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Dear Editor,

We would like to submit our manuscript entitled

RBF approximation by partition of unity for valuation of options under
exponential Lévy processes

for exclusive consideration of publication as a research paper in Journal of Computational
Science.

The prices of some European and American-style contracts on assets driven by a class
of Markov processes containing, in particular, Lévy processes of pure jump type with infi-
nite jump activity, are obtained numerically, as solutions of the partial integro-differential
equations (PIDEs) they satisfy. This paper overcomes the ill-conditioning inherent in global
meshfree methods by using localized RBF approximations known as the RBF partition of
unity (RBF-PU) method for (PIDEs) arising in option pricing problems in Lévy driven as-
sets. Then, Crank-Nicolson, Leap-Frog (CNLF) is applied for time discretization. We treat
the local term using an implicit step, and the nonlocal term using an explicit step, to avoid
the inversion of the nonsparse matrix. For dealing with early exercise feature of American
option and solving free boundary problem we use the implicit-explicit method combined with
a penalty method. Efficiency and practical performance are demonstrated by numerical ex-
periments for pricing European and American contracts.

Thank you for considering our paper. We appreciate your effort and look forward to your
response.

With best regards

Ali Fereshtian
Reza Mollapourasl (corresponding author, mollapor@oregonstate.edu)
Florin Avram
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Research Highlights

We proposed RBF-PU method for spatial discretization of PIDE to price American and Euro-
pean options under Lévy model. Also, penalty method is used to solve the free boundary problem
arisen in pricing American option. Then, CNLF is applied for time discretisations and we treat the
local term using an implicit step and the nonlocal term using an explicit step to avoid to avoid the
inversion of the nonsparse matrix. These result in a linear algebraic system with a sparse matrix
that has a small condition number. The shape parameter in the RBF affects the accuracy and sta-
bility of the numerical methods. Numerical results confirm that RBF-PU method is less sensitive
to the change of shape parameter. An increase of the number of nodal points and correspondingly
an increase of the number of patches in RBF-PU method also leads to an improvement of the
approximation. The effect of the time discretization is measured by studying the temporal error.
For the American and European option cases where the CNLF scheme is combined with penalty
method, we conclude that the rate of convergence is of at least first order in time for more cases.
Also, numerical results confirm that our scheme is stable and second order convergent in space.
The experiments also demonstrated that European and American option prices with error around
1.0e − 4 can be computed in less than one second on a PC. Thus, the developed method is very
fast and accurate.
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Abstract

The prices of some European and American-style contracts on assets driven by a class of
Markov processes containing, in particular, Lévy processes of pure jump type with infinite jump
activity, are obtained numerically, as solutions of the partial integro-differential equations (PI-
DEs) they satisfy. This paper overcomes the ill-conditioning inherent in global meshfree methods
by using localized RBF approximations known as the RBF partition of unity (RBF-PU) method
for (PIDEs) arising in option pricing problems in Lévy driven assets. Then, Crank-Nicolson,
Leap-Frog (CNLF) is applied for time discretization. We treat the local term using an implicit
step, and the nonlocal term using an explicit step, to avoid the inversion of the nonsparse matrix.
For dealing with early exercise feature of American option and solving free boundary problem
we use the implicit-explicit method combined with a penalty method. Efficiency and practical
performance are demonstrated by numerical experiments for pricing European and American
contracts.

Keywords:Radial basis functions, partition of unity, Option pricing, Lévy processes, Markov pro-
cesses

1 Introduction

It is widely recognized that the classic option pricing model proposed in 1973 by Black and Scholes
in [6] and Merton in [35], does not ideally fit observed empirical market data. Two identified
empirical features have been under much attention, the first one is skewed distribution with higher
peak and heavier tails of the return distribution and the second one is the volatility smile [2].
Jumps are regularly observed in the discrete movement of stock price and these jumps can not be
captured by the log normal distribution characteristic of the stock price in the Black Scholes model.
Therefore an alternative model is necessary to overcome these issued. To resolve these, issue several
models have been proposed in the literature. Among these, the jump diffusion model introduced by
Merton [35] and Kou [30] is one of the most used model. Merton proposed a log-normally distributed
process for the jump-amplitudes, while Kou suggested logdouble-exponentially distributed process.
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These models have finite jump activity, unlike the more general approach with possibly infinite
jump activity – see [12, 18]. Another motivation for our study comes from stochastic volatility
models with jumps. The model proposed by Bates in [5] with jumps only in the value of the
underlying asset is an example of such an approach. More general jump-diffusion models with
stochastic volatility are considered in [22], for example.

A variety of numerical techniques have been proposed for pricing options under both models
with stochastic volatility and models with jumps. In particular, in the case of models with jumps,
we mention the paper by Matache et al. [34], where a finite element method is developed, the
papers by Andersen and Andreasen [2], by Cont and Voltchkova [19], by d’Halluin et al. [21, 52],
and by Clift and Forsyth [17], where finite difference schemes are presented, and the papers by Fang
and Oosterlee [23, 24], where a numerical method based on the characteristic function is proposed.

In models with jumps, the non local integral term leads to dense matrices after discretization [19]
and efficient numerical methods are required for pricing of complex contracts and for calibration of
model parameters. This fact means that fully implicit schemes encounter difficulties such as dense
matrix inversions whereas fully explicit schemes impose stability restrictions [8]. For some solutions
to this problem in [20, 32] authors have used an iterative procedure for solving the discretized
equations, and more efficient approaches using implicit-explicit Runge-Kutta schemes which treat
the integral term explicitly were later proposed by Cont and Voltchkova in [19] and by Briani et
al. [8]. Also, an unconditionally stable alternating direction implicit (ADI) method was proposed
by Andersen and Andreasen in [2].

Option pricing using RBFs was explored in one dimension for European and American options
by Hon et al. [28], [51]. Pettersson et al. [39] presented an RBF based method for multi-dimensional
European options, and American options in both one and two dimensions are investigated by
Fasshauer et al. [26]. All of these papers employ global RBF collocation methods. Global RBF
collocation methods lead to dense linear systems, and computational costs that become prohibitive
as the number of dimensions increase. In order to address the computational cost issues of the
global RBF method, we need to introduce locality. An easy way to do that is to use compactly
supported RBFs, such as the Wendland functions [48], but then the spectral convergence properties
are lost. Here we take another approach, where the infinitely smooth RBFs are still used in the
approximation but over local subregions of the computational domain [37]. The possibility of using
RBFs in a partition of unity scheme was mentioned in [4], further discussed in [49], implemented
for interpolation on the sphere, in the plane, and in three-dimensional space in [15, 16]. Also, we
applied localized partition of unity method for pricing American and European option prices as
well as Greeks in [36].

