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Summary

Movile Cave is a small system of partially inundated galleries in limestone settings close to the
Black Sea in Southeast Romania. Isolated from the surface for 6 million years, its sulfidic,
methane and ammoniarich waters harbour unique chemosynthetic prokaryotic communities that
include sulphur and ammonium-metabolizing chemolithotrophs, methanogens, methanotrophs
and methylotrophs. The cave also harbours cave-dwelling invertebrates and fungi, but the
diversity of other microbial eukaryotes remained completely unknown. Here, we apply an 18S
rRNA gene-based metabarcoding approach to study the composition of protist communities in
floating microbial mats and plankton from a wellpreserved oxygen-depleted cave chamber. Our
results reveal a wide protist diversity with, as dominant groups, ciliates (Alveolata),
Stramenopiles, especially bicosoecids, and jakobids (Excavata). Ciliate sequences dominated
both, microbial mats and plankton, followed by either Stramenopiles or excavates. Stramenopiles
were more prominent in microbial mats, whereas jakobids dominated the plankton fraction of the
oxygen-depleted water column. Mats cultured in the laboratory were enriched in Cercozoa.
Consistent with local low oxygen levels, Movile Cave protists are most likely anaerobic or
microaerophilic. Several newly detected OTU clades were very divergent from cultured species or
environmental sequences in databases and represent phylogenetic novelty, notably within
jakobids. Movile Cave protists likely cover a variety of ecological roles in this ecosystem including
predation, parasitism, saprotrophy and possibly diverse prokaryote-protist syntrophies.

Introduction

The Movile Cave harbours a unique underground aquatic ecosystem that has been isolated from
the surface for almost 6 million years (Lascu, 1989). Located in a limestone area close to the
Black Sea in Southeast Romania, it encompasses several inundated galleries fed by thermal
(21_C) sulfidic waters. The first explorations of these galleries showed that some of them
contained oxygendepleted air pockets (‘airbells’) and floating whitish microbial mats apparently
formed of bacteria and fungi (Sarbu et al., 1994; Sarbu et al., 1996). Early stable isotope labelling
experiments showed that this subsurface ecosystem is chemosynthetic (Sarbu et al., 1996).
Subsequent studies uncovered a wide diversity of prokaryotes and revealed the presence of
sulphur- and ammonium-based chemolithotrophy (Chen et al., 2009) but also an important
contribution of methanogenesis, methanotrophy and methylotrophy to the carbon cycle in this
cave ecosystem (Hutchens et al., 2004; Wischer et al., 2015; Kumaresan et al., 2018).
Methanogenic archaea were indeed isolated from floating biofilms (Ganzert et al., 2014) and
anoxic sediment (Schirmack et al., 2014).

The chemolithoautotrophic C fixation sustains not only microbial communities but also a
variety of obligate cavedwelling invertebrates, from which more than 30 species are endemic
(Sarbu et al., 1996; Fiser et al., 2015). Amphipods are particularly diverse. Species of the
prevalent Niphargus genus are tightly associated to Thiothrix sulphur-oxidizing ectosymbiotic
bacteria (Flot et al., 2014). Prokaryote-eukaryote symbioses are widespread in oxygen-depleted
ecosystems (Dubilier et al., 2008; Nowack and Melkonian, 2010; Edgcomb, 2016). This type of
symbioses, essential for adaptation to these ecosystems and source of evolutionary innovation,
and are particularly widespread in anaerobic microbial eukaryotes (Nowack and Melkonian, 2010;



Lopez-Garcia et al., 2017) and might also be prevalent in protists from the suboxic Movile
ecosystem. However, the diversity of microbial eukaryotes in this cave is practically unknown.
Only a recent, culture-based study provided information about the diversity of culturable fungi in
Movile samples (Novakova et al., 2018). This situation mirrors that of other cave ecosystems,
which have traditionally attracted interest either on the prokaryotic communities (Northup and
Lavoie, 2001) and/or the diversity and specific adaptations of the, very often, endemic animal
species (Juan et al.,, 2010; Casane and Retaux, 2016), while leaving protist diversity largely
unexplored.

