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FIRST PASSAGE PROBLEMS FOR UPWARDS SKIP-FREE RANDOM WALKS

VIA THE Φ,W,Z PARADIGM

FLORIN AVRAM AND MATIJA VIDMAR

Abstract. We develop the theory of the W and Z scale functions for right-continuous (upwards skip-
free) discrete-time discrete-space random walks, along the lines of the analogous theory for spectrally
negative Lévy processes. Notably, we introduce for the first time in this context the one and two-
parameter scale functions Z, which appear for example in the joint problem of deficit at ruin and
time of ruin, and in problems concerning the walk reflected at an upper barrier. Comparisons are
made between the various theories of scale functions as one makes time and/or space continuous. The
theory is shown to be fruitful by providing a convenient unified framework for studying dividends-
capital injection problems under various objectives, for the so-called compound binomial risk model of
actuarial science.

Key words: skip-free Markovian jump processes; random walks; scale functions; martingales; com-
pound binomial risk model; dividends; capital injections.
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1. Introduction

First passage theory for random walks is a classic topic, excellently treated for example in the
textbooks [Spi13, Fel71, Tak77, Bor12], and this includes the upwards skip-free compound binomial
model of the actuarial literature. However, in light of recent developments in the parallel continuous-
time theory of spectrally negative/upwards skip-free Lévy and Markov additive processes — see for
example [AKP04, Iva11, IP12, Vid13, AIZ16, AGVA17] — it seems worthwhile to revisit this topic.

Indeed, while it is well-known that optimization problems in the discrete setup (which is in many
ways more natural than the continuous one) may be tackled numerically by dynamic programming
algorithms, it is less known that when restricting to the skip-free case, the solutions of a great variety
of first passage problems may be parsimoniously expressed in terms of two families of scale functions,
just like in the continuous-time Lévy case.

Recall that in the Lévy case the scale functions W (q) and Z(q) have been known since [Sup76] and

[AKP04], and that these functions intervene in important optimization problems. For example, W (q)

provides the value function of the classic de Finetti problem of optimizing expected dividends until
ruin with discount factor q [APP07], and Z(q)(·, θ) intervenes for instance in the moment generating
function (as function of θ) of the capital injections [IP12] and in the combined dividend payout-capital
injections problem for a doubly reflected process [APP07, AI17]. These are just two examples from an
ever increasing list of problems [Pis05, Kyp14, AGVA17], which can be now tackled by simple lookup
in the list and using off-shelf packages computing the functions W and Z [Iva11].

It was expected that the first passage theory developed in the world of spectrally negative Lévy
processes, which we call the Φ,W,Z paradigm, should have parallels for other classes of spectrally
negative/skip-free Markov processes. In particular, the three cases listed below, being precisely the
processes with stationary independent increments that exhibit non-random overshoots [Vid15] (modulo
trivial processes with monotone paths), were expected to be very similar:

(i) (discrete-time, discrete-space) right-continuous (i.e. skip-free to the right) random walks, also
known in insurance as the compound binomial model;

(ii) (continuous-time, discrete-space) compound Poisson processes that live on a lattice hZ, h ∈
(0,∞), jumping up only by h (what were called upwards skip-free Lévy chains in [Vid13]);

(iii) (continuous-time, continuous-space) spectrally negative Lévy processes.

However, important steps were missing for the fully discrete setup. Notably, the second scale
function Zv(·, w) was absent from the previous literature, and we provide below for the first time its
generating function (z-transform) (17).

A second contribution of our paper is spelling out the connections between the three types of
first passage problems listed above. In particular, we provide in Appendix B a concise table featuring
side-by-side some of the salient features of the Φ,W,Z theory for the three types of process (i)-(ii)-(iii)
delineated above. It may serve as an inexhaustive summary and a quick reference; for the complete
exposition, the main body of the text must be consulted.

A third contribution is showing the convenience of using the Φ,W,Z theory for solving dividends-
capital injections problems – see Sections 6 and 7.

Now, the doubly discrete (in time and space) random walk risk model is defined by [Ger88, Shi89]:

Xn = X0 + cn−
n∑
i=1

Ci, n ∈ N0,

where X0, taking values in Z, is the initial capital, c ∈ N is the premium rate and the Ci, i ∈ N,
take values in N0 and are independent, identically distributed random variables with probability mass
function pk = P (C1 = k) for k ∈ N0. One advantage of the discrete setup over the more popular
continuous time models is the possibility to replace the Wiener-Hopf factorization by the conceptually
simpler factorization of Laurent series (see for example [BF02] and [Xin04]); another advantage is that
one has access to Panjer recursions for computing compound distributions.
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The results simplify considerably for the upwards skip-free compound binomial model obtained
when c = 1 ([Qui04, BPR10, Mar01] [Spi13, passim] [CP16, Section 4.1] among others):

(1) Xn = X0 + n−
n∑
i=1

Ci, n ∈ N0,

that we now consider as having been fixed and to which we specialize all discussion henceforth. We
insist throughout that p0 > 0.

Notation-wise, we let

p̃(z) := EzC1 =

∞∑
k=0

pkz
k, z ∈ (0, 1],

denote the probability generating function of the claims. Then, for n ∈ N, (in the obvious notation)

Ez
∑n
i=1 Ci =

[
p̃(z)

]n
= (p0+(1−p0)p̃C|C≥1(z))n, which makes it manifest that

∑n
i=1Ci, the total claims

arising from n time periods, has a compound binomial distribution, explaining the name compound
binomial model: at each instant in discrete time, a positive claim either occurs or not, with probability
1− p0 and p0, respectively, independently of the sizes of the positive claims.

Remark 1. By the independence of the claims, we may also write, for n ∈ N0:

E
[
z
∑n
i=1(Ci−1)

]
=

(
p̃(z)

z

)n
=⇒

∞∑
m=0

vmE
[
z
∑m
i=1(Ci−1)

]
=

1

1− vp̃(z)/z
, v ∈

(
0,

z

p̃(z)

)
.

The last expression, called the “unrestricted generating function” in [BF02, Eq. (8)], identifies already

potential singularities as the roots of the Lundberg equation [Lun03] p̃(z)z = v−1. The smallest (positive)
root of this equation plays a central role in our story — see next section.

Next, we will denote by

(2) τ−b = inf{t ≥ 0 : Xt ≤ b} and τ+
b = inf{t ≥ 0 : Xt ≥ b},

respectively, the first passage times below and above a level b (with inf ∅ =∞).

Remark 2. Note this differs slightly from the usual definition of these quantities for a spectrally
negative Lévy process, say U . There one replaces t ≥ 0 by t > 0 and ≤ b (≥ b) by < b (> b); and, of
course, X by U . When considering τ±b for a spectrally negative Lévy process U , we shall mean these
quantities with the latter replacements having been effected.

Lastly, for convenience, we assume given a family of measures (Px)x∈Z with corresponding expec-
tation operators (Ex)x∈Z, for which: (i) Px(X0 = x) = 1 for all x ∈ Z; and (ii) the Ci, i ∈ N, have the
same law under all the Px, x ∈ Z, as they do under P = P0.

Remark 3. The discrete-time discrete-space compound binomial model is embedded into continu-
ous time via subordination (time-change) by an independent homogeneous Poisson process N . In
precise terms, allowing also a scaling of space, we have the following correspondence between the right-
continuous random walk X of (1) and the upwards skip-free Lévy chain of [Vid13, Sec. 2] that we will
here denote by Y :

X  Y : Yt := hXNt , t ∈ [0,∞),

where h ∈ (0,∞) is space scaling. In particular, denoting the intensity of N by γ, the Lévy measure
λ of Y is given by λ = γ

∑
i∈Z\{1} piδh(1−i); and if we denote the Laplace exponent of Y by ψ (so

ψ(β) = logE[eβYt ]
t for β ∈ [0,∞)), then ψ(β) = γ[eβhp̃(e−βh) − 1]. Note that the mass of the Lévy

measure λ is γ(1− p1), which may be strictly less than γ.

Remark 4. In the following, when the τ±b appear in the context of the upwards skip-free Lévy chain
Y , they are to be interpreted in the sense of (2) with Y replacing X.
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Here is now a brief guide to the contents. In Sections 2, 3 and 4, we review, respectively (with v
indicating discounting):

(1) the smooth one-sided first passage problem, which introduces the Lundberg root ϕv (analogue
of Φ(q) from the Lévy theory);

(2) the non-smooth one-sided first passage problem, which involves the ruin and survival proba-
bilities Ψv, Ψv;

(3) the smooth two-sided first passage problem, where the fundamental scale function Wv first
appears.

We turn then to new material in Section 5, computing the generating function (z-transform) of
the second hero of first passage theory: the Zv(·, w) scale function. This is introduced via the problem
of deficit at ruin: we provide the analogue (15) of the following two-sided exit identity for a spectrally
negative Lévy processes (in standard notation):

Ex[e−qτ
−
0 +θX(τ−0 ); τ−0 < τ+

b ] = Z(q)(x, θ)− W (q)(x)

W (q)(b)
Z(q)(b, θ),

with its beautiful probabilistic interpretation [IP12, Cor. 3]. We also determine the analogue (21) of
the formula [Kyp14, Eq. (8.9)] (again for a spectrally negative Lévy process, in standard notation)

Ex[e−qτ
−
0 ; τ−0 <∞] = Z(q)(x)− q

Φ(q)
W (q)(x), q > 0,

which is interesting, for example, since it reveals that the two protagonists of the “reflected” and
“absorbed” smooth passage problems, Z(q) and W (q), have the same asymptotics at ∞, up to a
constant. A distinguishing element of the scale functions Wv and Zv(·, w), in the present context,
are explicit recursions available for their computation: see (12) and (16), respectively. Section 6
discusses some important applications, like the de Finetti dividends optimization problem, and the
optimization of dividends for the doubly reflected process. These are complemented by illustrative
numerical examples in Section 7. Finally, note that while our motivation for this investigation comes
chiefly from risk models in the insurance context, the results presented are general and hence more
widely applicable.

2. Smooth one-sided first passage problem: the Lundberg equation

The first key observation is that for the first passage upwards, the stationary independent in-
crements and skip-free properties imply a multiplicative structure; thus, for integer x ≤ b, and for
v ∈ (0, 1], we have

(3) Ex

[
vτ

+
b ; τ+

b <∞
]

= ϕb−xv ,

where

ϕv := E
[
vτ

+
1 ; τ+

1 <∞
]

=
∞∑
k=1

vkP [τ+
1 = k] ∈ (0, v].

Conditioning at time 1, we obtain

ϕv = v E
[
E1−C1 [vτ

+
1 ; τ+

1 <∞]
]

= v

∞∑
k=0

pkϕ
k
v = vp̃(ϕv),

which reveals that ϕv appearing in (3) satisfies the Lundberg equation [CGS00, Eq. (3.3)], [GSY10,
Eq. (6.8)]:

(4)
ϕv
p̃(ϕv)

= v.
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Alternatively, this relation may be derived by looking for exponential martingales of the form
(vtξ−Xt)t∈N0 , for fixed v, and ξ from (0, 1]: (vtξ−Xt)t∈N0 is a martingale iff ξ

p̃(ξ) = v; and then applying

optional sampling.