We introduce below a local method for option pricing problems under Lévy processes, based
on radial basis function partition of unity (RBF-PU) approximation. Some advantages of partition
of unity method based on radial basis function are the flexibility in choosing ansatz spaces and
their good approximation properties. Also, this method helps us to have an sparse system with low
condition number and control the computational cost and run time of the algorithm. The outline
of the paper is as follows.

In the next section, we describe Lévy’s model and partial integro-differential equations (PIDEs)
for pricing European options. Also, American option is formulated as linear complimentary problem
(LCP) then we apply penalty method to solve it. In section 3, the basics of radial basis functions
as well as the partition of unity method based on RBFs and the definition of the differentiation
matrices are introduced. In section 4, RBF-PU method is used to discetize differential operator
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and for integral operator, we use trapezoid rule. Then, (CNLF) is applied for time discretization
and we treat the local term using an implicit step and the nonlocal term using an explicit step to
avoid the inversion of the nonsparse matrix. Finally, in the last section, the accuracy and efficiency
of the proposed method is numerically investigated for European and American options.

2 Option Pricing under the Exponential Lévy Model

Observation of sudden, large movements in the prices of financial assets has led to the use of
stochastic processes with discontinuous trajectories - jump processes - as models for financial assets.
Exponential Lévy models [18] offer analytically tractable examples of positive processes with jumps
which are simple enough to allow a detailed study, and yet complex enough to allow calibrating
the model to market prices of options. The Markov property of the price implies that option
prices are solutions of partial integro-differential equations (PIDEs) which involve, in addition to
a (possibly degenerate) second-order differential operator, a non-local integral term which requires
specific treatment both at the theoretical and numerical level.

We consider here the class of models where the risk neutral dynamics of the underlying asset
is given by St = S0exp((r − q)t + Xt) where Xt is a Lévy process with a Lévy triplet (σ2, γ, ν).
The law of Lévy process is completely determined by its characteristic triplet (σ2, γ, ν), where σ2

is called Gaussian variance, γ is related to the drift, and the Lévy measure satisfies the following
condition

∫

R

min(1, x2)ν(dx) <∞.

The probabilistic interpretation of ν is that ν(dx) gives the expected number of jumps with size
between x and x + dx, which the process makes between time 0 and 1. An infinite activity Lévy
process is described by an infinite number of jumps, that is, ν(R) = ∞.

Example 1. The CGMY process [13] is an infinite activity processes defined by the Levy measure

ν(dx) =























Ce−G|x|

|x|1+Y
dx, x < 0

Ce−Mx

x1+Y
dx, x > 0

(1)

for constants C > 0, G ≥ 0,M ≥ 0, and 0 < Y < 2.

Example 2. In the case Y = 0, a special choice of the exponents G,M yields the subclass of
Variance-Gamma or VG processes, which were introduced earlier by Madan and Seneta (1990) [33]
as time changed Brownian motions.

The standard tool to assign prices to options under Lévy processes consists in changing to a
convenient probability measure and taking the expectation of the discounted prices and define the
pricing function v driven by Xt by

v(τ, x) = e−rτ
E[g(x+ (r − q)τ +Xτ )] (2)

3



where g(·) is the payoff function, τ = T − t is the time to maturity T , and x = log( S
K
) is the log

price of the underlying asset S.
Replace now the infinitely many jumps smaller than ǫ by a Brownian motion, leaving only the

jumps whose magnitudes are larger than ǫ, which are driven by a finite activity Levy model [3]. To
be specific, we define its corresponding Levy process Xt that has the Levy triplet (σ̄2, γ̄, ν̄) given
by

σ̄2 = σ2 +

∫ ǫ

−ǫ

z2ν(dz) (3)

ν̄ = ν1|x|≥ǫ

γ̄ = −1

2
σ2 −

∫

R

(ex − 1− x1|x|≤1)ν̄(dx)

where 1 is the indicator function. Now let

u(τ, x) = e−rτ
E[g(x+ (r − q)τ + X̄τ )]

where u(τ, x) satisfies the following partial integro-differential equation(PIDE)
{

∂τu− Pu = 0, τ ∈ (0, T ];
u(0, x) = g(x), x ∈ R

(4)

where the integro-differential operator P is

Pu(τ, x) = 1

2
σ̄2∂2xu(τ, x)+(r−q− σ̄2

2
−λ(ǫ)ξ(ǫ))∂xu(τ, x)−(r+λ(ǫ))u(τ, x)+

∫

|y|≥ǫ

u(τ, x+y)ν(dy)

where λ(ǫ) =
∫

|z|≥ǫ
ν(dz), ξ(ǫ) = 1

λ(ǫ)

∫

|z|≥ǫ
(ez − 1)ν(dz).

Theorem 1. Let g be Lipschitz: |g(x)− g(y)| ≤ K|x− y|. Let v(τ, x) and u(τ, x) be defined by (2)
and (4), respectively. Then

|v(τ, x)− u(τ, x)| ≤ C

∫

|y|≤ǫ
|y|3(dy)
σ̄2

. (5)

Proof. [19]

Remark 1. If limx→0 ν(x)|x|1+β = a > 0 with 0 ≤ β < 2, then (5) gives

|v(τ, x)− u(τ, x)| ≤ C(β)ǫ

so the approximation error is proportional to ǫ. This case includes all practical examples used in
option pricing such as variance Gamma, NIG, and tempered stable processes [19].

Example 3. Two important examples of payoff functions are

g(x) =

{

max(K −Kex, 0), for put option;
max(Kex −K, 0), for call option.