With the aim to fill this knowledge gap and characterize microbial eukaryotic communities
in the chemosynthetic Movile ecosystem, we carried out a study based on highthroughput 18S
rRNA gene amplicon sequencing (metabarcoding) of microbial mat and plankton samples from an
oxygen-depleted ‘airbell’ compartment. Our results revealed a considerable diversity of likely
anaerobic and/or microaerophilic protists, several of which represent divergent groups from
known taxa.

Results and discussion
Movile Cave is a small cave (~ 250 m length) developed in Sarmatian limestone partially flooded
with mesothermal (22-23°C) sulfidic (H2S, 0.3 mM) water enriched in CH4 (0.2 mM) and NH4 +
(0.3 mM). The dissolved oxygen ranges between 9 and 16 uM at the water surface and less than
1 UM below the upper 3—4 cm of the water column, which becomes anoxic towards the bottom
(Sarbu et al., 1994; Chen et al., 2009). We collected water and microbial mat samples from the
second Movile Cave chamber, more remote from the entry, containing an airbell (‘AirBell2’). The
atmosphere of this chamber was oxygen-poor (8%—10% 0O2) and contained high relative
concentrations of CO2 (2.5%) and CH4 (2%). As previously described, whitish microbial mats
were observed floating on the water surface, sometimes retaining bubbles of reduced gases
coming from below (Fig. 1). We collected a fraction of this mat (Mov6, surface of ca. 20 cm2),
which was fixed in ethanol for subsequent DNA purification and 18S rRNA gene metabarcoding
analysis (see Supporting Information). A water sample of 0.8 | collected below the surface was
prefiltered through a 200 um mesh to eliminate large particles and the planktonic biomass was
retained in 0.2 um pore size filters (Mov4). We also included in our study a sample of a microbial
mat collected in AirBell2 two months earlier and maintained in culture in a sealed cave water-
containing bottle in the laboratory (Mov2).

After DNA purification, we amplified 18S rRNA gene fragments of approximately 550 bp
length  comprising the hypervariable V4 region using primers EK-565F (50-
GCAGTTAAAAAGCTCGTAGT-30) and 18S-EUK- 1134-R-UNonMet (50-
TTTAAGTTTCAGCCTTGCG-30) tagged with different molecular identifiers for each sample. After
mixing the products of several independent PCR reactions to minimize amplification biases, we
purified, pooled, and sequenced amplicons using MiSeq paired-end (2 x 300 bp, chemistry v3)
lllumina technology. We merged and treated paired-end sequence reads using an in-house
bioinformatic pipeline to check quality and eliminate primers and molecular identifiers. We also
eliminated potentially chimeric sequences (see Supporting Information). We then dereplicated the
resulting clean merged reads (CMRs) and used them to define operational taxonomic units
(OTUs) at 97% identity cut-off (see Supporting Information). We chose this cut-off value as a
good compromise offering a reasonable operational approximation to the genus-species level
diversity while producing a manageable number of OTUs to be included in specific phylogenetic
trees (see below). Collectively, this yielded a total of 7,454 OTUs, including shared OTUs among
samples, but most of them were singletons and were discarded for the rest of the analysis. In
total, we retained 652 OTUs (some of them shared between samples) (Table 1). We assigned
these OTUs to known taxonomic groups based on their similarity with sequences of a local
database that included sequences from cultured/described organisms and environmental surveys
retrieved from SILVAv128 (Quast et al., 2013) and PR2v4.5 (Guillou et al., 2013). We further
refined the phylogenetic assignation by the phylogenetic placement of our OTU sequences in a
reference phylogenetic tree (Supporting Information).

We retrieved OTUs belonging to all major super-groups of microbial eukaryotes including
Amoebozoa, Opisthokonta (including apusomonads), Excavata, Archaeplastida, and the SAR
clade (Stramenopiles, Alveolata, Rhizaria), as well as sequences of uncertain classification or