Remark 5. The function (0, 1] 3 ξ 7→ p̃(ξ)/ξ = EξC1−1 is strictly convex, equal to 1 at 1, and tending

to ∞ at 0. It follows that the equation (in ξ ∈ (0, 1]) p̃(ξ)
ξ = v−1 has as its unique solution ϕv ∈ (0, 1),

when v < 1 (furthermore, in this case, ϕv < v), whereas in the case v = 1, this equation has one or
two solutions (one of which is always 1), according as to whether EC1 ≤ 1 or EC1 > 1. In the latter
case X drifts to −∞, and ϕ1 ∈ (0, 1) is the smallest solution to ξ = p̃(ξ) (in ξ ∈ (0, 1]). Altogether,
this gives a continuous strictly increasing bijection ϕ : (0, 1]→ (0, ϕ1].

Remark 6. If for q ∈ [0,∞), we let Φ(q) be the largest zero of ψ− q, then we see from Remark 3 that

ϕv = e−hΦ(γ(v−1−1)) for all v ∈ (0, 1].

Remark 7. Note that (4) identifies τ+
1 as a Lagrangian type distribution [CKF06]. Indeed the distri-

bution of τ+
1 may be obtained using the Lagrange inversion formula

ϕv =

∞∑
n=1

vn

n!

[(
d

dw

)n−1

p̃(w)n

]
w=0

=

∞∑
n=1

vn

n
pn∗(n− 1),

where for n ∈ N, pn∗ is the n-fold convolution of the distribution p with itself. More generally, for
b ∈ N,

ϕbv = b

∞∑
n=b

vn

n
pn∗(n− b),

yielding Kemperman’s formula [Kem61] for the distribution of τ+
b :

P [τ+
b = n] =

b

n
pn∗(n− b) =

b

n
P [Xn = b], n ∈ N≥b.

3. Non-smooth one-sided first passage problem: ruin and survival probabilities; the
Lundberg recurrence

For initial capital x ∈ Z, the finite time and eventual ruin probabilities are defined by:

Ψ(n;x) := Px[τ−−1 ≤ n] for n ∈ N0, Ψ(x) := lim
n→∞

Ψ(n;x) = Px[τ−−1 <∞];

similarly we introduce the finite time and perpetual survival probabilities:

Ψ(n;x) := Px[τ−−1 > n] for n ∈ N0, Ψ(x) := lim
n→∞

Ψ(n;x) = Px[τ−−1 =∞].

Of course Ψ(n;x) + Ψ(n;x) = 1, Ψ(x) + Ψ(x) = 1, and one has the recursions, valid for all integer
x ≥ 0, n ≥ 1:

(5) Ψ(n;x) =
x+1∑
i=0

piΨ(n− 1;x+ 1− i), Ψ(0;x) = 1,

(6) Ψ(n;x) =

x+1∑
i=0

piΨ(n− 1;x+ 1− i) +

∞∑
k=x+2

pk, Ψ(0;x) = 0.

These two recurrences may, for a sequence of functions fn : Z → [0, 1], standing in lieu of Ψ(n; ·),
Ψ(n; ·), be written symbolically as

fn = Kp̃(K−1)fn−1 on N0,

which passes to the limit (as n→∞)

(7) f = Kp̃(K−1)f on N0,
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where K is the translation operator, Kg(x) := g(x + 1), and f(x) := limn→∞ fn(x). This limiting
recurrence (satisfied by the eventual ruin and perpetual survival probabilities Ψ and Ψ) may be called
the “Lundberg recurrence”. It constitutes a linear difference equation for f , whose characteristic
equation is (in x 6= 0) 1 = xp̃(1/x). The latter is (formally) just the Lundberg equation (4) with v = 1
upon substituting x−1 for ϕ1. When the distribution p has a finite support, then from the theory of
finite order linear difference equations with constant coefficients, this implies that f , in particular the
ultimate ruin and perpetual survival probabilities, may be expressed as combinations of powers of the
roots of the characteristic equation (in x 6= 0)

(8) 1 = xp̃(1/x).

Classical ruin theory proceeds by computing double (generating function) transforms, briefly re-
viewed in Appendix A. For example, one useful result, similar to the Pollaczek-Khinchine formula for
the Cramér-Lundberg model, is [Wil93, Eq. (3.5)]

(9) Ψ̃(z) :=

∞∑
x=0

zxΨ(x) =
(1− E[C1]) ∨ 0

p̃(z)− z , z ∈ (0, 1).

Another is

(10) Ψ̃v(z) :=

∞∑
x=0

∞∑
n=0

zxvnΨ(n;x) =
1

z − vp̃(z)

(
v(z − p̃(z))

(1− v)(1− z) +
ϕv

1− ϕv

)
, v, z ∈ (0, 1), z 6= ϕv.

We will follow next an alternate approach, which focuses on the two-sided exit problem from an
interval.

4. Smooth two-sided first passage problem: the W scale functions

In the context of Lévy processes, the W (q) scale function is often defined first for q = 0, in the case
when the underlying process drifts to∞, by proportionality to the survival probability, and then in the
remainder of the cases by an Esscher transform/approximation [Ber97, Sec. VII.2] [Kyp14, Sec. 8.2]
[Vid13, Sec. 4.2].

In our setting of the right-continuous random walk X, we introduce, for v ∈ (0, 1], the discrete-

time analogue Wv of W (q), by setting Wv(y) := (p0E[vτ
+
y ; τ+

y < τ−−1])−1 for y ∈ N0 and Wv(y) = 0

for y ∈ −N. The Markov property at the time τ+
x and the skip-free property (yielding Xτ+

x
= x on

{τ+
x <∞}) then imply the “gambler’s winning” relation [Mar01, GLY06], for integer x ≤ N , 0 ≤ N :

(11) Ex[vτ
+
N ; τ+

N < τ−−1] =
Wv(x)

Wv(N)
.

We call Wv the v-scale function and we write simply W for the 1-scale function W1. (The choice of
the normalization Wv(0) = 1/p0 is somewhat arbitrary, though it is guided by obtaining the simplest
possible form for the z-transform of Wv ((13) below); by comparison to the W scale function of [Vid13]
(see Remark 10 below); and the simplicity of subsequent formulae in which Wv features.)

Remark 8. We use the subscript notation Wv for the scale functions of X, reserving the superscript
version W (q) for the corresponding quantities from the Lévy setting. When only W appears, it will be
clear from context which of the two is meant. We will adhere to a similar convention with respect to
the scale functions Z(q)(·, θ), Z(q) := Z(q)(·, 0) and (hence the notation) their discrete-time analogues
Zv(·, w), Zv.

Conditioning on the first jump, (11) implies the harmonic recursion [Mar01, Eq. (3.1)]

(12) Wv(x) = v

x∑
y=−1

Wv(x− y)py+1, x ∈ N0.
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Taking z-transform yields [Mar01, Eq. (3.2)]

(13) W̃v(z) :=

∞∑
x=0

zxWv(x) =
1

p̃(z)− z
v

, z ∈ (0, ϕv).

Since the z-transform (13) of Wv is known, the computation of the scale function Wv reduces
finally to Taylor coefficient extraction of (13) expanded in a power series.

Remark 9. It is seen from (12), or directly from (11), that one has Wv/v = vW , where vW is the
1-scale function of the process X geometrically killed with probability 1 − v, i.e. of the process which
has, ceteris paribus, the sub-probability pmf (vpk)k∈N0 governing the sizes of the Cn, n ∈ N.

Remark 10. For X embedded into continuous time as an upwards skip-free Lévy chain, i.e. for
the process Y of Remark 3, (12) and (13) become, respectively, [Vid13, Eqs. (4.10) & (4.6)]. This

is seen through the identification W (q)(mh) = 1
γhW γ

γ+q
(m) for m ∈ N0, q ∈ [0,∞), where W (q) is

the q-scale function of [Vid13]. Note also that the normalization Wv(0) = p−1
0 is consistent with

W (q)(0) = 1/(hλ({h})) = 1/(γhp0) of [Vid13, Prop. (4.7)]. On the other hand, in the spectrally
negative case, there is no direct analogue of recursion (12), though one can consider the heuristic

relation (it is rigorous in the upwards skip-free case [Vid13, Rem. 4.16]) (L − q)W (q) = 0 on (0,∞)
[KKR13, p. 136], L being the infinitesimal generator of the underlying Lévy process, to be a close
relative. (13) has the Laplace transform equivalent [KKR13, Eq. (8.8)] that formally differs from
[Vid13, Eq. (4.6)] only by the factor (eβh − 1)/(βh)→ 1 as h ↓ 0 (with β the argument of the Laplace
transform).

Remark 11. An alternative form of recursion (12) is [Vid13, Eq. (4.13)]

Wv(n+ 1) = Wv(0) +

n+1∑
k=1

1
v −

∑k
l=0 pl

p0
Wv(n+ 1− k), n ∈ N0.

In particular we see via induction that for each fixed integer x, the map [1,∞) 3 ξ 7→W1/ξ(x) extends
to a polynomial function defined on the whole of the complex plane.

Remark 12. When X drifts to ∞, i.e. when EC1 < 1, then with v = 1, (13) coincides up to a
multiplicative constant with the perpetual survival transform (9). We conclude that

Ψ(x) = (1− E(C1))W (x).

Remark 13. It follows from (13) that vW (x) = ϕv
v Wv(x)ϕxv , where vW is the 1-scale function of

the Esscher transformed process in which C1 has the geometrically tilted probability mass function
N0 3 k 7→ v

ϕv
pkϕ

k
v. Hence by monotone convergence, limx→∞Wv(x)ϕx+1

v = v limx→∞ vW (x) =

v limz↑1
∑∞

x=0(1 − z)zxvW (x) = v
1−vp̃′(ϕv−) , where we understand 1/0 = ∞. This confirms [Vid13,

Prop. 4.8(i)]. For a more detailed study of the behaviour of W1 in the case when p̃′(1−) = 1 and
ϕ1 = 1, i.e. when X oscillates, see [Vid13, Prop. 4.8(ii)].

Remark 14. We note the following interesting observation of [Mar01] that the scale function is
essentially a determinant. For an arbitrary homogeneous Markov chain (Vn)n∈N0 on a countable state
space, let (V ′n)n∈N0 denote the chain killed outside a finite non-empty set M , and let Q denote the
corresponding restriction of the transition matrix to M . For v ∈ (0, 1), denote by Dv the determinant
of the matrix I − vQ. Then the killed resolvent expresses as

∞∑
n=0

Pi[V
′
n = j]vn = ((I − vQ)−1)ij =

Nij(v)

Dv
, {i, j} ⊂M,

where Nij(v) are the entries of the adjoint matrix adj(I − vQ) (see for example [Mar01, Cor. 2.2]).
Restricting now to the upwards skip-free case (while [Mar01] considers the downwards skip-free case),
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let, for v ∈ (0, 1], Dv(N), N ∈ N, denote the determinant corresponding (in the above sense) to the
restriction of X to {0, 1, 2, ..., N − 1}, and set Dv(0) := 1. From [Mar01, Prop. 3.3],

Ei[v
τ+
N , τ+

N < τ−−1] = (p0v)N−i
Dv(i)

Dv(N)
, {i,N} ⊂ N0, v ∈ (0, 1).

It follows that Wv(i) = p−1
0 (p0v)−iDv(i) for all i ∈ N0, v ∈ (0, 1].