(6)

In the remaining of this paper we will focus on put options, and as additional boundary conditions
we impose

lim
x→−∞

u(τ, x) = Ke−rτ , lim
x→∞

u(τ, x) = 0. (7)
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For American options, it is well known that for each time τ ∈ [0, T ], there always exists a stock
price x for which early exertion before final time T is advantageous [43]. Therefore the American
option pricing problem can be formulated in the form of an inequality by adopting the linear
complementarity problem (LCP) formulation







∂τu(τ, x)− Pu(τ, x) ≥ 0,
u(0, x) ≤ g(x),
(∂τu(τ, x)− Pu(τ, x))(u(0, x)− g(x)) = 0,

(8)

for (τ, x) ∈ R× (0, T ] and we need to impose the following boundary conditions

lim
x→−∞

u(τ, x) = K, lim
x→∞

u(τ, x) = 0. (9)

For solving the free boundary problem, there are some techniques such as linear programming
[7] or penalty methods presented in [52, 41, 44]. Also, an other method for pricing American
options is the operator splitting method introduced by Ikonen and Toivanen in [29] for American
put option under the Black-Scholes model, and the method is studied by Toivanen in [46] under
the Kou model. In this study, we consider penalty method for solving (LCP) problem (8), so we
use penalty term defined by

δC

u(τ, x) + δ − q(x)

where 0 < δ ≪ 1 is a small regularization parameter, C ≥ rK is a positive constant and q(x) =
K −Kex then we replace problem (8) by the nonlinear PIDE

{

∂τu(τ, x)− Pu(τ, x)− δC
u(τ,x)+δ−q(x) = 0,

u(0, x) = g(x),
(10)

for (τ, x) ∈ R× (0, T ] and also we need to impose boundary conditions (9).

3 Approximation based on RBF-PUM

To avoid mesh generation, in recent years meshless techniques have attracted the attention of
researchers. In a meshless method a set of scattered nodes is used instead of meshing the domain of
the problem. The technique of RBFs is one of the most recently developed meshless methods that
has attracted attention of many researchers in recent years. Radial basis functions are an efficient
tool for solving multivariate scattered data interpolation problems. To interpolate an unknown
function f ∈ C(Ω) whose values on a set X = {x1,x2, ...,xN} ⊂ Ω ⊂ R

d are known, a function of
the form

sf,X(x) =
N
∑

j=1

λjφ(‖x− xj‖), (11)

is chosen, where φ : Ω×Ω → R is a radial basis function and ‖ · ‖ is the Euclidean norm. In Table
1 some globally supported RBFs are listed which are commonly employed in the literature. The
positive constant c appearing in RBFs is called the shape parameter which dictates the flatness
of the radial basis function and also has a key role on the convergence rate of the approximations
and the condition number of the coefficient matrices. For more details about basic properties and
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types of radial basis functions, compactly and globally supported and also their wide applications
in scattered date interpolations, the interested reader would be referred to recent works in this
topic [25, 40, 9, 10].

Name of function Definition

Thin plate splines (TPS) (−1)k+1r2k log(r)
Gaussian (GA) exp(−c2r2)
Invers multiquadrics (IMQ) 1√

(cr)2+1

multiquadrics (MQ)
√

(cr)2 + 1
Conical splines r2k+1

Table 1: Some well-known functions that generate globally supported RBFs

RBFs methods have many advantages but generally coefficients matrix are dense, hence com-
plexity of computations is expensive. In this section we introduces partition of unity method
(PUM) which puts a given set of local approximation spaces together to produce a conforming
global approximation.

Let Ω ⊂ R
d be a bounded set, and let a covering {Ωj}Mj=1 of the region Ω such that Ω ⊂ ⋃M

j=1Ωj .
Also, we define

∀x ∈ Ω I(x) := {j | x ∈ Ωj}, card(I(x)) ≤ K,

where the constant K is independent of the number of patches M .

Definition 1. Let Ω ⊂ R
d be a bounded set. Let {Ωj}Mj=1 be an open and bounded covering of Ω.

This means all Ωj are open and bounded and Ω is contained in their union. Set δj = diam(Ωj) =
supx,y∈Ωj

‖x−y‖2. A family of non-negative functions {wj(x)}Mj=1 with wj(x) ∈ Ck(Rd) is a k-stable
partition of unity respect to cover of Ωj if:

1. supp(wj) ⊆ Ωj

2.
∑

j wj(x) = 1 for x ∈ Ω

3. For every α ∈ N
d
0 with |α| ≤ k there exist a constant Cα > 0 such that for all 1 ≤ j ≤M

‖Dαwj‖L∞(Ωj) ≤
Cα

δαj
.

The weight functions wj are constructed by using Shepard’s method [45] as follow:

wj(x) =
φj(x)

∑

k∈I(x) φk(x)
, j = 1, 2, ...,M (12)

where φj(x) are compactly supported functions with support on Ωj . To guarantee non-negativity
and compact support in Ωj , we define in (12)

φj(x) = φ

(‖x− cj‖
rj

)

, j = 1, 2, . . . ,M, (13)
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where {cj}Mj=1 and {rj}Mj=1 are the centers and radiuses of the circular, spherical or hyper-spherical

patches {Ωj}Mj=1 and where φ is one of the compactly supported functions with minimal degree
described in [48, Corololary 9.14]. Here we consider the Wendland compact supported function [50]

φ(r) = (1− r)4+(4r + 1),

which belongs to C2 for the construction of the weight functions.
The global approximation function su(x), with x ∈ Ω, to the function u(x) is constructed as

su(x) =
M
∑

j=1

wj(x)su,j(x) =
∑

j∈I(x)

wj(x)su,j(x),

where su,j are local interpolants such that su,j(xi) = u(xi) for each node xi ∈ Ωj . Then, the global
PU approximant inherits the interpolation property, i.e. su(xi) = u(xi). Using the cardinal basis
functions

ψj(xi) =

{

1, i = j

0, i 6= j
i = 1, 2, . . . , N, (14)

the local interpolant su,j(x) is an RBF-approximant of type su(x) = Ψ(x)u, on Ωj

where Ψ(x) = [ψ1(x), ψ2(x), · · · , ψN (x)].
For time dependent function u(t,x), we construct the global approximant built up from local

RBF interpolants of type

su(t,x) =
N
∑

j=1

ψj(x)uj(t) = Φ(x)A−1u(t). (15)

For j ∈ {1, . . . ,M}, let J(Ωj) := {k | xk ∈ Ωj} be the set of indices of the node points that
belong to the patch Ωj . For such patch Ωj , the local RBF approximation is given by

su,j(t,x) =
∑

k∈J(Ωj)

ψk(x)uk(t)

where su,j(t,xk) = uk(t) for all nodes xk ∈ Ωj and ψk are cardinal basis functions. Hence, in the
RBF-PUM, we obtain the global approximant for the time-dependent function u(t,x)

su(t,x) =
∑

j∈I(x)

wj(x)su,j(t,x) =
∑

j∈I(x)

∑

k∈J(Ωj)

wj(x)ψk(x)uk(t). (16)

Now, for deriving an error estimation for partition of unity method, we need the following
definitions

Definition 2. For a bounded region Ω fill distance on X = {x1,x2, ...,xN} define as following

hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2,

which can be explained as largest distance that for every x ∈ Ω there is one point xj with this
distance.