belonging to groups of unresolved phylogenetic placement such as haptophytes, katablepharids
and telonemids, sometimes referred to as Hacrobia (Okamoto et al., 2009) (Fig. 2). ‘Fresh’
samples harboured most of the diversity with 372 and 297 OTUs for, respectively, the biofilm
Mov6 and the plankton sample Mov4 (Table 1). In both samples, alveolate (ciliate, in particular)
sequences dominated (ca. 70%—80%; Fig. 2A) although, in general, OTUs from other groups
collectively accounted for a larger diversity (Fig. 2B). However, whereas Stramenopiles, followed
to some extent by Amoebozoa, were the subsequent most prevalent groups in the microbial mat
Mov6, Excavata were the more relatively abundant in the planktonic Mov4 sample. A small
fraction of OTUs was shared by the plankton and the microbial mat samples, highlighting their
different community composition (Fig. 2C). The most abundant shared OTUs belonged to
Stramenopiles and Amoebozoa (Supporting Information Table S1). As expected, Mov2, the
biofilm sample that was maintained in culture for two months in the laboratory, was less diverse
and had a different community composition as compared to the ‘fresh’ sample Mov6.
Interestingly, although Mov2 had similar proportions of OTUs across taxa (Fig. 2B), the relative
abundance of reads was very different from Mov6 (Fig. 2A). This implies that, although the
phylogenetic diversity of OTUs was maintained in mat cultures over time (Fig. 2B), the relative
proportion of the different taxa considerably shifted (Fig. 2A). In particular, Rhizaria, and more
specifically members of the Cercomonadida, opportunistically proliferated under laboratory
conditions. Mov2 and the other two samples shared very few OTUs (Fig. 2C).

In general, OTU sequences retrieved from Movile samples resembled more sequences
retrieved from environmental surveys than sequences from cultured/described species, as shown
in divergence plots (Fig. 3). These plots also show that, on average, Excavata and Amoebozoa
included the most divergent 18S rRNA gene sequences as compared to those existing in
databases. Although some ciliate sequences were also divergent, most of them had closer
relatives in databases. In order to explore better the phylogenetic diversity within the dominant
and most diverse protist groups identified in Movile Cave, we reconstructed phylogenetic trees for
Alveolata, Stramenopiles and Excavata. Because our amplicon sequences were relatively short
and contained limited phylogenetic information, we first built an alignment of taxon-specific near
full-length reference 18S rRNA gene sequences including the closest blast hit sequences to our
OTUs with Mafft-linsi v7.38 (Katoh and Standley, 2013) and trimmed gaps and ambiguously
aligned positions (Capella-Gutierrez et al., 2009) before building reference trees. Subsequently,
we included our OTU sequences to the corresponding alignments using the Mafft-linsi
‘addfragments’ option. We then reconstructed maximum likelihood phylogenetic trees using 1Q-
TREE v1.6.5 (Nguyen et al., 2015) applying a GTR model of sequence evolution with a Gamma
law and taking into account invariant positions (see Supporting Information).

The vast majority of alveolate OTUs corresponded to ciliates, but three OTUs clustered
within the Apicomplexa, corresponding most likely to parasites of protists or animals (Fig. 4). The
most relatively abundant of them (OTU7443) was distantly related to gregarines (e.g., Ancora
spp.). We also detected a few OTUs related to the parasitic perkinsids, as well as several
dinoflagellate OTUs (22), all of them in very low abundances (Fig. 4 and Supporting Information
Fig. S2). Dinoflagellates are typically photosynthetic, although many have lost photosynthesis and
become bacterivorous (Boenigk and Arndt, 2002). Many of our OTUs were very similar to
environmental sequences from oxygen-deprived settings or deep marine sediments, suggesting
that they may be actually heterotrophic (Supporting Information Fig. S2). Other OTUs were more
closely related to typical photosynthetic species, and we cannot discard the possibility that they
infiltrated from marine waters, given the proximity of the Black Sea, or are low-frequency
contaminants introduced during diving (through diving equipment). At any rate, most alveolate
sequences were scattered in various ciliate classes (Fig. 4). Three of them contained clades of
Movile OTUs that were particularly abundant. The first of them was the class Armophorea, which
includes anaerobic and microaerophilic ciliates from diverse environments (Vdacny et al., 2018),
often containing prokaryotic endosymbionts (Nowack and Melkonian, 2010). Armophorea
encompassed two clades of relatively abundant OTUs that seem related to metopids, a family of
anaerobic ciliates, MOV-AL-1 and MOV-AL-2. MOV-AL-2 appeared also forming a clade with
metopids but branched at the base of the group and had a longer branch, suggestive of a
potential parasitic lifestyle (Fig. 4). The class Phyllopharyngea comprised a clade of nine related
OTUs, MOV-AL-3, which was by far the most represented in Movile Cave. MOV-AL-3 likely