Remark 15. For N ∈ N, the resolvent of the process X killed on exiting IN := {0, . . . , N−1}, denoted
X ′, is given by [Mar01, Prop. 3.2]

∞∑
n=0

Pi[X
′
n = j]vn = v−1

(
Wv(N − 1− j)Wv(i)

Wv(N)
−Wv(i− j − 1)

)
, {i, j} ⊂ IN , v ∈ (0, 1].

For the analogue of the latter in the spectrally negative case see e.g. [Kyp14, Thm. 8.7].

We conclude this section with the important observation that

Proposition 16. For each v ∈ (0, 1], (vn∧τ
−
−1Wv(Xn∧τ−−1

))n∈N0 is a martingale under each Px, x ∈ Z.

Proof. This follows from the harmonic recurrence (12). �

Remark 17. The analogue of Proposition 16 in the setting of upwards skip-free Lévy chains are

the martingales, for q ∈ [0,∞), (e−q(t∧τ
−
−h)W (q)(Yt∧τ−−h

))t∈[0,∞) [Vid13, Cor. 4.17]. In the case of a

spectrally negative Lévy process U , (e−q(t∧τ
−
0 )W (q)(Ut∧τ−0

))t∈[0,∞) is a local martingale with localizing

sequence (τ+
n )n∈N [Kyp14, Ex. 8.12]. There are no issues with integrability in the discrete space case,

because thanks to the skip-free property, Px-a.s. for any x ∈ Z, by any deterministic time, the stopped

process Xτ−−1 is automatically bounded /and, for the upwards skip-free Lévy chain Y , the further
subordination by the independent homogeneous Poisson process N does not ruin this/.

Corollary 18. For each v ∈ (0, 1] and integer x ≤ N , b ≤ N ,

Ex(Wv(Xτ−b−1
)vτ
−
b−1 ; τ−b−1 < τ+

N ) = Wv(x)− Wv(x− b)
Wv(N − b)

Wv(N).

In particular, Ex(Wv(Xτ−b−1
)vτ
−
b−1 ; τ−b−1 <∞) = Wv(x)−Wv(x− b)ϕbv.

Proof. For any integer x, by optional sampling, the skip-free property and spatial homo-

geneity, Wv(x) = Ex[Wv(X(τ−b−1))vτ
−
b−1 ; τ−b−1 < τ+

N ] + Ex[Wv(X(τ+
N ))vτ

+
N ; τ+

N < τ−b−1] =

Ex[Wv(X(τ−b−1))vτ
−
b−1 ; τ−b−1 < τ+

N ] + Wv(N)Ex[vτ
+
N ; τ+

N < τ−b−1] = Ex[Wv(X(τ−b−1))vτ
−
b−1 ; τ−b−1 <

τ+
N ] +Wv(N)Ex−b[v

τ+
N−b ; τ+

N−b < τ−−1]. The first identity then follows from (11). In particular, letting
N ↑ ∞ and using Remark 13, we obtain the second identity (for instance first for v < 1 and then
taking the limit v ↑ 1). �

5. Problem of deficit at ruin with killing at an upper boundary: the Z scale
functions

Let v ∈ (0, 1], w ∈ (0, 1]. For integer x ≤ b, b ≥ 0, by the Markov property at time τ+
b and the

skip-free property (yielding Xτ+
b

= b on {τ+
b <∞}),

Ex[vτ
−
−1w−X(τ−−1); τ−−1 < τ+

b ] = Ex[vτ
−
−1w−X(τ−−1); τ−−1 <∞]− Ex[vτ

−
−1w−X(τ−−1); τ+

b < τ−−1 <∞]

= Ex[vτ
−
−1w−X(τ−−1); τ−−1 <∞]− Ex[vτ

+
b ; τ+

b < τ−−1]Eb[v
τ−−1w−X(τ−−1); τ−−1 <∞].
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Putting Ψv(x,w) := Ex[vτ
−
−1w−X(τ−−1); τ−−1 <∞], we have then from the preceding and using (11), the

neat identity Ex[vτ
−
−1w−X(τ−−1); τ−−1 < τ+

b ] = Ψv(x,w) − Wv(x)
Wv(b) Ψv(b, w). We introduce now, for some

αv(w) ∈ [0,∞) that we shall specify in the sequel,

(14) Zv(x,w) := Ψv(x,w) + αv(w)Wv(x),

a slightly modified Ψv(·, w), which also satisfies the identity

(15) Ex[vτ
−
−1w−X(τ−−1); τ−−1 < τ+

b ] = Zv(x,w)− Wv(x)

Wv(b)
Zv(b, w)

(easy to check). The first motivation for preferring to use Zv(·, w) with a suitable choice of αv(w)
instead of Ψv(·, w) appears below in (17), and then in Section 6; many other formulas where the
analogue of Zv(·, w) is preferable are known in the literature on spectrally negative Lévy processes –
see for example [IP12, AGVA17].

Remark 19. Note that Zv(x,w) = Ψv(x,w) = w−x for all integer x ≤ −1.

We compute now the z-transform of Z. Conditioning on the first jump, we obtain from (14) and
the definition of Ψv(·, w), via (12), the recurrence relation

(16) Zv(x,w)/v =

x∑
k=−1

pk+1Zv(x− k,w) +

∞∑
k=x+1

wk−xpk+1, x ∈ N0.

Hence the generating function Z̃v(z, w) :=
∑∞

x=0 z
xZv(x,w) satisfies, for z ∈ (0, ϕv)\{w},

Z̃v(z, w)/v = p0
Z̃v(z, w)− Zv(0, w)

z
+

∞∑
x=0

zx
x∑
k=0

Zv(x− k,w)pk+1 +

∞∑
x=0

zx
∞∑

k=x+1

wk−xpk+1

= p0
Z̃v(z, w)− Zv(0, w)

z
+
∞∑
k=0

pk+1z
k
∞∑
x=k

zx−kZv(x− k,w) +
∞∑
k=1

pk+1w
k
k−1∑
x=0

( z
w

)x
= p0

Z̃v(z, w)− Zv(0, w)

z
+ Z̃v(z, w)

∞∑
k=0

pk+1z
k +

∞∑
k=1

pk+1w
k 1− ( zw )k

1− z
w

= p0
Z̃v(z, w)− Zv(0, w)

z
+ Z̃v(z, w)

p̃(z)− p0

z
+

p̃(w)−p0

w − p̃(z)−p0

z

1− z
w

,

i.e., in view of (13),

Z̃v(z, w) = −p0(1− Zv(0, w))W̃v(z) +
zp̃(w)− wp̃(z)

(z − w)(p̃(z)− z
v )
.

Recall now that in the Lévy case, Z(q)(0, θ) is chosen so as to ensure a “smooth fit” [APP15,
Def. 5.8] to the boundary condition exθ for x ∈ (−∞, 0). The analog in the discrete case is to insist
on Zv(0, w) = 1, which we may do by an appropriate choice of αv(w). Furthermore, this choice (that
we assume henceforth) leads to the simple expression

(17) Z̃v(z, w) =
1

p̃(z)− z
v

zp̃(w)− wp̃(z)
z − w

, z ∈ (0, ϕv), v ∈ (0, 1], w ∈ (0, 1]

(where the quotient must be understood in the limiting sense when z = w).
Extracting the coefficients of the z-power series yields finally an expression similar to that of the

Dickson-Hipp type representation in the Lévy case (see [IP12])

(18) Zv(x,w) =
(
p̃(w)− w

v

) ∞∑
k=0

wkWv(x+ k), w ∈ (0, ϕv), v ∈ (0, 1], x ∈ N0
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(it is easy to check that this expression has z-transform (17)).
In the special case w = 1 we set Zv(x) := Zv(x, 1), (17) simplifies to

(19) Z̃v(z) :=

∞∑
x=0

zxZv(x) =
p̃(z)− z

(p̃(z)− z
v )(1− z)

, z ∈ (0, ϕv), v ∈ (0, 1],

and we have the representation

(20) Zv(x) = 1 +

(
1

v
− 1

) x−1∑
y=0

Wv(y), v ∈ (0, 1], x ∈ N0.

Remark 20. Using (10) in the form

Ψ̃v(z) =
1

z
v − p̃(z)

(
z − p̃(z)

(1− v)(1− z)
+

ϕv
v(1− ϕv)

)
, v, z ∈ (0, 1), z 6= ϕv,

it follows from (19) and (13) that

Ψv(x) :=

∞∑
n=0

vnΨ(n;x) =
1

1− v
Zv(x)− ϕv

v(1− ϕv)
Wv(x),

i.e.

(21) Ex[vτ
−
−1 ; τ−−1 <∞] = Zv(x)− ϕv(1− v)

v(1− ϕv)
Wv(x) = Zv(x)− αvWv(x), x ∈ N0, v ∈ (0, 1),

where we have set αv := αv(1) (recall that we have chosen αv(1) so that Zv(0) = 1 = E[vτ
−
−1 ; τ−−1 <

∞] + αv(1)Wv(0)). Passing to the limit v ↑ 1, we find that Px(τ−−1 <∞) = 1−W (x)(1− p̃′(1−) ∧ 1).

Remark 21. It is seen from (20), Remark 10 and [Vid13, Def. 4.9] that one has the identification

Z(q)(mh) = Z γ
γ+q

(m) for q ∈ [0,∞), m ∈ Z, where Z(q) is the Z q-scale function of [Vid13]. Then

(17), (15) and (16), with w = 1, become [Vid13, Eq. (4.9), Prop. 4.13 and Eq. (4.11)], respectively;
(21) becomes [Vid13, Eq. (4.8)]. For an alternative form of (16) (when w = 1) see [Vid13, Eq. (4.14)].

Proposition 22. For each v ∈ (0, 1], w ∈ (0, 1], the process (vn∧τ
−
−1Zv(Xn∧τ−−1

, w))n∈N0 is a martin-

gale.

Proof. This follows for instance by linearity, from Proposition 16, and from the definition of Zv(·, w)
via the Markov property and the terminal time property of τ−−1. �

Remark 23. For the case w = 1, the analogue of Proposition 22 in the setting of upwards skip-free

Lévy chains are the martingales, for q ∈ [0,∞), (e−q(t∧τ
−
−h)Z(q)(Yt∧τ−−h

))t∈[0,∞) [Vid13, Cor. 4.17]. In

the case of a spectrally negative Lévy processes U , (e−q(t∧τ
−
0 )Z(q)(Ut∧τ−0

))t∈[0,∞) is a local martingale

with localizing sequence (τ+
n )n∈N [Kyp14, Ex. 8.12]. See also [APP15]: There, Gerber-Shiu functions

are defined as solutions to martingale problems [APP15, Def. 5.1], and the Z(q)(·, θ) function is the
Gerber-Shiu function with boundary condition exθ for x ∈ (−∞, 0) [APP15, Def. 5.8].

Remark 24. Assume EC1 <∞; let v ∈ (0, 1], x ∈ Z. We can obtain the expected undershoot at ruin

by differentiating (15) with respect to w from the left at 1. Putting Z1,v(x) := −∂Zv(x,w)
∂w |w=1−, we find

that for b ∈ N0,

(22) Ex[X(τ−−1) vτ
−
−1 ; τ−−1 < τ+

b ] = Z1,v(x)− Wv(x)

Wv(b)
Z1,v(b), x ≤ b.