7



Definition 3. A subdomain Ωj ⊆ R
d satisfies an interior cone condition if there exists an angle

θ ∈ (0, π2 ) and a radius γ > 0 such that, for all x ∈ Ωj, a unit vector ξ(x) exists such that the cone

C(x, ξ(x), θ, γ) = {x+ λy : y ∈ R
d, ‖y‖2 = 1,yT ξ(x) ≥ cos(θ), λ ∈ [0, γ]}

is contained in Ωj.

Definition 4. Suppose Ω ⊆ R
d is bounded and X = {x1,x2, ...,xN} ⊆ R

d are given. An open and
bounded covering {Ωj}Mj=1 is called regular for (X,Ω) if the following properties are satisfied

1. For each x ∈ Ω, the number of subdomains Ωj, with x ∈ Ωj is bounded by a global constant
C,

2. Each subdomain Ωj satisfies an interior cone condition,

3. The local fill distances hXNj
,Ωj

are uniformly bounded by the global fill distance hX,Ω.

For each positive definite function φ ∈ Ck(Rd) and each area Ω ⊂ R
d there is a function space

Nφ(Ω), the native Hilbert space [42]. The smoothness of φ inherited from the native space via

Nφ(Ω) ⊆ C [ k
2
](Ω). Also, for getting the full approximation order, the weak form of Holder continuity

idea is used, and we define space Ck
v (R

d) as space of all functions such that their derivatives of
order k satisfy Dαu(x) = O(‖x‖v2) for ‖x‖2 → 0. By using the above definitions the following
convergence theorem is derived from [50].

Theorem 2. Suppose φ ∈ Ck
v (R

d) is conditionally positive definite of order m, also, let Ω ⊆ R
d be

open and bounded and X = {x1,x2, ...,xN} ⊆ Ω. Let {Ωj}Mj=1 be a regular covering for (Ω, X) and

let {wj}Mj=1 be k-stable for {Ωj}Mj=1. Then the error between u ∈ Nφ(Ω) and its partition of unity
interpolant is bounded by

|Dαu(x)−Dαsu(x)| ≤ C1h
k+v
2

−|α|

X,Ω |u|Nφ(Ω)

for all x ∈ Ω and all |α| ≤ k
2 .

4 Discretization

In this section, we split the PIDE operator P into two parts as follows

Pu(x, τ) = Du(x, τ) + J u(x, τ),

where D is a differential operator and J is an integral operator defined by

Du(τ, x) = 1

2
σ̄2∂2xu(τ, x) + (r − q − σ̄2

2
− λ(ǫ)ξ(ǫ))∂xu(τ, x)− (r + λ(ǫ))u(τ, x) (17)

J u(τ, x) =
∫

|y|≥ǫ

u(τ, x+ y)ν(y)(dy). (18)

For the spatial variable x, the domain is restricted to a bounded set Ω = [xmin, xmax] and
generate uniform grid points on the truncated region. For given positive integers N and M , let
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△τ = T
M

and △x = xmax−xmin

N−1 . Now, let τm = m△τ for m = 0, 1, ...,M and xn = xmin+(n−1)△x
for n = 1, ..., N . We define u(xn, τm) to be the price at the nth spatial and mth temporal node.

To use the RBF-PUM approximation for spatial discretization of PIDE problems (4) and (10),
we need to compute the effect of applying a spatial differential operator D at the interior node
points. Let L be a derivative operator of order α. By applying of operator L in RBF-PUM
approximation for interior point we get

Lu(τ, x) =
∂|α|

∂xα
u(τ, x) =

∑

i∈I(x)

∑

k∈J(Ωi)

∂|α|

∂xα
[wi(x)ψk(x)]uk(τ)

=
∑

i∈I(x)

∑

k∈J(Ωi)





∑

β≤α

(

α

β

)

∂|α−β|

∂xα−β
wi(x)

∂|β|

∂xβ
ψk(x)



uk(τ). (19)

For composite linear operators like D, we sum up the contributions from each term, and denote
the global differentiation matrix under operator D by D.

To numerical approximation of the integral operator J at each grid point (τk, xi), we first use
transformation z = x+ y, then we have

J u(τk, xi) =
∫

|z−xi|≥ǫ

u(τk, z)ν(z − xi)dz.

Now, let N as a constant to cut off the domain R to a bounded interval (x−N , xN ) where the values
x−N and xN will be chosen based on standard financial arguments, and zero belongs to [x−N , xN ],
and split the integral operator to the following four integrals

J u(τk, xi) =

∫ xli

x−N

u(τk, z)ν(z − xi)dz +

∫ xi−ǫ

xli

u(τk, z)ν(z − xi)dz

+

∫ xLi+1

xi+ǫ

u(τk, z)ν(z − xi)dz +

∫ xN

xLi+1

u(τk, z)f(z − xi)dz (20)

where li and Li are the greatest integers such that

xli < xi − ǫ < xli+1, xLi
< xi + ǫ < xLi+1.

Now these integrals can be approximated using the trapezoidal rule and for evaluating the second
and third integrals, we need the values of u(τk, xi − ǫ) and u(τk, xi + ǫ) to apply the trapezoidal
rule. For doing this since xli < xi − ǫ < xli+1 and xLi

< xi + ǫ < xLi+1, the values u(τk, xi − ǫ)
and u(τk, xi + ǫ) can be approximated by using the linear interpolation on the intervals [xli , xli+1]
and [xLi

, xLi+1] respectively. Finally, by using approximate values for integrals, the integral matrix
under integral operator J is derived and denoted by J.