represents a new ciliate clade, being divergent with respect to their closest relative, a sequence
from a hydrothermal deposit in the Mariana Trough. Finally, the class Oligohymenophorea
encompassed the largest diversity of OTUs. Many of them were scattered in the class, having as
closest relatives sequences retrieved from anoxic or suboxic settings, such as the Cariaco Basin
(Edgcomb et al., 2011), the Guaymas hydrothermal sediment (Edgcomb et al., 2002) or the
Framvaren fjord (Behnke et al., 2006), and microbialites from alkaline lakes (Couradeau et al.,
2011), displaying similar physico-chemical conditions to those of karstic systems. The most
diverse clade, MOV-AL-4, comprised 93 OTUs together with one environmental sequence and
Uronema nigricans, an opportunistic marine parasite of animals (Crosbie and Munday, 1999).

The stramenopiles were also diverse, but most of the OTUs clustered in three major
groups, which were also relatively abundant, MOV-ST-1 (bicosoecids, 156 OTUs), MOV-ST-2
(labyrinthulids, 25 OTUs) and MOV-ST-3 (chrysophytes, 20 OTUs) (Fig. 5 and Supporting
Information Fig. S3). Although many ochrophytes are photosynthetic (e.g. diatoms or
chrysophytes), reversion to heterotrophy has occurred several times independently within this
group. Although some diatom and chrysophyte sequences in low frequency might be
photosynthetic contaminants introduced during diving, some clades such as MOV-ST-3, and the
diatom clades MOV-ST-4 and MOVST- 5, relatively abundant and related to sequences retrieved
from deep-sea or freshwater sediments (Fig. 5), likely correspond to heterotrophic lineages that
dwell in the cave ecosystem. However, many other OTUs belong to clear heterotrophic clades,
such as the MAST-12 and MAST-3 clades, the saprophytic labyrinthulids or bicosoecids. By far,
the most diverse abundant clade, which also included one environmental sequence retrieved
from a shallow subtropical lake, was MOV-ST- 1. It comprised three major subclusters of OTUs
amounting a total of 156 OTUs (Fig. 5 and Supporting Information Fig. S3). In agreement with the
local physicochemical conditions of the cave, and as in the case of alveolates, most of the closest
environmental sequences to the Movile OTUs were retrieved from oxygen-depleted habitats or
correspond to microaerophilic or anaerobic species.

Excavates comprised very divergent OTUs, with average 18S rRNA gene similarities of
approximately 70%— 75% (Fig. 3). Many OTUs, in particular the clades MOVEX- 1 and MOV-EX-
2, are associated to the family Stygiellidae, which encompasses the genera Stygiella and
Velundella. This is a highly diverse jakobid family whose members typically inhabit anoxic,
sulfide- and ammonium-rich marine habitats worldwide (Panek et al., 2015). Stygiella incarcerata
contains hydrogenosomes, mitochondria-related organelles typical of many anaerobic protists
(Leger et al., 2016). However, the most diverse and relatively abundant clade, MOV-EX-3,
comprised 76 OTUs and formed an independent lineage with some affinity to jakobids (Fig. 6).
This group likely represents either a new jakobid family or a novel euglenozoan lineage.

In addition to alveolates, stramenopiles and excavates, several other taxa were
represented in our samples. The most divergent of them corresponded to Amoebozoa (Fig. 3)
and were member of the Lobosa or were unassigned (Supporting Information Table S2). This is
not surprising given that amoeba have often fast-evolving 18S rRNA sequences and contain
insertions. Anaerobic amoeba are relatively poorly known and some of them are so divergent that
are usually classified as incertae sedis (Taborsky et al., 2017). Among Opisthokonta, we detected
OTUs affiliating to apusomonads, metazoans (calcareous sponge), Ichthyosporea,
choanoflagellates and various fungal and fungi-related taxa (Supporting Information Table S2).
Within Rhizaria, we detected one acantharian member and several cercozoan OTUs, notably in
the Mov2 sample. This suggests that cercozoa are opportunistic predators that developed better
in the laboratory conditions. Finally, a few OTUs represented by few sequences belonged to
Archaeplastida, breviates, prymnesiophytes, telonemids and katablepharids (Supporting
Information Table S2). Some of these might be local inhabitants of the cave belonging to the rare
biosphere; others, notably those potentially photosynthetic, might be dispersal forms infiltrated
from oceanic waters or human-introduced contaminants (e.g. through diving suits).