The generating function transform of Z1,v is given by

(23) Z̃1,v(z) :=

∞∑
k=0

zkZ1,v(k) =
z

1− z
1

p̃(z)− z/v

(
p̃(z)− z

1− z
− (1− p̃′(1−))

)
, z ∈ (0, ϕv).
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Setting for f : N0 → R and y ∈ N0, f(y) :=
∑y−1

z=0 f(z) (in particular, f(0) = 0), and using∑∞
k=0 z

kf(k) = z
1−z

∑∞
k=0 z

kf(k) for z ∈ (0, 1], we find that for x ∈ N0, this coincides with the

generating function of N0 3 x 7→ Zv(x)− (1− p̃′(1−))W v(x), i.e.

(24) Z1,v(x) = Zv(x)− (1− p̃′(1−))W v(x), x ∈ N0,

Note also that when x < 0, Z1,v(x) = x. Z1,v will play a central role in the modified de Finetti problem
– see Subection 6.3, and in its doubly reflected variant presented in Subection 6.4.

6. Applications to the study of a company’s capital surplus process

In this section we investigate various forms of the (combined) capital injections-dividend payouts-
penalty at ruin problem. One typically has in mind an insurance company, but this need not be the
case.

6.1. The moment generating function of cumulative capital injections. For the simplest case,

we begin by considering a company, whose surplus capital process X̃ = (X̃k)k∈N0 obeys the following

dynamics: for k ∈ N0, given that at the end of period k, its capital is X̃k, then in period k + 1 the
company receives (the premium) 1, pays out the (claim) amount Ck+1, and, should its net capital at
this point be strictly negative, receives a capital injection that just brings its capital back to zero at

the end of the (k + 1)-th period, i.e. X̃k+1 = (X̃k + 1 − Lk+1) ∨ 0. If the initial capital x ∈ Z of the
company is strictly negative, the company receives immediately the capital injection −x, so that its

capital at the end of the zeroth period is nonnegative, i.e. X̃0 = (−x) ∨ 0. One says that the surplus
process has the dynamics of X reflected at 0.

Let then R∗(n) := (− infm≤nXm) ∨ 0, n ∈ N0, denote the cumulative capital injections for the
process X reflected at 0, and let, for b ∈ N0, τ̃+

b denote the first entrance time into [b,∞) by the
reflected process. It was discovered by [IP12] that their joint moment generating function is very
simply expressible in terms of the second scale function of two parameters. In our context, their
formula becomes

Proposition 25. For b ∈ N0,

(25) Bb
v(x,w) := Ex[vτ̃

+
b wR∗(τ̃

+
b ); τ̃+

b <∞] =

{
Zv(x,w)
Zv(b,w) x ≤ b
1 x > b

, {v, w} ⊂ (0, 1].

Proof. The case x > b is trivial; assume x ≤ b. Then this formula is “equivalent” to (15), since by the
strong Markov property of X,

Ex[vτ̃
+
b wR∗(τ̃+

b
); τ̃+

b <∞] = Ex
[
vτ

−
−1w−X(τ−−1); τ−−1 < τ+

b

]
E0[vτ̃

+
b wR∗(τ̃+

b
); τ̃+

b <∞] + Ex
[
vτ

+
b ; τ+

b < τ−−1

]
,

i.e.

(26) Bb
v(x,w) = Ex

[
vτ
−
−1w−X(τ−−1); τ−−1 < τ+

b

]
Bb
v(0, w) +Wv(x)Wv(b)

−1.

Thus, if Bb
v(x,w) is known from (25), one gets an equation for the deficit at ruin quantities

Zv(x,w)Zv(b, w)−1 = Wv(x)Wv(b)
−1 + Ex

[
vτ
−
−1w−X(τ−−1); τ−−1 < τ+

b

]
Zv(b, w)−1,

with solution (15). And if the solution to the deficit at ruin problem is known as (15), one may use
(26) to obtain, first with x = 0, Bb

v(0, w) = Zv(b, w)−1, and then (25). �



12 FLORIN AVRAM AND MATIJA VIDMAR

6.2. The de Finetti dividends optimization problem. Now the company pays dividends, but
does not receive capital injections. Letting for k ∈ N0, r(k) denote the dividend amount (necessarily
N0-valued) paid out at the end of period k, we have the following dynamics for the end-of-period

surplus process X̃: for k ∈ N, in period k, the company receives 1, pays out Ck and then, assuming
ruin has not yet occurred, the amount r(k), yielding X̃k = X̃k−1 + 1 − Ck − r(k). Once ruin has
occurred, the process is stopped, and no dividends are paid out thereafter. At end of period zero, if
the initial capital x ∈ Z is strictly positive, the dividend amount r(0) is paid out, so that X̃0 = x−r(0).

We insist r(k) ≤ X̃k−1 + 1 − Ck for k ∈ N and r(0) ≤ x (i.e. dividend payouts cannot lead to ruin).
The dividend policy process (r(k))k∈N0 must be adapted to the natural filtration of (Ck)k∈N.

The classic de Finetti problem then consists in computing the optimal discounted dividends until
ruin under all dividend policies satisfying the above constraints – see de Finetti [dF57], Miller and
Modigliani [MM61] (in a deterministic setup), Miyasawa [Miy61] and Gerber [Ger72]. Here we agree
that in the optimization objective, r(k) is discounted (multiplied) by vk, where v ∈ (0, 1] is the discount
factor. To exclude some degeneracy, we assume throughout this subsection that (p0 + p1) ∧ v < 1.

Definition 26. For b ∈ N0, a dividend policy πb with barrier b consists in taking r(0) = (x− b)+ and

r(k) = (X̃k−1 + 1 − Ck − b)+ for k ∈ N, up to ruin, i.e. (since we are in the upwards skip-free case)
in reducing the reserves each time they reach b + 1 (except possibly at time zero, when x − b may be

strictly larger than 1). We will write the expectation operator E
b]
x and the probability P

b]
x to indicate

this policy and the initial capital x. One says that under E
b]
x , X̃ follows the dynamics of the process

X reflected at b. The sets

Cb := [0, b] and Db := (b,∞)

are called the continuation and dividend taking set, respectively; τ̃+
b := inf{k ∈ N0 : X̃k ≥ b}.

The ruin time, i.e. the first time the surplus process becomes strictly negative, will be denoted by

τ̃−−1. Note that r(k) = 0 for k ≥ τ̃−−1. We also set, for k ∈ N0, R(k) :=
∑k

i=0 r(i), the cumulative
dividends paid out up to (including) period k, and interpret R(k) = 0 for k < 0.

Proposition 27. The value function under a barrier dividend distribution policy πb with barrier b ∈ N0

is given by:

(27) V b
D(x) := Eb]x

τ̃−−1−1∑
i=0

vir(i) =

{
Wv(x)

∆Wv(b) x ≤ b
x− b+ V b

D(b) = x− b+ Wv(b)
∆Wv(b) x > b

,

where for f : N0 → R, k ∈ N0, ∆f(k) := f(k + 1)− f(k) gives the forward difference operator.

Remark 28. It is clear from (11) that under the stipulation (p0+p1)∧v < 1, Wv is strictly increasing.

Proof. The case x > b is trivial; assume x ≤ b. Then (27) is “equivalent” to (11), since using the
strong Markov property of X, one has clearly the relation

(28) V b
D(x) = Ex[vτ

+
b+1 ; τ+

b+1 < τ−−1](1 + V b
D(b)).

Thus if (27) is known, one obtains (11), and vice versa, if (11) is known, then one obtains by setting

x = b in (28), first V b
D(b) = Wv(b)

∆Wv(b) and then by substituting back, (27). �

Remark 29. The “factorization result” Wv(x)
∆Wv(b) of (27) has been known for a long time [Mor66,

Eq. (19)] [GSY10, Sec. 5, Eq. (3.1)], and in the simplest case when ∆Wv is “unimodal with minimum
at b∗”, i.e. when ∆Wv is nondecreasing after b∗ and nonincreasing before b∗, it yields in fact the
optimal value function over all dividend distribution policies. The optimal “barrier” policy of taking
dividends in Db∗ = (b∗,∞) and continuing in Cb∗ = [0, b∗] can then be viewed as a transformation of
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the scale function into the value function V b
D, which must be concave, by “linearization” of the convex

piece of Wv.1

When ∆Wv is not unimodal, the optimal policy may be “multi-band”, and requires a complicated
recursive construction [Mor66, Sch07, APP15]. We will recall this concept briefly in Definition 40,
but the main concern of our applications is optimization among barrier policies, by which we mean
optimizing the limit b of the continuation interval [0, b], in the sense of finding

VD(x) := sup
b∈N0

V b
D(x).

With the objective given by (27), this is related to maximizing the “barrier influence function” 1/∆Wv,
i.e. minimizing ∆Wv (as is customary2, we will say b ∈ N0 is optimal for VD(x), if VD(x) = V b

D(x)):

Lemma 30. (I) If q := infb∈N0 ∆Wv(b) is attained, letting b∗ be any minimizer of ∆Wv, it follows
that b∗ is optimal for VD(x), whenever x ≤ b∗. (II) If the infimum defining q is not attained, then
the supremum defining VD(x) is not attained either. (III) If for some b ∈ N0, the function ∆Wv is
nondecreasing after b∗, i.e. satisfies ∆Wv(b) ≤ ∆Wv(b

′) for all b′ > b ≥ b∗, and nonincreasing before
b∗, i.e. satisfies ∆Wv(b) ≥ ∆Wv(b

′) for all b < b′ ≤ b∗, and if furthermore b∗ < x, then b∗ is optimal
for VD(x).

Remark 31. This dovetails nicely with Remark 29: when ∆Wv is unimodal with minimum at b∗, then
b∗ is optimal for VD(x), whether or not x ≤ b∗.

Proof. (I) To see this, note that for x ≤ b, V b
D(x) = Wv(x)

∆Wv(b) ≤
Wv(x)

∆Wv(b∗) = V b∗
D (x). And for b < x,

V b
D(x) = x − b + Wv(b)

∆Wv(b) ≤ x − b + Wv(b)
∆Wv(b∗) ≤

Wv(x)
∆Wv(b∗) = V b∗

D (x), where the final inequality fol-

lows from (telescopic sum) Wv(x) − Wv(b) =
∑x−1

k=b ∆Wv(k) ≥
∑x−1

k=b ∆Wv(b
∗) = (x − b)∆Wv(b

∗).
(II) Indeed, there exists a sequence (bn)n∈N in N, with ∆Wv(bn) satisfying ∆Wv(b

′) > ∆Wv(bn)
for all b′ < bn, n ∈ N. Let now b ∈ N0. There is an n ∈ N such that bn ≥ x ∨ b.