To evaluate an European option, let Um := [u(τm, x1), u(τm, x2), · · · , u(τm, xN )]⊤ (here ⊤
means transpose) as an approximate value of the solution which can be obtained by using the
following Crank-Nicolson, Leap-Frog (CNLF) time stepping scheme

Um+1 −Um−1

2△τ = D(
Um+1 +Um−1

2
) + JUm, 1 ≤ m ≤M − 1 (21)
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where D is the differentiation matrix associated with the differential operator and J is integral
matrix corresponding to the integral operator. For m = 0 we apply the following scheme

Um+1 −Um

△τ = D(
Um+1 +Um

2
) + JUm. (22)

Also, the initial vector is defined by U0 = [g(x1), g(x2), · · · , g(xN )]⊤ where g(·) is the payoff
function (6). One of the sources of error can arise when we use initial function (6) at grid points,
since this function is discontinuous in their first derivatives. A useful notion in the implementation
of numerical method is that the value of a function on a grid represents average value of the function
over the surrounding grids rather than its value sampled at each grid point by

g(xi) ≈
1

△x

∫ xi+
△x

2

xi−
△x

2

g(x)dx,

and this makes the payoff function smooth at the strike price K, and we use this technique to
improve the accuracy of RBF-PU numerical method especially near the strike price.

For American option, after spatial discretization of differential and integral operators of (10),
the solution can be obtained by using the following (CNLF) time stepping scheme

Um+1 −Um−1

2△τ = D(
Um+1 +Um−1

2
) + JUm + Fm, 0 ≤ m ≤M − 1 (23)

where the initial vector is U0 = [g(x1), g(x2), · · · , g(xN )]⊤ where g(·) is the payoff function (6), and

Fm = [
δC

u(τm, x1) + δ − q(x1)
,

δC

u(τm, x2) + δ − q(x2)
, · · · , δC

u(τm, xN ) + δ − q(xN )
]⊤.

5 Numerical Results

In this section, we present numerical results to show efficiency and performance of RBF-PU method
and discuss more about convergence of proposed technique. All computations are carried in MAT-
LAB with a 3.6 GHz Corei3 processor. Although the proposed scheme works for all radial basis
functions from Table 1 we choose the multiquadric radial basis function for all the numerical exper-
iments. We present absolute errors to check the efficiency and accuracy of RBF-PU method and
for evaluating absolute error we have used reference solutions used in literature. Also, to show the
practical performance of proposed numerical method, we report condition number of linear systems
and CPU time in second.

The accuracy of RBF-methods where the differentiation matrix contains the differentiations of
the shape function highly depends upon the shape parameter c of the basis functions, which is
responsible for the flatness of the functions. For smooth problems, the best accuracy is typically
achieved when c is small, but then the condition number of the linear system becomes very large.
Figure 1 displays the dependence of root mean square (RMS) error on the size of the shape pa-
rameter for European and American options for some common test examples. For computing RMS
error, we selected N = 2048 and M = 2048 as numbers of space and time steps and evaluated
option price as a reference value for both European and American options in the region of interest
[K2 ,

3K
2 ]. We only considered parameter sets 2, 6 and 7 and other sets make similar results. Figure

1 shows that RBF-PU method is less sensitive to the change of shape parameter and we can derive
that c = 2 is a good choice for European options and c = 3 is a good choice for American options.
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Figure 1: Root mean square (RMS) error as function of the shape parameter c for European and
American options.

5.1 European options

This section of numerical results consists in computing European put options with different sets of
parameter values used in literature [31, 47, 1] given in Table 2 in order to verify the convergence and
stability of RBF-PU method combined with three time level (CNLF) discretization. We compare
the numerical values with the Carr-Madan formula [14] as the reference option price.

We employed parameter set 1 to evaluate European put option and numerical results have been
reported in Table 3. In [31] an implicit method is used to evaluate European and American options
under Lévy model. The proposed methods solve partial integro-differential equations for European
options and linear complementarity problems for American options via an operator splitting method
involving linear systems with tridiagonal matrices. Also, in [31] parameter set 1 has been used for
European put option and results reported in Table 3. Comparing results in Table 3 with Table 3
of [31] confirm that RBF-PU method is more accurate than proposed method in [31] and needs
less time and space steps to reach an specific error level. Also, CPU times and condition numbers
presented in Table 3 show the efficiency of RBF-PU method and overcome ill conditioning issue
of global RBF methods. Parameter set 1 has been used in [47] and the resulting (PIDE) is then
solved using a preconditioned BiCGSTAB method coupled with a fast Fourier transform. Results
reported in Table 3 compare favorably with those in Table 8 of [47].

r σ q C G M Y T K

CGMY, parameter set 1, see [31, 47] 0.1 0 0 1 8.8 9.2 1.8 0.25 10
CGMY, parameter set 2, see [1] 0.1 0 0 1 5 5 0.1 1 1

Table 2: Parameter setup for European put options.

Also we used parameter set 2 for different values of Y to evaluate European put option and
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S = 9 S = 10 S = 11

N M Price Error Price Error Price Error time(s) cond

128 64 4.967873 2.9e-1 4.673085 2.8e-1 4.404182 2.6e-1 0.006 53.20
256 128 4.721715 5.2e-2 4.438339 4.8e-2 4.182342 4.4e-2 0.04 131.56
512 256 4.677214 8.3e-3 4.396917 7.0e-3 4.143768 5.9e-3 0.26 286.24
1024 512 4.669093 2.4e-4 4.389674 1.6e-4 4.137306 5.2e-4 1.68 617.86

Ref. Price [14] 4.668846 4.389843 4.137836
Price in [31] 4.671721 4.392112 4.139657
Price in [47] 4.3716708

Table 3: Price of European put options with parameter set 1 and truncated domain is [−5, 5] and
ǫ = 0.07.

numerical results have been reported in Table 4. Parameter set 2 has been used in [1] and in this
paper partial integro differential equation is discretized in space by the collocation method and in
time by an explicit backward differentiation formula for evaluation of European option. Numerical
results reported in Table 2 of [1], and by comparison accuracy and efficiency of RBF-PU method
are confirmed.