Our results show that Movile Cave harbours a wide diversity of protists belonging to most
major eukaryotic super groups, with ciliates (alveolates), stramenopiles and jakobids (excavates)
being the dominant and most varied groups. However, while stramenopiles are more abundant in
the floating microbial mats, jakobids seem clearly planktonic, thriving in the oxygen-deprived
water column. By contrast, mats cultured in the laboratory for several weeks show protist
community shifts, with cercozoans becoming dominant community members. Most of the diversity



observed correspond to lineages that have as closest relatives anaerobic or microaerophilic
protists or, else, environmental sequences coming from oxygen-deprived habitats. This strongly
suggests that Movile Cave protists are mostly anaerobic or microaerophilic. It also seems that
protists in the Movile Cave might have both, freshwater and marine, origins. Indeed, the diversity
found in this chemosynthetic ecosystem bears resemblance with that of protists found in
sulfurous lakes and lagoons, including karstic sites (Triado-Margarit and Casamayor, 2015). At
the same time, many of the closest relatives of the Movile OTUs have been identified in anoxic
seawater columns (Edgcomb et al., 2011) or sediments (Edgcomb et al., 2002). Given that many
of these protists seem anaerobic, it is likely that prokaryote-protist symbioses are prevalent in this
chemosynthetic ecosystem. Like in other oxygendepleted ecosystems (Edgcomb, 2016), Movile
Cave protists are thus likely important members of this chemosynthetic microbial ecosystem,
covering a range of ecological functions from predation, saprotrophy and parasitism to more
subtle hubs of metabolic exchange through syntrophy.
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Fig. 1. Sampling at Movile Cave. A. Location of Movile Cave in the vicinity of Mangalia village and the Black
Sea. The entrance of Movile Cave is indicated by a yellow star. B. sampling site at ‘airbell 2’. The sampled
floating biofilms are indicated by a white arrowhead. The black arrowhead points at methane bubbles
accumulating at the surface of the cave water.
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Fig. 2. Relative abundance of microbial eukaryotes in Movile Cave samples. A. Relative abundance of 18S
rRNA gene amplicon reads. B. Relative abundance of operational taxonomic units (OTUs). C. Venn
diagrams showing specific and shared OTUs among samples.
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Fig. 3. Divergence plots of eukaryotic OTUs from the Movile Cave with respect to 18S rRNA gene
sequences of cultured/described protists and environmental surveys. The size of the dots is proportional to

the number of reads. Their colour indicates their phylogenetic affiliation.
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Fig. 4. Maximum likelihood (ML) phylogenetic tree of partial 18S rRNA gene sequences showing the position
of OTUs affiliating to Alveolata. The number of reads per OTU or group of OTUs as well as the number of
reference sequences (rs) in the case of nodes that have been collapsed (triangles) is indicated. A total of



1,603 unambiguously aligned positions and 284 sequences were used to reconstruct the tree. Bootstrap
values higher than 50% are given at nodes. The scale bar represents the number of estimated substitutions
per position for a unit branch length.
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Fig. 5. ML phylogenetic tree of partial 18S rRNA gene sequences showing the position of OTUs affiliating to
stramenopiles. The number of reads per OTU or group of OTUs as well as the number of reference
sequences (rs) in the case of nodes that have been collapsed (triangles) is indicated. A total of 1,311



unambiguously aligned positions and 446 sequences were used to reconstruct the tree. Bootstrap values
higher than 50% are given at nodes. The scale bar represents the number of estimated substitutions per
position for a unit branch length.
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Fig. 6. Approximate ML phylogenetic tree of partial 18S rRNA gene sequences showing the position of
OTUs affiliating to excavata. The number of reads per OTU or group of OTUs (triangles) is indicated. A total
of 521 unambiguously aligned positions and 153 sequences were used to reconstruct the tree. The scale
bar represents the number of estimated substitutions per position for a unit branch length.