Then if b ≥ x, clearly V b
D(x) = Wv(x)

∆Wv(b) ≤
Wv(x)

∆Wv(bn) = V bn
D (x). And if b < x, then V b

D(x) =

x − b + Wv(b)
∆Wv(b) ≤ x − b + Wv(b)

∆Wv(bn) ≤
Wv(x)

∆Wv(bn) = V bn
D (x), where the last inequality follows from

Wv(x) −Wv(b) =
∑x−1

k=b ∆Wv(k) ≥
∑x−1

k=b ∆Wv(bn) = (x − b)∆Wv(bn). In other words, as n ↑ ∞,

V bn
D (x) ↑↑ supb∈N0

V b
D(x) = VD(x), which however is not attained. We also see that q > 0,

since V b
D(x) is bounded by (x − b)+ +

∑∞
k=1 v

k, as b ranges over N0. (III) Since for y ∈ N0,(
Wv(y+1)

∆Wv(y+1) − (y + 1)
)
−
(

Wv(y)
∆Wv(y) − y

)
= Wv(y)

(
(∆Wv(y + 1))−1 − (∆Wv(y))−1

)
, it follows from the

assumption, that the map N0 3 b 7→ Wv(b)
∆Wv(b) +(x−b) has a maximum at b∗. Thus if b ≤ x, then it follows

at once that V b
D(x) ≤ V b∗

D (x). And if b > x, then V b∗
D (x) ≥ V x

D(x) = Wv(x)
∆Wv(x) ≥

Wv(x)
∆Wv(b) = V b

D(x). �

Remark 32. For x ≤ b, by the skip-free property,

(29) V bD(x) = Eb]x

[
∞∑
n=1

vn1(n < τ̃−−1, X̃n−1 = b, Cn = 0)

]
= Eb]x

τ̃
−
−1∧Ev−1∑
n=1

1(X̃n−1 = b, Cn = 0)

 = Eb]x R(τ̃−−1 ∧Ev − 1).

where Ev is an independent random variable with distribution geomN(1− v).3

1By a convex (concave) function f : N0 → R we mean a function whose forward difference ∆f is nondecreasing
(nonincreasing).

2And we will follow an analogous convention with respect to the optimization problems of Subsections 6.3 and 6.4 to
follow.

3For r ∈ (0, 1], we denote by geomN(r), resp. geomN0
(r), the geometric law on N, resp. N0, with success parameter r,

i.e. having p.m.f. N 3 k 7→ r(1 − r)k−1, resp. N0 3 k 7→ r(1 − r)k. The degenerate cases geomN(0) and geomN0
(0) are

both interpreted as δ∞, the Dirac mass at ∞.
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Example 33. For b = 0, plugging Wv(0) = p−1
0 and Wv(1) = p−2

0 (v−1 − p1) into (27), yields

(30) V 0
D(0) =

p0v

1− p1v − p0v
.

For p1 = 0, this reduces to (note that we start with initial capital zero, hence pay no dividends at
time zero, and that dividends of 1 are taken all the times strictly prior to ruin)

(31) V 0
D(0) =

p0v

1− p0v
= E

0]
0

[ ∞∑
n=1

vn1{n<τ̃−−1}

]
= E

0]
0 [τ̃−−1 ∧ Ev − 1] = E

0]
0 R(τ̃−−1 ∧ Ev − 1),

where τ̃−−1 ∼ geomN(1 − p0) and Ev ∼ geomN(1 − v) and hence R(τ̃−−1 ∧ Ev − 1) = τ̃−−1 ∧ Ev − 1 ∼
geomN0

(1− p0v).
When p1 is not necessarily equal to 0, one may still decompose X into the process which records

X only when it changes its value — it does so each time independently according to the law of C1

conditioned on {C1 6= 1} — and into the independent amounts of time that elapse in-between these
changes, them being i.i.-geomN(1 − p1)-d.4 From the perspective of the surplus process, this means
that it may be seen as evolving (up to ruin) according to the following probabilistic prescription: for
k ∈ N0, if 0 at end of period k (i.e. ruin has not yet occurred), then for L subsequent periods, where
L ∼ geomN0

(1 − p1), the claims are equal to 1, just off-setting the premia, and then during period
k + L, independently, the surplus process goes up by 1 with probability p0/(1 − p1) or down by l with
probability pl+1/(1 − p1), l ∈ N – if the former, a dividend of one is taken; if the latter, ruin occurs.
It follows that in this case the total discounted dividends are equal to

V 0
D(0) = E

[
τ−1∑
i=1

v
∑i
j=1Qj

]
= E

τ−1∑
i=1

(
v(1− p1)

1− vp1

)i
=

p0

1−p1

v(1−p1)
1−vp1

1− p0v
1−vp1

=
p0v

1− p1v − p0v
,

where τ ∼ geomN(1− p0

1−p1
) and Qj ∼ geomN(1− p1), j ∈ N, are independent, confirming again (30).

In other words, it is the same as the case p1 = 0, except that one has conditioned the claims not to

be equal to 1, p0  
p0

1−p1
, and changed the discount factor, v  v(1−p1)

1−vp1
, reflecting the geomN(1 − p1)

distributed “holding periods” during which X does not move. Thus, for all intents and purposes, the

case p1 6= 0 is reduced to the case p1 = 0. For instance, under P
0]
0 , the law of the cumulative paid-out

dividends, i.e. of R(τ̃−−1 − 1), is geomN0
(1− p0

1−p1
), and hence

(32) R(τ̃−−1 ∧ Ev − 1) ∼ geomN0

(
1− p0v

1− p1v

)
(replacing p0 and p1 by p0v and p1v, respectively, has the same effect as independent geometric killing
with probability 1 − v (the mass (1 − v)(p0 + p1) may, for instance, be added to p2, it matters not)).
See Proposition 34 below for a generalization.

Finally, expanding (30) in v-series, reveals that the probability that dividends are paid in the n-th
step is

P
0]
0 [r(n) = 1] = P

0]
0 [τ̃−−1 > n,Cn = 0] = (p0 + p1)n−1p0, n ∈ N,

which also has a clear interpretation: (n− 1)-times ruin must not occur, i.e. the claim is zero or one,
and then the n-th claim must be zero. Incidentally, the above is the survival function of a modified

geometric r.v. T̃ with

P [T̃ = 1] = 1− p0, P [T̃ = k] = p0(1− p0 − p1)(p0 + p1)k−2, k ∈ N≥2.

The next result gives another probabilistic interpretation to the objective V b
D(b) = Wv(b)

∆Wv(b) =

Wv(b+1)
∆Wv(b) − 1 =

(
∆Wv(b)
Wv(b+1)

)−1
− 1, which is the mean of geomN0

(
∆Wv(b)
Wv(b+1)

)
. Note that much more is

4This is analogous to the decomposition of a continuous time Markov chain into its jump chain and its sojourn times.
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known in the case of spectrally negative Lévy processes, where
(
V b
D(b)

)−1
= (W (q))′(b)

W (q)(b)
, coincides with

the rate of “excursions” larger than b of the Poisson process of heights of downward excursions from
a running maximum, in the presence of exponential killing at rate q – see [Ber98, Sec. VII.8] for q = 0
and [Don05] for q > 0.

Proposition 34. Let b ∈ N0. Under a barrier policy πb, starting from x = b, the killed cumulative

dividends until ruin, R(τ̃−−1 ∧ Ev − 1), have the law geomN0

(
∆Wv(b)
Wv(b+1)

)
(recall Ev ∼ geomN(1 − v),

independent of X̃). In particular,

(33) E
b]
b z

R(τ̃−−1∧Ev−1) =
1− Wv(b)

Wv(b+1)

1− z Wv(b)
Wv(b+1)

, z ∈ (0, 1].

Proof. First one assumes p0 + p1 < 1 and v = 1. We have the representation of R(τ̃−−1 ∧Ev − 1) as the

sum
∑N

i=1 R̃i, where R̃i are i.i.d. with the law given in (32), andN ∼ geomN(1−α(b)) is an independent

geometric r.v. with α(b) yet to be determined. Indeed, the successive R̃i come from the dividends
collected during the periods of time that the surplus process either stays at the level b, or else increases
to b+1, only to be taken down to b by a paid-out dividend. These amounts have the same law as does
the amount of dividends collected until ruin when starting from 0 under π0. On the other hand, α(b) is
the probability that the surplus process, once it has jumped to a level strictly below b, then goes on to
reach the level b before ruin occurs, i.e. (the quotients pk

1−p0−p1
come from conditioning to jump strictly

below b from b) α(b) =
∑b+1

k=2
pk

1−p0−p1
Pb−k+1[τ+

b < τ−−1] =
∑b+1

k=2
pk

1−p0−p1

W (b−k+1)
W (b) , which equals, using

(12), W (b)−p1W (b)−p0W (b+1)
(1−p0−p1)W (b) = 1 − p0

1−p0−p1

∆W (b)
W (b) . The conclusion of the proposition then follows e.g.

by computing the probability generating function of the “geometric sum of geometrics”
∑N

i=1 R̃i and
recognizing the geometric random variable and its parameter. The general case for p0 + p1 < 1 is got
by replacing p0, . . . , pb+1 by p0v, . . . , pb+1v (and for instance adding the mass (1− v)(p0 + · · ·+ pb+1)
to pb+2, it matters not), using Remark 9. When p0 + p1 = 1, then the result clearly still holds true
(one gets, using (12), the law of (32), i.e. geomN0

( 1−v
1−p1v

), as one should). �

The following proposition gives a dividends-deficit at ruin type law for the compound binomial
risk processes reflected at b, in the style of [GSY10, Sec. 4]. See [IP12, Thm. 6], [AGVA17, Lem. 6]
for the Lévy analog.

Proposition 35. The joint generating function of the ruin time, deficit at ruin and of the cumulative
dividends for a compound binomial risk process reflected at b ∈ N0 is given by, with {v, z, w} ⊂ (0, 1],
(34)

DP b]v (x,w, z) := Eb]x

[
vτ̃
−
−1w−X̃(τ̃−−1)zR(τ̃−−1); τ̃−−1 <∞

]
=

{
Zv(x,w)− Zv(b+1,w)−zZv(b,w)

Wv(b+1)−zWv(b) Wv(x) x ≤ b
zx−bDP

b]
v (b, w, z) x > b

.

Remark 36. When p0 + p1 < 1, by setting v = z = w = 1, one obtains (as one should) P
b]
x (τ̃−−1 <

∞) = 1 for all x ∈ Z. When p0 + p1 = 1, we have of course τ̃−−1 = ∞, P
b]
x -a.s. for all x ∈ N0 (and

τ̃−−1 = 0, P
b]
x -a.s. for all x ∈ −N).

Proof. The case x > b is trivial; let x ≤ b. Using the strong Markov property for X at the exit time

from the interval [0, b) yields that g(x) := DP
b]
v (x,w, z) satisfies:

g(x) = Zv(x,w)− Wv(x)

Wv(b)
Zv(b, w) +

Wv(x)

Wv(b)
g(b) = Zv(x,w) +Wv(x)

g(b)− Zv(b, w)

Wv(b)

⇒ g(x)− Zv(x,w)

Wv(x)
=
g(b)− Zv(b, w)

Wv(b)
=: −Hb

v(z, w).
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Now by conditioning on the first jump

g(b) = p0vzg(b) + p1vg(b) +
b∑

k=1

pk+1vg(b− k) + v
∞∑

k=b+1

pk+1w
k−b.

Plugging in g(x) = Zv(x,w)−Wv(x)Hb
v(z, w) gives us

(1− p0vz − p1v)(Zv(b, w)−Wv(b)Hb
v(z, w)) =

b∑
k=1

pk+1v(Zv(b− k,w)−Wv(b− k)Hb
v(z, w)) + v

∞∑
k=b+1

pk+1w
k−b.

