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Context

Let Y := (Y (1) , . . . , Y (n) ) be an i.i.d. n-sample du vecteur Y . For every j < k, let us denote:

• L (n) jk (Σ * jk , y) the likelihood of the pairs sample (Y (i) j , Y (i) k ) 1≤i≤n
given by: 

L (n) jk (σ, y) = n i=1 L jk (σ, y (i) ). • L (n) jk (Σ * jk , y) the log-likelihood L (n) jk (Σ * jk , y) = log(L ( 
(i) j , Y (i) k ) i=1,...,n .
Estimator of the covariance matrix Estimator Σ (n) of Σ * is defined by:

Σ (n) jk = argmax |σ|≤1 L (n) jk (σ, y).
(1)

Step 2: precision matrix Θ * Idea : estimate Θ * thanks to the graphical Lasso (Friedman et al. ( 2007)) for the GGM is to maximize the penalized log-likelihood of the Gaussian model.

Θ(n) = argmax Θ 0 log det(Θ) -trace(Θ Σ(n) ) -λ n ||Θ|| 1,off . (2)
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Tools

Step 1: [START_REF] Mei | The landscape of empirical risk for non-convex losses[END_REF], under suitable assumptions, good properties of the population risk can be carried to the empirical risk, even in an non-convex case control of

Σ (n) j,k -Σ * j,k
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Tools

Step 1: [START_REF] Mei | The landscape of empirical risk for non-convex losses[END_REF], control of Σ

(n) j,k -Σ * j,k
Step 2: Ravikumar & al (2011), estimating the concentration matrix under sparsity conditions without specific distributional assumptions, but rather analyze the estimator in terms of the tail behavior of max j,k Σ (H2) Let j < k. Let g be a function:

(n) j,k -Σ * j,k Anne 
σ ∈ [-1 + δ, 1 -δ] → E L (n) jk (σ, y) . • (-1 + δ) et (1 -δ) are not critical points of g ,
• g admits a finite number of critical points,

• all the critical points of g , different from Σ * jk , are non-degenerated, that is:

σ = Σ * jk , g (σ) = 0 ⇒ g (σ) = 0.
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(H3) Technical (not written). The underlying intuition is to limit the influence of "non-edged" terms on edge terms.
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Intermediate result on the estimated covariance matrix Σ (n) Proposition Under (H1) and, (H2), let 0 < ρ < 1. There exist known constants B,

C and D such that if n satisfies n log n ≥ C log B ρ
, then the estimated covariance matrix Σ (n) satisfies:

P Σ (n) -Σ * ∞ ≥ D log n n log B ρ ≤ p(p -1) 2 ρ,
where ||A|| ∞ = max j,k∈{1,...,p}

|A jk | is the infinite norm of matrix A ∈ R p 2 .

Mei et al. (2017)
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Final result about Θ (n) Theorem Under (H1), (H2) et (H3). Let c > 2. There exist known constants B, C and D such that for all n satisfying n log n > f (B, C , D, c, Σ * ) and 

λ n ∝ log n n log Bp c , we have with probability 1 - 1 p c-2 : (a) || Θ (n) -Θ * || ∞ ≤ D log n n log Bp c . (b) E ( Θ (n) ) ⊂ E (Θ * )

Simulations design
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• Detection rate over 50 repetitions and comparaison with naive graphical Lasso directly on truncated data Y. 
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 :: Figure: Représentation graphique des trois graphes utilisés dans cette Anne Gégout, Aurélie Gueudin and Clémence Karmann Network inference for truncated gaussian data

Figure :

 : Figure:Detection rates obtained by our method (estimated truncation points) and by the graphical Lasso applied directly to the truncated data. The configurations of the truncation points are "identical only". Detection rates are obtained over 50 independent repetitions for n = 500 observations of p = 100 variables. "hub" structure; red = true edges.
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