates are plotted on an inflated brain surface
mesh and can be made available to connected plug-ins (see lower screenshot).



applications, and the ability to communicate with remotely running Python kernels as done with
the Jupyter software (https://jupyter.org/).

Integration of advanced analysis tools during clinical MEG/EEG acquisition. The search
for biomarkers using machine learning on large, socially heterogeneous samples has become an
active area of research (Allen et al., 2012; Drysdale et al., 2017; Liem et al., 2017; Khan et al.,
2015, 2018). In the near future, medical professionals may develop machine learning models
pre-trained offline and apply these models online during MEG/EEG data acquisition to help detect
abnormal brain signals and supplement diagnostics. Software tools could thus support extensions
for models specified and trained using machine learning tools. In a second, related scenario,
medical doctors and data scientists may work together to include custom data processing routines
at the acquisition level. For example, the clinical experimenter may launch a software pipeline for
automated preprocessing from within the acquisition GUI to obtain clean data and a visual quality
control report (Engemann and Gramfort, 2015; Jas et al., 2018). This could be implemented via
modular extensions of the acquisition software in C++ to execute custom routines written in
Python, thereby integrating MNE Scan and MNE-Python.

General Real-Time Processing. Real-time processing can become of interest as it has the
potential for creating highly dynamic and adaptable paradigms depending mainly on the current
brain state or condition of interest. Neurofeedback enables researchers to test hypotheses about
specific brain conditions, e.g., the state of specific brain areas, by monitoring this condition, and
adapting the experimental interventions accordingly. This opens up a new way to investigate basic
mechanisms of brain functions and can give the subject a chance to learn and modify their neuronal
activity patterns (Wolpaw et al., 1991). Latter is a valuable tool in neurorehabilitation (Mohanty
et al., 2018). Moreover, real-time data analysis allows an early assessment of the measurement
setup, the subject’s response to the introduced paradigm, and the feasibility of a research idea.
Early correction of badly designed measurement setups and paradigms can contribute to saving
time and resources. Thus, the promotion of real-time analysis tools as a preemptive indicator for
problems can become of increasing interest to the MEG/EEG community. A more general and
long-term goal for real-time data analysis can also be found in clinical environments. Here it is of
special interest to further utilize MEG/EEG in clinical diagnosis, where speed is often essential.
Sophisticated analysis tools such as real-time source estimation could lead to a faster diagnosis
and better monitoring of the condition of a patient.

Brain-computer interfaces and hyperscanning. Two emerging approaches in rehabilitation
science, social neuroscience, and computational psychiatry are BCIs (Hohne et al., 2014; Mohanty
et al., 2018) and hyperscanning (Bilek et al., 2017; Ahn et al., 2018; Goldstein et al., 2018;
Zhdanov et al., 2015). It is likely that soon new acquisition paradigms will emerge both for
basic research and clinical practice in which BCI and hyperscanning will be combined, such that
the stimulation will be driven by brain activity of several individuals (Rao et al., 2014; Jiang
et al., 2018). The acquisition software, in this scenario, will need not only modular extensions
for real-time stimulation and machine learning, but also flexible visualization functionality that
supports the appropriate abstractions for co-representing activity from several brains.

Cloud computing. Data analysis aiming at diagnostics is difficult to generalize due to the
different platforms, complex data acquisition, and processing involved. In this context, community
standards will play a crucial role (Gorgolewski et al., 2016; Niso et al., 2018). The newly
established Brain Imaging Data Structure (BIDS) for organizing data is already promising as it
simplifies the process of creating portable pipelines — the so-called BIDS Apps (Gorgolewski
et al., 2017b). As already started by some fMRI software stacks (Esteban et al., 2017a, 2018;
Gorgolewski et al., 2017a; Esteban et al., 2017b; Yarkoni et al., 2011; Glatard et al., 2018), one
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would need to develop cloud based automated pre- and postprocessing applications, that could
even be integrated with acquisition and analysis software platforms. This would significantly
increase the ease and efficiency of acquiring, monitoring, analyzing, and integrating various
types of clinical electrophysiology data with anatomical structures. Tighter integration with
BIDS will allow MNE to interface easily with applications in the cloud but also amongst its
different flavors and with other MEG/EEG analysis software. Acquisition and analysis plug-in
interfaces could be enabled to communicate with the cloud application programming interface to
retrieve preprocessed volume reconstructions and to upload the acquired data again to the cloud.
In addition to source localization, automated cloud-based post-processing will also enable the
extraction of biomarkers to support diagnosis (Engemann et al., 2018). Through the modular
concepts used in the cloud processing pipelines, it will be readily extensible by the scientific
community with new processing steps.

In conclusion, the different MNE projects continue to have specific roles in order to cover all
the varied aspects of MEG/EEG data processing. We envision that many of the new developments
will necessitate integration of several packages for optimal implementation. For example, machine-
learning tools can be readily developed in MNE-Python using large data sets as input and
implemented for clinical use as plug-ins in MNE-CPP. MNE as a whole continues to provide
freely accessible and multi-purpose software tools for the acquisition, processing, and visualization
of MEG/EEG data for both basic and clinical research as well as for clinical applications.
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