Using now (12) and (16) reduces this to

(1− p0vz − p1v)(Zv(b, w)−Wv(b)H
b
v(z, w)) =

−Hb
v(z, w)(Wv(b)− vp1Wv(b)− vp0Wv(b+ 1)) + Zv(b, w)− vp1Zv(b, w)− vp0Zv(b+ 1, w),

i.e. p0v(Zv(b+ 1, w)− zZv(b, w)) = p0vH
b
v(z, w)(Wv(b+ 1)− zWv(b)). �

Remark 37. As a check, setting v = w = 1 and x = b in (34) recovers (33) in the case v = 1.

Taking z = 1 in (34) yields

Corollary 38. For {v, w} ⊂ (0, 1], the joint generating function of the (reflected) ruin time and of
the deficit at ruin for a compound binomial risk process reflected at b ∈ N0 is given by

(35) Ψb]
v (x,w) := Eb]x

[
vτ̃
−
−1w−X̃(τ̃−−1); τ̃−−1 <∞

]
= Zv(x,w)− ∆Zv(b, w)

∆Wv(b)
Wv(x), x ≤ b. �

Remark 39. This result is similar to identity (15) for the joint generating function of the ruin time
and of the deficit at ruin, with absorbtion at b; this is to be expected, since we only replaced the

boundary condition Ψb
v(b, w) := Eb[v

τ−−1w−X(τ−−1); τ−−1 < τ+
b ] = 0 by ∆Ψ

b]
v (b, w) = 0.

We recall finally some further background information for the general de Finetti dividends op-
timization problem with no penalty for the deficit at ruin, when ∆Wv is not unimodal. This is
useful for the numerics Section 7, to understand the examples where the optimal dividends policy is
“multi-band”.

Definition 40. A multi-band dividends policy is specified by a partition of N into continuation in-
tervals C1 = [0, b1], C2 = [a2, b2], . . . , and dividend taking intervals D1 = (b1, a2), D2 = (b2, a3), . . . ,
intertwined as follows: C1 < D1 < C2 < D2 < . . .. When the capital position is in Di, dividends are
taken bringing the process down to the upper boundary bi of Ci.

When there is only one such pair C1 = [0, b1],D1 = (b1,∞), this is the barrier policy πb1 of
Definition 26. Subsequent Ci and Di, i ∈ N≥2, appear in the optimal policy when ∆Wv is not
unimodal and its global minimum b1 is followed by other local minima. Intuitively, the existence of
local minima succeeding the global one offers incitement to postpone bringing the process to b1 (and
thus the eventual ruin below −1) – see [Mor66] for more details.5

Remark 41. The first multi-band example is [Mor66, Ex. 2], and in the Lévy case [AM05]; also, the
absence of local minima after the global one is known to be sufficient for the optimality of single barrier
policies, and sufficient conditions in terms of the Lévy measure have been provided in [Loe08, Thm.
2]. However, until today, no necessary and sufficient condition in terms of Wv has been provided.

5The barriers bi, i ∈ N≥2, may arise then, by “shifting optimally” these local minima. See [APP15] for a recursive
algorithm achieving this, which is based on the idea that the process starting in Ci will never visit states above bi + 1.
Since the process at x only needs to see the bands below x, b1 may be computed as if only barrier policies were allowed,
i.e. taken at the global maximum of the barrier influence function. For [a2, b2], however, we need to take into account
that the process may jump down either to ruin, or into C1 ∪D1. Now the latter case can be viewed as termination with
final payoff given by the value function V b1D over barrier policies, and this allows computing a value function V b1,a2,b2D ,
and so on.
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6.3. Deficit at ruin with reflection at an upper boundary and the modified de Finetti
problem. This problem is masterly dealt with in [GSY10]. It may be useful however to provide an
alternative treatment via the Φ,W,Z paradigm, as in the parallel Lévy papers [Loe09, LR10, APP15,
AGVA17].

Specifically, we assume EC1 < ∞ in addition to v ∧ (p0 + p1) < 1, and consider the de Finetti
problem with dividends and no capital injections of Subsection 6.2, modified by the addition of an extra
linear penalty/bailout cost ky upon ruin (y being the (positive) deficit at ruin; k ∈ (0,∞)). Under
barrier strategies, this requires the computation of Z1,v (22) (and of Zv(·, w) (17) under exponential
“risk-sensitive” bailout costs [BJ15]). In precise terms, we have that, under a barrier strategy πb,
b ∈ N0, the additional expected (positive) final bailout is kV b

B(x), where

Proposition 42. For b ∈ N0,

(36) V b
B(x) := Eb]x [vτ̃

−
−1(−X̃(τ̃−−1)); τ̃−−1 <∞] =

{
Wv(x)

∆Z1,v(b)
∆Wv(b) − Z1,v(x) x ≤ b

V b
B(b) x > b

.

Proof. In the nontrivial case, when x ≤ b, using the strong Markov property for X at the exit time
from the interval [0, b) yields:

(37) V bB(x) = Ex[vτ
+
b ; τ+

b < τ−−1]V bB(b) + Ex[vτ
−
−1(−X(τ−−1)); τ−−1 < τ+

b ] =
Wv(x)

Wv(b)
V bB(b)−

(
Z1,v(x)− Wv(x)

Wv(b)
Z1,v(b)

)
,

where the second term was computed in Remark 24. Making x = 0 yields V b
B(0) = Wv(0)

Wv(b)V
b
B(b) +

Wv(0)
Wv(b)Z1,v(b), and substituting it back in (37) gives us

(38) V b
B(x) + Z1,v(x) = Wv(x)

V b
B(0)

Wv(0)
.

This formula coincides with (36), up to showing that
V bB(0)

Wv(0) =
∆Z1,v(b)
∆Wv(b) . To see this, note that using the

strong Markov property for X at the exit time from the interval [0, b] yields V b
B(0) = E0[vτ

+
b+1 ; τ+

b+1 <

τ−−1]V b
B(b) + E0[vτ

−
−1(−X(τ−−1)); τ−−1 < τ+

b+1] = Wv(0)
Wv(b+1)V

b
B(b) + Wv(0)

Wv(b+1)Z1,v(b + 1). Plugging into this

(38) with x = b, i.e. V b
B(b) = −Z1,v(b) +Wv(b)

V bB(0)

Wv(0) , we obtain the desired identity. �

It seems on the basis of numerics examples, that adding a bailout penalty typically makes the
optimal policy single barrier. With this in mind and for simplicity, we restrict here to the version of
the problem, under which only barrier dividend policies are allowed. Under this proviso, optimizing
under barrier policies the combined objective

V (x) := sup
b∈N0

V b(x), V b(x) := V b
D(x)− kV b

B(x),

amounts to optimizing the relevant linear combination of the expressions (27) and (36), viz. V b(x) =
(x ∨ b)− b+Wv(x ∧ b)H(b) + kZ1,v(x ∧ b), where H, the “barrier influence function”, is given by

H(b) :=
1− k∆Z1,v(b)

∆Wv(b)
=

1− k (Zv(b)− (1− p̃′(1−))Wv(b))

∆Wv(b)
;

see [AGVA17, Eq. (86)] for the Lévy case. Finding the optimum V (x) is related to maximizing H (cf.
Lemma 30):

Lemma 43. (I) If r := supb∈N0
H(b) is attained, letting b∗ be any maximizer of H, then b∗ ≥ x implies

that b∗ is optimal for V (x). (II) If the supremum defining r is not attained, then the supremum defining
V (x) is not attained either.
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Proof. (I) To see this, note that for b ≥ x, V b(x) = Wv(x)H(b)+kZ1,v(x) ≤Wv(x)H(b∗)+kZ1,v(x) =

V b∗(x). And for b < x, V b(x) = x − b + Wv(b)H(b) + kZ1,v(b) ≤ x − b + Wv(b)H(b∗) +

kZ1,v(b) ≤ Wv(x)H(b∗) + kZ1,v(x) = V b∗(x), where the final inequality follows from (telescopic sum)

H(b∗)(Wv(x)−Wv(b)) = H(b∗)
∑x−1

l=b ∆Wv(l) ≥
∑x−1

l=b (1−k∆Z1,v(l)) = (x− b)−k(Z1,v(x)−Z1,v(b)).
(II) Indeed, there exists a sequence (bn)n∈N in N, with H(bn) satisfying H(b′) < H(bn) for all b′ < bn,
n ∈ N. Let now b ∈ N0. There is an n ∈ N such that bn ≥ x ∨ b. Then if b ≥ x, clearly
V b(x) = Wv(x)H(b) + kZ1,v(x) ≤ Wv(x)H(bn) + kZ1,v(x) = V bn(x). And if b < x, then V b(x) =

x − b + Wv(b)H(b) + kZ1,v(b) ≤ x − b + Wv(b)H(bn) + kZ1,v(b) ≤ Wv(x)H(bn) + kZ1,v(x) = V bn(x),

where the final inequality follows from H(bn)(Wv(x) −Wv(b)) = H(bn)
∑x−1

l=b ∆Wv(l) ≥
∑x−1

l=b (1 −
k∆Z1,v(l)) = (x−b)−k(Z1,v(x)−Z1,v(b)). In other words, as n ↑ ∞, V bn(x) ↑↑ supb∈N0

V b(x) = V (x),
which however is not attained. �

6.4. Optimizing a combination of dividends and capital injections for a doubly reflected
process. This problem is another very good illustration of the Φ,W,Z paradigm and is quite hard
analytically. Indeed, the recent paper [WGT11] falls short of reaching an explicit solution, which
has been however available in the Lévy literature [APP07] for a while. Since the Lévy solution is a
consequence of the Markov and skip-free properties, we may expect that it continues to hold in the
discrete setup; and this is indeed the case.

We assume claims have a finite mean, EC1 < ∞, and linear capital injection costs w(y) = ky (y
being the capital injection), where k ∈ (1,∞) is a proportionality parameter. There is also a fixed
discount factor v ∈ (0, 1) and x is the initial capital.

The description of the behavior of the surplus process is an amalgamation of those given in
Subsections 6.1 and 6.2, so we may be slightly more brief here. Namely, we stipulate that for l ∈ N,
during period l, a premium of 1 is collected and the claim amount Cl is incurred; then at the end
of period l: (i) capital is injected in the amount r∗(l), which is the amount by which the surplus
process is negative (r∗(l) = 0 if the surplus process remains nonnegative); (ii) the dividend amount
r(l) is paid out (r(l) = 0 if the surplus process has become nonpositive). At end of period 0 we inject
r∗(0) = (−x) ∨ 0 and a dividend r(0) may be paid out, provided x > 0. One says that the surplus
process thus obtained is doubly reflected (at 0 and b). The quantities paid out/injected at end of
period l are to be discounted by the factor vl, l ∈ N0.

Then, using the fact proved in [WGT11] ([APP07] in the spectrally negative case), that barrier
policies are optimal, the problem reduces to expressing, in terms of W and Z, for a barrier dividend
distribution policy πb, b ∈ N0, the values of: (i) the expected discounted dividends,

(39) V b
D(x) := E[0,b]

x

∞∑
l=0

vlr(l) =

{
Zv(x)

∆Zv(b) x ≤ b
x− b+ V b

D(b) x > b
,

where E
[0,b]
x indicates expectation with respect to the process doubly reflected at 0 and b; and of (ii)

the expected discounted bailouts,

(40) V b
B(x) := E[0,b]

x

∞∑
l=0

vlr∗(l) =

{
Zv(x)

∆Z1,v(b)
∆Zv(b) − Z1,v(x) x ≤ b

V b
B(b) x > b

.