5.2 American options

In this section, we consider parameter sets given in Table 5 for evaluation of American put option.
For all test cases, the reference prices for the American options are calculated using the CONV
method described in [32] and given in [38]. For American put option, we consider three different
sets 3, 4 and 5 which in these cases we let Y ∈ (1, 2), Y = 0 and Y ∈ (0, 1) respectively, and
numerical results are given in Table 6 including option price and absolute error at S = 10, CPU
times in second and condition number of linear system of equations.

Also, to increase the rate of convergence in time and space for American option problems, we
implement a Richardson extrapolation method defined by

4u(△τ
2 ,

△x
2 )− u(△τ,△x)

3
,

where u(△τ
2 ,

△x
2 ) refers to the approximate solution by using the RBF-PU method with time step

size △τ
2 and spatial step size △x

2 and u(△τ,△x) refers to the approximate solution with time step
size △τ and spatial step size △x.

In [38] exponential time integration is used for solving American option pricing problem under
infinite activity Lévy models with parameter sets 3, 4 and 5 and the performance of this scheme
is compared with the Crank-Nicolson method and an implicit-explicit method in conjunction with
an extrapolation. In [38] the exponential time integration scheme is superior over the entire range
of errors and reaches an accuracy of the order of 1.2e − 4 in 22.197 seconds, whereas the Crank-
Nicolson algorithm takes 58.669 seconds and the implicit-explicit extrapolation scheme reaches the
same accuracy in 94.297 seconds. By comparing CPU times reported in Table 6, it is clear that
RBF-PU method due to the sparsity of linear system is more faster than the proposed methods in
[38].
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S = 1, Y = 0.1

N M Price Error time(s) cond

128 64 0.06541121 1.8e-3 0.003 2.74
256 128 0.06393296 3.9e-4 0.03 4.02
512 256 0.06361654 8.2e-5 0.27 6.52
1024 512 0.06353348 5.5e-7 1.82 12.57

Ref. Price [14] 0.06353404

S = 1, Y = 0.5

N M Price Error time(s) cond

128 64 0.10627396 3.3e-3 0.003 11.38
256 128 0.10394723 9.8e-4 0.04 24.05
512 256 0.10315908 1.9e-4 0.25 40.28
1024 512 0.10299550 2.8e-5 1.69 81.38

Ref. Price [14] 0.10296690

S = 1, Y = 0.8

N M Price Error time(s) cond

128 64 0.15789424 1.1e-2 0.006 27.03
256 128 0.15130905 3.4e-3 0.04 56.31
512 256 0.14852946 6.3e-4 0.26 93.57
1024 512 0.14789155 2.6e-6 1.66 259.40

Ref. Price [14] 0.14789424

Table 4: Price of European put options with parameter set 2 and truncated domain is [−2, 2] and
ǫ = 0.07 for Y = 0.1 and ǫ = 0.11 for Y = 0.5 and Y = 0.8.
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r σ q C G M Y T K

CGMY, parameter set 3, see [38] 0.07 0.2 0 0.5 7 9 1.4 0.25 10
VG, parameter set 4, see [38] 0.06 0 0 1 8 6 0 1 10
CGMY, parameter set 5, see [38] 0.06 0 0 1 10 8 0.6 1 10
CGMY, parameter set 6, see [31, 38] 0.04 0.15 0 0.5 10 10 1.2 0.25 10
VG, parameter set 7, see [38] 0.06 0 0 4 8 8 0 0.5 10

Table 5: Parameter setup for American put options.

We considered parameter set 6 given in Table 5 for American put option and results presented
in Table 7. Also, in [31] parameter set 6 has been used for American put option and results reported
in Table 5. Comparing results confirm that RBF-PU method needs less time and space steps to
reach an specific error level, and definitely it will be faster than the proposed numerical scheme
discussed in [31].

To show the convergence of the time discretization, we numerically investigate the behavior of
the global temporal errors as a function of ∆τ which is defined by

Maximum Error = max
j

|um(T, xj)− u3 000(T, xj)|, (24)

where um is the numerical solution of European and American options at the spatial nodes xj ∈
(log(12), log(

3
2)) associated with Sj ∈ (K2 ,

3K
2 ) after m time steps, and u3 000 is the corresponding

solution for m = 3000 used as an approximation for the exact solution. Figure 2 displays the
global temporal errors versus ∆τ for sequence of seven increasing time steps m, namely 8, 16, 32,
64, 128, 256, 512 and N = 512 spatial nodes for American and European options. As a first main
observation, the global temporal errors decrease monotonically as M increases or equivalently ∆τ
decreases. Concerning the actual convergence behavior, it is easy to see from Figure 2 that the
temporal errors as a function of ∆τ are bounded from above in each set of parameter by C(∆τ)p

with some moderate constants C where p ≈ 1 for more cases.
Also, to validate that the RBF-PU method is numerically well-behaved, we present the maxi-

mum error convergence with respect to the number of grid points over the region (K2 ,
3K
2 ) in Figure

3. The maximum errors presented in 3 show that errors decrease monotonically as N increases or
equivalently ∆x decreases. Concerning the actual convergence behavior, it is easy to see from Fig-
ure 3 that the temporal errors as a function of N are bounded from above in each set of parameter
by C(N)−p with some moderate constants C where p ≈ 2 for more cases.

5.3 Binary barrier and butterfly options

One of the advantages of the RBF-PU method as presented in this study is that one can deal with
complicated payoffs such as binary barrier and butterfly options without affecting the accuracy.
The numerical experiments confirm this fact. Therefore, in this subsection, we consider a European
binary down-and-out barrier option that is used to pricing a credit default swap by Cariboni and
Schoutens in [11]. The payoff function of the binary down-and-out barrier option is given by

g(x) = 1{x>ln(B
K
)},

where the value B is a barrier level and 1 is the indicator function.
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S = 10, parameter set 3

N M Price Error time(s) cond

128 64 1.216663 5.2e-2 0.006 10.11
256 128 1.251458 1.8e-2 0.04 24.46
512 256 1.268218 1.2e-3 0.26 50.71
1024 512 1.269537 2.1e-5 1.64 99.56

Ref. Price [32] 1.269516

S = 10, parameter set 4

N M Price Error time(s) cond

128 64 0.489189 6.6e-3 0.006 2.33
256 128 0.497642 1.7e-3 0.03 2.71
512 256 0.496501 6.2e-4 0.26 3.70
1024 512 0.495835 3.9e-5 1.67 6.91

Ref. Price [32] 0.495875

S = 10, parameter set 5

N M Price Error time(s) cond

128 64 0.812406 6.9e-2 0.006 4.11
256 128 0.875805 6.1e-3 0.04 9.07
512 256 0.881678 2.7e-4 0.25 19.05
1024 512 0.881959 1.0e-5 1.63 38.57

Ref. Price [32] 0.881949

Table 6: Price of American put options with parameter sets 3, 4 and 5 with truncated domain is
[−3, 3] and ǫ = 0.09.
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Figure 2: Temporal error vs. ∆τ with N = 512 spatial nodes for American and European options.
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parameter sets 6

S = 8 S = 10 S = 12

N M Price Error Price Error Price Error time(s) cond

128 64 2.105294 1.1e-2 0.841094 8.9e-3 0.268801 2.3e-3 0.08 4.80
256 128 2.093481 2.3e-2 0.843376 6.6e-3 0.267985 3.1e-3 0.13 10.79
512 256 2.115072 1.7e-3 0.849632 3.6e-4 0.270562 6.0e-4 0.25 22.82
1024 512 2.116874 9.7e-5 0.850082 8.6e-5 0.271122 4.2e-5 1.69 45.70

Ref. Price [32] 2.116776 0.849996 0.271165

parameter sets 7

S = 9 S = 10 S = 11

N M Price Error Price Error Price Error time(s) cond

128 64 1.292267 3.4e-2 0.780565 2.0e-2 0.458218 1.3e-2 0.003 2.54
256 128 1.322932 3.4e-3 0.798194 2.4e-3 0.468734 2.4e-3 0.03 3.38
512 256 1.325914 4.7e-4 0.800872 2.7e-4 0.470656 5.6e-4 0.24 6.40
1024 512 1.326338 4.6e-5 0.801404 8.0e-4 0.471168 5.3e-5 1.68 12.88

Ref. Price [32] 1.326384 0.800601 0.471222

Table 7: Price of American put options with parameter sets 6 and 7 with truncated domain is
[−3, 3] and ǫ = 0.09.

The corresponding parameters under the variance gamma model are given by

r = 0.0421, σ = 0, q = 0, C =
1

υ̂
, B = 50, T = 1, K = 100

G =





√

θ̂2υ̂2

4
+
σ̂2υ̂

2
− θ̂υ̂

2





−1

, M =





√

θ̂2υ̂2

4
+
σ̂2υ̂

2
+
θ̂υ̂

2





−1

, Y = 0

where σ̂ = 0.20722, υ̂ = 0.50215, and θ̂ = −0.22898. These parameters are also taken in [11]. We
use the truncated domain [−2, 2] of the log price.

In [11] authors used the numerical method developed in [27] for pricing a binary down-and-
in barrier option under the variance gamma model. The price of the binary down-and-in barrier
option in [11] is 0.0253 at S = 100. Then the reference value of the binary down-and-out barrier
option is 0.933474 at S = 100 according to the relationship between two options [31].

Numerical results for European binary down-and-out barrier option obtained by RBF-PU
method are given in Table 8 including option price and absolute error at S = K = 100, CPU
times in second and condition number of arisen linear system of equations. These parameters have
been used in [31] for evaluating values of European binary down-and-out barrier option by the
implicit method with three time levels and results presented in Table 6. Comparing results clearly
confirm that for specific error level, the proposed RBF-PU method needs less number of time and
spatial steps. Also, the option value for European binary down-and-out barrier option is plotted
in Figure 4.

Now, we consider European and American butterfly options to check the efficiency and accuracy
of developed meshfree method. The reason for including a butterfly option is to show that the
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Figure 3: Maximum error convergence with respect to the number of points for American and
European options. The Maximum error is measured over the region (K2 ,

3K
2 ) with N = 3000 and

M = 512 as reference solution.

S = 100

N M Price Error time(s) cond

128 64 0.945296 1.1e-2 0.006 7.12
256 128 0.943196 9.7e-3 0.04 15.30
512 256 0.943335 9.8e-3 0.25 25.51
1024 512 0.933494 2.4e-5 1.63 50.43

Ref. Price [31] 0.933474

Table 8: Price of European binary down-and-out barrier option with truncated domain is [−2, 2]
and ǫ = 0.07.
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Figure 4: Left: The option value for European butterfly option. Right: The option value for
European binary down-and-out barrier option.

method discussed in this paper is rather applicable and provides accurate numerical results for
non-convex payoffs. A butterfly spread is the result of buying call options with strikes K1 and K2

respectively, and selling two call options with strike price K3 = K1+K2

2 , Then, the payoff function
will be

g(x) = max(ex −K1, 0)− 2max(ex −K3, 0) + max(ex −K2, 0).

A European style butterfly is appropriate when the investor thinks large moves in the price of
the underlying asset are unlikely. It usually has a middle strike K3 around the spot price K of the
underlying asset and it pays off when the price of the underlying asset stays close to K. Numerical
results for European and American butterfly options with parameters:

r = 0.1, σ = 0, q = 0, K = 1, T = 1, C = 1, G = 3, M = 5, Y = 0.5

obtained by RBF-PU method are given in Table 9 including option price and absolute error at
S = K = 1, CPU times in second and condition number of arisen linear system of equations.
Also, in Table 10, we report l∞−errors to show the accuracy of RBF-PU method in the region of
interest [K2 ,

3K
2 ] not only on the specific point such as S = K, and for evaluating these errors we

use Carr-Madan formula [14]. The option value for European butterfly is plotted in Figure 4.