We give now the derivation of these two formulas. The cases x > b are trivial, we limit the discussion
to x ≤ b.

Proof of (39), for dividends. We break the objective in two, following [APP07]: the “De Finetti part”
until the first bailout time (27), and the rest (35):

V b
D(x) = Eb]x

τ̃−−1−1∑
l=0

vlr(l)

+Eb]x [vτ̃
−
−1 ; τ̃−−1 <∞]V b

D(0) =
Wv(x)

∆Wv(b)
+V b

D(0)

(
Zv(x)− ∆Zv(b)

∆Wv(b)
Wv(x)

)
.
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Making x = 0 yields V b
D(0) = 1

∆Zv(b) and the result follows. �

Proof of (40), for bailouts. Using the strong Markov property at the exit time from the interval [0, b)
for the process X, yields an equation with three unknowns, V b

B(x), V b
B(0) and V b

B(b):

V b
B(x) = Ex[vτ

+
b ; τ+

b < τ−−1]V b
B(b) + Ex[vτ

−
−1 ; τ−−1 < τ+

b ]V b
B(0) + Ex[(−X(τ−−1))vτ

−
−1 ; τ−−1 < τ+

b ]

=
Wv(x)

Wv(b)
V b
B(b) +

(
Zv(x)− Wv(x)

Wv(b)
Zv(b)

)
V b
B(0)−

(
Z1,v(x)− Wv(x)

Wv(b)
Z1,v(b)

)
,

where, on the event that the first bailout occurs before the level b is reached, the last term is the
expectation of this first bailout, before resetting to 0, computed in Remark 24, the penultimate term
gives the expectation of the remaining bailouts and is given by (15), finally the first term follows from
(11). Making x = 0, yields 0 = V b

B(b) + Z1,v(b)− Zv(b)V b
B(0), and it follows that

V bB(x) + Z1,v(x)− V bB(0)Zv(x)

Wv(x)
=
V bB(b) + Z1,v(b)− V bB(0)Zv(b)

Wv(b)
= 0.

It remains to show that V b
B(0) =

∆Z1,v(b)
∆Zv(b) . To this end, using the strong Markov property

at the exit time from the interval [0, b] for the process X, produces V b
B(0) = Wv(0)

Wv(b+1)V
b
B(b) +(

1− Wv(0)
Wv(b+1)Zv(b+ 1)

)
V b
B(0)+ Wv(0)

Wv(b+1)Z1,v(b+1). We conclude by plugging in V b
B(b) = Zv(b)V

b
B(0)−

Z1,v(b). �

Remark 44. For x < 0, by Remark 24, (40) reduces to V b
B(0)− x, as it should.

The combined objective is

V (x) := sup
b∈N0

V b(x), V b(x) :=
[
V b
D(x)− kV b

B(x)
]

= (x ∨ b)− b+ Zv(x ∧ b)H(b) + kZ1,v(x ∧ b),

with “barrier influence function”

(41) H(b) :=
1− k∆Z1,v(b)

∆Zv(b)
=

1− k (Zv(b)− (1− p̃′(1−))Wv(b))

( 1
v − 1)Wv(b)

.

As in the previous subsection, with an analogous justification, finding V (x) is related to finding the
supremum of H: (I) If r := supb∈N0

H(b) is attained, letting b∗ be a maximizer of H, then b∗ ≥ x
implies that b∗ is optimal for V (x). (II) If the supremum defining r is not attained, then the supremum
defining V (x) is not attained either. Since in this problem there is an optimal barrier strategy that does
not depend on the initial reserve [WGT11, Theorem 3.2(B)], it follows, at least when the maximizer
of H is unique, that in (I), b∗ is in fact optimal for all V (x), x ∈ Z. Finally, note that H differs

from H(b) := 1−kZv(b)
Wv(b) only up to a positive affine transformation, so finding the supremum of, resp.

a maximizer for, H is equivalent to finding the supremum of, resp. a maximizer for, H.

7. Examples

7.1. Eventual ruin probabilities and the de Finetti dividends optimization. The eventual
ruin probability is a straightforward application of (9), followed by Taylor series coefficient extraction.
Similarly, by using (10)-(4) and generating function inversion, one can obtain the probability mass
function of the time to ruin. One may also use the recursions (5)-(6)-(7). Indeed, in the case when the
support of the distribution of the claims is finite, the Lundberg recurrence (7) reduces the problem of
finding the eventual ruin probability to determining the roots of the characteristic equation (8).

For instance, suppose C1 takes on the values 0, 1, and 3, with probabilities 2/3, 2/9 and 1/9,
respectively. Then E[C1] = 5/9 < 1 and eventual upwards passage has probability ϕ1 = 1. The
generating function is p̃(z) = 6

9 + 2
9z + 1

9z
3, z ∈ (0, 1]; and Lundberg’s equation is

ϕv
v

=
6

9
+

2

9
ϕv +

1

9
ϕ3
v, v ∈ (0, 1].
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The recurrence for the perpetual survival and eventual ruin probabilities writes as (with f standing
in place of Ψ or Ψ)

f(x) =
2

3
f(x+ 1) +

2

9
f(x) +

1

9
f(x− 2)

for x ∈ N0. The characteristic equation (8) for this recurrence is (in x)

2

3
x3 − 7

9
x2 +

1

9
=

2

3
(x− 1)

(
x− 1

2

)(
x+

1

3

)
= 0

(coinciding formally with the transformation of Lundberg’s equation 6
9−

7
9ϕ1+ 1

9ϕ
3
1 = 0, via ϕ1  1/x).

Satisfying the boundary conditions Ψ(−1) = Ψ(−2) = 1, we arrive at

Ψ(x) =
2

5

(
1

2

)x
− 1

15

(
−1

3

)x
and Ψ(x) = 1− 2

5

(
1

2

)x
+

1

15

(
−1

3

)x
, x ∈ N0.

Taking z-transform yields, for z ∈ (0, 1), Ψ̃(z) = z+2
(z+3)(2−z) and Ψ̃(z) = 4

6−7z+z3 , which confirms (44)-

(45). Finally, consider the de Finetti dividends optimization, under a discount factor v = 150/169.
Taylor expanding the scale transform (13) yields (the right-hand side features the consecutive values
{Wv(0),Wv(1), . . .})
Wv = {1.5, 2.035, 2.76082, 3.49551, 4.40307, 5.51337, 6.89721, 8.62338, 10.7802, 13.4755, 16.8446, 21.0558, 26.3198, ...},

which may be checked to be a convex function with increasing forward difference

∆Wv = {0.535, 0.725817, 0.734691, 0.907565, 1.11029, 1.38385, 1.72616, 2.15678, 2.69539, 3.36905, 4.21121, 5.26398, ...}.

It follows that, irrespective of the initial capital, the optimal dividend policy is bringing the process
to the barrier b = 0 by taking dividends whenever possible.

7.2. Modified geometric claims. We consider next modified geometric claims, defined by pk =
(1 − α)αk−I(1 − p0 − p1 − · · · − pI−1), k = I, I + 1, ..., α ∈ [0, 1). We restrict to I = 2, which is
equivalent to having two Lundberg roots [SdR07]. We assume p0 +p1 < 1. The probability generating
function is

p̃(z) =
p0 + z(p1 − αp0) + z2[(1− α)(1− p0)− p1]

1− αz
, z ∈ (0, 1].

The mean is m := EC1 = 1−p0 + 1−p0−p1

1−α , and the positive profit/subcritical case m < 1 occurs when

p0(1 − α) > 1 − p0 − p1, which we assume henceforth. Fix v ∈ (0, 1]. The Lundberg equation (in z)
kvz

2 + z(p1 − αp0 − v−1) + p0 = 0, with kv := (1 − α)(1 − p0) − p1 + α/v > 0, has two (complex)
solutions, the smaller one is ϕv, and the larger of the two we will denote by Rv; their product is
ϕvRv = p0

kv
= p0

(1−α)(1−p0)−p1+α/v .

For v = 1, the roots are ϕ1 = 1 and R := R1 = p0

1−p1−(1−α)p0
> 1. The eventual ruin probability

is given by

(42) Ψ(x) = Ψ(0)R−x =
(

1− 1− EC1

p0

)
R−x =

1− p0 − p1

p0(1− α)
R−x, x ∈ N0.

This may be checked using (45). Note the last formula does not hold for x = −1, except for special
constellations of p0, p1, α. Whatever the value of v, ϕv ≤ 1 < Rv.

Some particular cases are:

(1) If α = 0, the claims cannot exceed 2, R−1 = p2

p0
, Ψ(0) = R−1, and the eventual ruin probability

is

Ψ(x) =

(
p2

p0

)x+1

, x ∈ N0 ∪ {−1},

recovering the classic gambler’s ruin problem.
(2) Geometric: p0 = 1− α, p1 = α(1− α).
(3) Geometric shifted by one: p0 = 0, p1 = 1− α.
(4) Geometric shifted by two: p0 = 0 = p1.
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Writing now p̃(z)− z/v = kv(z − φv)(z −Rv), we find, using (13) & (19), for z ∈ (0, ϕv):

W̃v(z) =
1

kv(Rv − ϕv)

( 1

ϕv − z
− 1

Rv − z

)
and

Z̃v(z) =
1

1− z

(
1− v−1 − 1

kv(1− ϕv)(Rv − 1)

)
+

v−1 − 1

kv(Rv − ϕv)

(
(ϕ−1

v − 1)−1

ϕv − z
+

(1−R−1
v )−1

Rv − z

)
,

so that, for x ∈ N0,

Wv(x) =
1

kv(Rv − ϕv)

(
ϕ−x−1
v −R−x−1

v

)
and

Zv(x) = 1− v−1 − 1

kv(1− ϕv)(Rv − 1)
+

v−1 − 1

kv(Rv − ϕv)
(
(ϕ−1

v − 1)−1ϕ−x−1
v + (1−R−1

v )−1R−x−1
v

)
.

As a check, W̃v(0+) = Wv(0) = p−1
0 and Z̃v(0+) = Zv(0) = 1. Given specific values of the parameters

α, p1, p0, v, the above expressions for Wv and Zv may be easily used to optimize combinations of
expected bailouts/penalties at ruin and dividends.

Remark 45. This model has a long history in branching processes as well [AN72, Mod71]. Its utili-
sation there goes back to Steffensen and Lotka (under the name of linear fractional branching) – see
[Ken66], and is still of interest nowadays – see for example [Sag16].

7.3. Multi-band dividend policies and modified de Finetti optimization.

Example 46. Recall Morrill’s historic example [Mor66, Ex. 2], with claims taking the values 0 and
3 with probabilities 12/13 and 1/13, respectively (→ E[C1] = 3/13 < 1), and with discount factor
v = 65/72. Taylor expanding the scale transform (13) yields

Wv = {1.08333, 1.3, 1.56, 1.78172, 2.02973, 2.30568, 2.61834, 2.97286, 3.3753, 3.83216, 4.35085, ...},

which may be checked to have a forward difference

∆Wv = {0.216667, 0.26, 0.221722, 0.248011, 0.275947, 0.312659, 0.354523, 0.402433, 0.456864, ...}

with a global minimum at b∗ = 0 and another local minimum at 2.