5.4 Greeks

In this section our aim is to evaluate the efficiency of the RBF-PU method for computing the Greeks
∆ = ∂v

∂S
and Γ = ∂2v

∂S2 which are important for hedging the option. Delta measures the sensitivity of
the option price to a fluctuation in the underlying asset price while Gamma is the speed at which
the Delta changes with respect to this movement. We plotted in Figures 6 and 7 the Delta and
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European American

N M Price Error time(s) cond Price Error time(s) cond

128 64 0.1766315 3.5e-3 0.003 13.98 0.1994502 6.6e-3 0.006 3.84
256 128 0.1738725 8.2e-4 0.04 29.87 0.2048898 1.1e-3 0.04 8.48
512 256 0.1732450 2.0e-4 0.27 58.54 0.2059969 5.9e-5 0.24 18.02
1024 512 0.1730752 3.0e-5 1.64 147.69 0.2060638 7.0e-6 1.70 36.66

Ref. Price [14] 0.1730448 0.2060568

Table 9: Price of European and American butterfly options at S = 1 with truncated domain [−3, 3]
and ǫ = 0.15 for European option and ǫ = 0.09 for American option.

l∞−errors

N M European American

128 128 1.6e-2 2.2e-2
256 256 5.1e-3 1.1e-2
512 512 1.5e-3 6.2e-3
1024 1024 6.8e-4 1.9e-3

Table 10: l∞−errors for European and American butterfly options with truncated domain [K2 ,
3K
2 ]

and ǫ = 0.15 for European option and ǫ = 0.09 for American option.

Gamma functions against the reference solutions for European and American butterfly options. In
these figures reference solutions are derived from Carr-Madan formula [14].

5.5 Properties of the RBF-PU discretization matrices

If we use global RBF approximation coefficient matrix is dense ordinary and condition number
is very large. Using partition of unity method of RBF introduces sparsity in the discretization
matrices. In Figure 8 the sparsity pattern of the discretized matrix in RBF-PU is shown. Also,
we considered global RBF method for discretization of (4) and condition number of discretized
matrix is given in Table 11 for different sets of parameter and space step sizes. Comparing results
with condition number of localized RBF-PU method shows that linear system of equations arisen
in RBF-PU is well conditioned.

6 Conclusion

We proposed RBF-PU method for spatial discretization of PIDE to price American and European
options under Lévy model. Also, penalty method is used to solve the free boundary problem arisen
in pricing American option. Then, CNLF is applied for time discretisations and we treat the
local term using an implicit step and the nonlocal term using an explicit step to avoid to avoid the
inversion of the nonsparse matrix. These result in a linear algebraic system with a sparse matrix that
has a small condition number. The shape parameter in the RBF affects the accuracy and stability
of the numerical methods. Figure 1 confirms that RBF-PU method is less sensitive to the change
of shape parameter. An increase of the number of nodal points and correspondingly an increase
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Figure 5: Left: The option value for American butterfly option. Right: Early exercise boundaries
for American butterfly option with Y = 0.1 and Y = 0.7.
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Figure 6: Delta and Gamma of European butterfly option against the reference solutions.

20



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

S

D
e
lt
a

American

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−80

−70

−60

−50

−40

−30

−20

−10

0

10

S

G
a
m

m
a

American

 

 
Numerical solution

Reference solution

Numerical solution

Reference solution

Figure 7: Delta and Gamma of American butterfly option against the reference solutions.
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number of non−zero elements = 8166 ( 0.77 % )

Figure 8: The uniform grid with 1024 computational nodes. The partition of unity is performed
using 256 circular patches of equal size. The RBF-PU coefficient matrix that was obtained on this
grid. It contains only 8166 non-zero elements.
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Condition number of RBF-PU Condition number of global RBF

parameter set 1 617.86 2.97e20
parameter set 2, Y = 0.1 12.57 1.31e20
parameter set 2, Y = 0.5 81.38 1.27e20
parameter set 2, Y = 0.8 259.40 7.26e20
parameter set 3 99.56 1.44e21
parameter set 4 6.91 1.15e20
parameter set 5 38.57 6.46e20
parameter set 6 45.70 2.34e20
parameter set 7 12.88 1.49e21

Table 11: Condition number of localized RBF-PU method and global RBF method for different
sets of parameter and N = 1024 as space step size.

of the number of patches in RBF-PU method also leads to an improvement of the approximation.
The effect of the time discretization is measured by studying the temporal error. For the American
and European option cases where the CNLF scheme is combined with penalty method, we conclude
that the rate of convergence is of at least first order in time for more cases. Also, Figure 3 confirms
that our scheme is stable and second order convergent in space. The experiments also demonstrated
that European and American option prices with error around 1.0e−4 can be computed in less than
one second on a PC. Thus, the developed method is very fast and accurate.
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31(9):809–829, 2011.

[39] U. Pettersson, E. Larsson, G. Marcusson, and J. Persson. Improved radial basis function meth-
ods for multi-dimensional option pricing. Journal of Computational and Applied Mathematics,
222(1):82 – 93, 2008. Special Issue: Numerical {PDE} Methods in Finance.

[40] M.J.D. Powell. The theory of radial basis functions approximation in 1990. In W.A. Light,
editor, Advances in Numerical Analysis. Vol. II. Wavelets, Subdivision Algorithms and Radial
Basis Functions, page 105 210. Oxford Univ. Press, London, 1992.

[41] A. Safdari-Vaighani, A. Heryudono, and E. Larsson. A radial basis function partition of unity
collocation method for convection–diffusion equations arising in financial applications. Journal
of Scientific Computing, 64(2):341 – 367, 2015.

[42] Robert Schaback. A unified theory of radial basis functions. Journal of Computational and
Applied Mathematics, 121(1):165 – 177, 2000.

[43] R. Seydel. Tools for Computational Finance. Springer, Berlin, Heidelberg, 4th edition, 2009.

[44] V. Shcherbakov and E. Larsson. Radial basis function partition of unity methods for pricing
vanilla basket options. Computers & Mathematics with Applications, 71(1):185 – 200, 2016.

[45] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceed-
ings of the 1968 23rd ACM National Conference, ACM ’68, pages 517 – 524, New York, NY,
USA, 1968. ACM.

[46] Jari Toivanen. Numerical valuation of european and american options under kou’s jump-
diffusion model. SIAM Journal on Scientific Computing, 30(4):1949–1970, 2008.

[47] Iris R. Wang, Justin W. L. Wan, and Peter A. Forsyth. Robust numerical valuation of European
and American options under the CGMY process. Journal of Computational Finance, 10(4):31–
69, 2007.

[48] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Advances in Computational Mathematics, 4(1):389 – 396, 1995.

25



[49] H. Wendland. Fast evaluation of radial basis functions: Methods based on partition of unity.
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