0 2 4 6 8 10 12 14

1

2

3

4

Figure 1. The barrier influence function 1/∆Wv(b) for Morrill’s example. The max-
imum b∗ = 0 is followed by the local maximum 2. The optimal dividend policy is
multi-band, with two continuation sets {0} and {2}.

Consider now the modified de Finetti objective of Subsection 6.3. For k big enough, for example
k = 3.2, the barrier influence function (1− 3.2∆Z1,v(b))/∆Wv(b) is unimodal – see Figure 2.
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Figure 2. The barrier influence function (1 − 3.2∆Z1,v(b))/∆Wv(b) for Morrill’s ex-
ample. The maximum b∗ = 2 is now the unique local (and hence global) maximum.

Example 47. We turn now to the Gerber-Shiu-Yang example [GSY10, Ex. 3], in which the barrier
influence function 1/∆Wv(b) has three local minima. The claims take the values 0, 1, 2 and 7 with
probabilities 3/4, 1/20, 1/10 and 1/10, respectively (→ E[C1] = 19/20 < 1), and the discount factor is
v = 0.999. Now the barrier influence function has a global maximum at b∗ = 1 and two further local
maxima at 7 and 38 – see Figure 3.
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0.5
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3.0

3.5

Figure 3. The barrier influence function 1/∆Wv(b) for the Gerber-Shiu-Yang exam-
ple. The maximum b∗ = 1 is followed by the local maxima 7 and 38. The optimal
dividend policy is multi-band.

Adopting a modified de Finetti objective of Subsection 6.3, for example with k = 1.2 — see Figure 4
— shifts the global maximum to b∗ = 41. The barrier influence function is not unimodal. With capital
injections however, the barrier influence function is unimodal – see next subsection and Figure 5.

7.4. Combined dividends and bailouts optimization objective for the doubly reflected pro-
cess. We optimize finally in the Gerber-Shiu-Yang example (Example 47), the combined dividends-
bailouts objective of Subsection 6.4 for the doubly reflected process with k = 1.2. Recall that for this
optimization problem there is always an optimal barrier policy [WGT11]. We obtain Figure 5. This
objective seems to have achieved a “compromise” between the peaks of the pure de Finetti objective.
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Appendix A. Double (generating function) transforms of ruin probabilities

Recall the notation of Section 3. From [Wil93, Eqs. (2.7) & (2.13)], one may deduced the double
transform

(43) Ψ̃v(z) :=
∞∑
n=0

vnΨz(n) :=
∞∑
n=0

vn

( ∞∑
x=0

zxΨ(n;x)

)
=

z
1−z −

ϕv
1−ϕv

z − vp̃(z)
, v, z ∈ (0, 1), z 6= ϕv,

where ϕv ∈ (0, 1) is the Lundberg root (4) (note that z = ϕv is a removable singularity). Indeed, from
(5), for all n ≥ 1, [Wil93, Eq. (2.3)]

zΨz(n) = p̃(z)Ψz(n− 1)− p0Ψ(n− 1; 0),

and summing over n after multiplication by vn yields [Wil93, Eq. (2.7)]

z(Ψ̃v(z)− (1− z)−1)=vp̃(z)Ψ̃v(z)− p0v

∞∑
n=0

vnΨ(n; 0)⇒ (z− vp̃(z))Ψ̃v(z)=
z

1− z
− p0v

∞∑
n=0

vnΨ(n; 0),

from where (43) is obtained by requiring that the root z = ϕv on the left-hand side annihilates also
the right-hand side.

Eq. (43) implies the transform (for v, z ∈ (0, 1), z 6= ϕv)

Ψ̃v(z) :=

∞∑
x=0

∞∑
n=0

zxvnΨ(n;x) =
1

(1− z)(1− v)
− Ψ̃v(z) =

1

z − vp̃(z)

(
v(z − p̃(z))

(1− v)(1− z)
+

ϕv
1− ϕv

)
.

Remark 48. Note the single transforms [Wil93, Eq. (3.5)]

Ψ̃(z) :=
∞∑
x=0

zxΨ(x) = lim
v↑1

(1− v)Ψ̃v(z) =
(1− E[C1]) ∨ 0

p̃(z)− z
, z ∈ (0, 1),(44)

Ψ̃(z) :=
∞∑
x=0

zxΨ(x) =
1

1− z
− (1− E[C1]) ∨ 0

p̃(z)− z
, z ∈ (0, 1),(45)

which are similar to the Pollaczek-Khinchine formulas of the Cramér-Lundberg model. One also has
[Shi89, 2.14]

Ψ(0) = lim
z↓0

Ψ̃(z) =
(1− EC1) ∨ 0

p0
.
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Appendix B. Summary table

Right-continuous ran-
dom walk

Upwards skip-free Lévy chain Spectrally negative Lévy
process

{n, b} ⊂ N0, x ∈ Z, x ≤ b,
v ∈ (0, 1]

{q, β} ⊂ [0,∞), {b, x} ⊂ hZ, x ≤
b, b ≥ 0

{q, β} ⊂ [0,∞), {b, x} ⊂ R,
x ≤ b, b > 0

Xn = X0 + n−
∑n

i=1Ci Y = hXN , N independent homo-
geneous Poisson process of inten-
sity γ, {γ, h} ⊂ (0,∞)

Lévy process U having a.s.
non-monotone paths and no
positive jumps

Cn i.i.d., N0-valued; p.m.f. p,
p0 ∈ (0, 1); p.g.f. p̃

Lévy measure λ; λ =
γ
∑

i∈Z\{1} piδh(1−i); Laplace

exponent ψ; ψ(β) =
γ[eβhp̃(e−βh)− 1]

Laplace exponent ψ; δ is the
drift, when X has bounded
variation

τ−b = inf{m ∈ N0 : Xm ≤ b}; τ−b = inf{t ∈ [0,∞) : Yt ≤ b}; τ−b = inf{t ∈ (0,∞) : Ut < b};
τ+
b = inf{m ∈ N0 : Xt ≥ b} τ+

b = inf{t ∈ [0,∞) : Yt ≥ b} τ+
b = inf{t ∈ (0,∞) : Ut > b}

ϕv = smallest root of
p̃(ξ)/ξ = v−1 (in ξ ∈ (0, 1])

Φ(q) = largest root of ψ(λ)− q (in

λ ∈ [0,∞)); e−hΦ(q) = ϕ γ
γ+q

Φ(q) = largest root of ψ(λ)−q
(in λ ∈ [0,∞))

Ex

[
vτ

+
b ; τ+

b <∞
]

= ϕb−xv Ex[e−qτ
+
b ; τ+

b <∞] = e−Φ(q)(b−x)∑∞
y=0 z

yWv(y) = 1
p̃(z)− z

v
, z ∈

(0, ϕv)

∫∞
0 e−βyW (q)(y)dy = eβh−1

βh(ψ(β)−q) ,

β ∈ (Φ(q),∞); W (q) càd & con-
stant on each interval [x, x + h);

W (q)(x) = 1
γhW γ

γ+q
(x/h)

∫∞
0 e−βyW (q)(y)dy = 1

ψ(β)−q ,

β ∈ (Φ(q),∞); W (q) continu-
ous on [0,∞)

Ex[vτb ; τ+
b < τ−−1] = Wv(x)

Wv(b) Ex[e−qτ
+
b ; τ+

b < τ−−h] = W (q)(x)

W (q)(b)
Ex[e−qτ

+
b ; τ+

b < τ−0 ] = W (q)(x)

W (q)(b)

Px(τ−−1 < ∞) = 1 −
W1(x)(1− p̃′(1−) ∧ 1)

Px(τ−−h < ∞) = 1 −
W (0)(x)(ψ′(0+) ∨ 0)

Px(τ−0 < ∞) = 1 −
W (0)(x)(ψ′(0+) ∨ 0)

Wv(x) = 0, x < 0; Wv(0) =
1/p0

W (q)(x) = 0, x < 0; W (q)(0) =
1/(hλ({h}))

W (q)(x) = 0, x < 0;

W (q)(0) = 0 if U has un-
bounded variation, = 1/δ o/w

limy→∞Wv(y)ϕy+1
v =

v
1−vp̃′(ϕv−)

limy→∞W
(q)(y)e−Φ(q)(y+h) =

1/ψ′(Φ(q)+)
limy→∞W

(q)(y)e−Φ(q)(y) =
1/ψ′(Φ(q)+)

Zv(x) = 1 +(
1
v − 1

)∑x−1
y=0 Wv(y), x ≥ 0

Z(q)(x) = 1 + q
∑x/h−1

k=0 W (q)(kh),

x ≥ 0; Z(q)(x) = Z γ
γ+q

(x/h)

Z(q)(x) = 1 + q
∫ x

0 W
(q)(y)dy,

x ≥ 0

Zv(x) = 1, x ≤ 0 Z(q)(x) = 1, x ≤ 0∑∞
y=0 z

yZv(y) =
p̃(z)−z

(1−z)(p̃(z)− z
v

) , z ∈ (0, ϕv)

∫∞
0 Z(q)(y)e−βydy = ψ(β)

β(ψ(β)−q) , β ∈ (Φ(q),∞)

Ex[vτ
−
−1 ; τ−−1 < τ+

b ] =

Zv(x)− Wv(x)
Wv(b)Zv(b)

Ex[e−qτ
−
−h ; τ−−h < τ+

b ] = Z(q)(x) −
W (q)(x)

W (q)(b)
Z(q)(b)

Ex[e−qτ
−
0 ; τ−0 < τ+

b ] =

Z(q)(x)− W (q)(x)

W (q)(b)
Z(q)(b)

Ex[vτ
−
−1 ; τ−−1 <∞] = Zv(x)−

ϕv(1−v)
v(1−ϕv)Wv(x), v < 1

Ex[e−qτ
−
−h ; τ−−h < ∞] = Z(q)(x) −

qh
eΦ(q)h−1

W (q)(x), q > 0

Ex[e−qτ
−
0 ; τ−0 < ∞] =

Z(q)(x)− q
Φ(q)W

(q)(x), q > 0

vm∧τ
m
−1Wv(Xm∧τ−−1

) a mar-

tingale in m ∈ N0

e−q(t∧τ
−
−h)W (q)(Xt∧τ−−h

) a martin-

gale in t ∈ [0,∞)

e−q(t∧τ
−
0 ∧τ

+
b )W (q)(Xt∧τ−0 ∧τ

+
b

)

a martingale in t ∈ [0,∞)

Remark 49. Every spectrally negative Lévy process may be seen as a (weak) limit of a net Y h of
upwards skip-free Lévy chains, as h ↓ 0 [MVJ15]. This means that a great many relations in the
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spectrally negative Lévy setting may be got (at least naively) by simply passing to the limit h ↓ 0
(formally, one must of course pay attention to whether or not the relevant functional is continuous
with respect to such a weak limit).

Remark 50. One of the important contributions of having a unified Φ,W,Z theory developed in all
the three settings featuring in the table above, is that whenever a result is available for one of them,
it may often be simply “guessed” in the others, by “translating” one set of quantities into the other
(though ultimately it still needs to be proved). We have seen this time and again in the results of this
paper.
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