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Abstract: As well-known, the benefit of restricting to Lévy processes without positive jumps is1

the “W, Z scale functions paradigm”, by which the knowledge of the scale functions W, Z extends2

immediately to other risk control problems (see for example [1–5]). The same is true largely3

for strong Markov processes Xt, with the notable distinctions that a) it is more convenient to4

use as “basis” differential exit functions ν, δ introduced in [6], and that b) it is not yet known5

how to compute ν, δ or W, Z beyond the Lévy, diffusion, and a few other cases. The unifying6

framework outlined in this paper suggests however via an example that the spectrally negative7

Markov and Lévy cases are very similar (except for the level of work involved in computing the8

basic functions ν, δ). We illustrate the potential of the unified framework by introducing a new9

objective (33) for the optimization of dividends, inspired by the de Finetti problem of maximizing10

expected discounted cumulative dividends until ruin, where we replace ruin by an optimally chosen11

Azema-Yor/generalized drawdown/regret/trailing stopping time. This is defined as a hitting time12

of the “drawdown” process Yt = sup0≤s≤t Xs − Xt obtained by reflecting Xt at its maximum13

(see [7] for an application to the Skorokhod embedding problem, and [8–11] for applications to14

mathematical finance and risk theory). This new variational problem has been solved in the parallel15

paper [12].16
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0. A brief review of first passage theory for strong Markov processes without positive jumps and32

their drawdowns33

Motivation. First passage times intervene in the control of reserves/risk processes. The rough34

idea is that when below low levels a, the reserves should be replenished at some cost, and when35

above high levels b, the reserves should be invested to yield dividends – see for example [13].36

There is a wide variety of first passage control problems (involving absorption, reflection and other37

boundary mechanisms), and it has been known for a long while that these problems are simpler in38

the “completely asymmetric” case when all jumps go in the same direction. In recent years it became39

furthermore clear that most first passage problems can be reduced to the two basic problems of40

going up before down, or viceversa, and that their answers may usually be ergonomically expressed41

in terms of two basic “scale functions” W, Z [1–3,5,6,9–11,14–21]. The proofs require typically42

not much more than the strong Markov property; it is natural therefore to develop extensions to43

strong Markov processes. This has been achieved already in particular spectrally negative cases like44

random walks [4], Markov additive processes [3], Lévy processes with Ω state dependent killing [3],45

certain Lévy processes with state dependent drift [22], and is in fact possible in general. However,46

characterizing the functions W, Z is still an open problem, even for simple classic processes like the47

Ornstein-Uhlenbeck and the Feller branching diffusion with jumps.48

Let Xt denote a one dimensional strong Markov process without positive jumps, defined on a49

filtered probability space (Ω, {Ft}t≥0,P). Denote its first passage times above and below by50

Tb,+ = Tb,+(X) = inf{t ≥ 0 : Xt > b}, Ta,− = Ta,−(X) = inf{t ≥ 0 : Xt < a},

with inf ∅ = +∞.51

Recall that first passage theory for diffusions and spectrally negative or spectrally positive52

Lévy processes is considerably simpler than that for processes which may jump both ways. For53

these two families, a large variety of first passage problems may be reduced to the computation54

of two monotone “scale functions” W, Z (by simple arguments like the strong Markov property).55

See [1,3,5,14–21] for the introduction and applications of W, Z in the Lévy case. For diffusions, the56

most convenient basic functions are the monotone solutions ϕ+, ϕ− of the Sturm-Liouville equation57

– see [23]. Finally, for spectrally negative or spectrally positive Lévy processes and diffusions,58

off-shelf computer programs could easily produce the answer to a large variety of problems, once59

approximations for the basic functions associated to the process have been produced. This continues60

to be true in principle for non-homogeneous Markov processes with one-sided jumps (by a simple61

application of the strong Markov property at the smooth crossing exit from an interval). However,62

there are very few papers proposing methods to compute W, Z for non-Lévy processes (see though63

[22], and [24], where the case of Ornstein-Uhlenbeck processes with phase-type jumps is studied).64

The two sided exit functions. The most important first passage functions are the solutions of
the two-sided upward and downward exit problems from a bounded interval [a, b]:Ψb

q,θ(x, a) := Ex

[
e−qTb,+−θ(XTb,+

−b)1{Tb,+<Ta,−}
]

Ψb
q,θ(x, a) := Ex

[
e−qTa,−+θ(XTa,−−a)1{Ta,−<Tb,+}

] q, θ ≥ 0, a ≤ x ≤ b. (1)

We will also call them killed survival and ruin first passage probabilities, respectively. Note that these65

are functions of five variables, very hard to compute in general. For processes with one sided jumps,66

one of the exits must be smooth (without overshoot); in this case, the parameter θ is unnecessary and67

will be omitted. Also, when a = 0, it will be omitted, to simplify the notation.68
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For diffusions and Lévy processes with one sided jumps, the two sided exit functions have69

well-known explicit formulas.70

For spectrally negative Lévy processes, the simplest is the smooth survival probability, which71

factors:72

Ψb
q(x, a) =

Wq(x−a)
Wq(b−a) = e−

∫ b
x νq(s−a)ds. (2)

Wq(x) is called the scale function [14,25] 1. We will assume throughout that Wq is differentiable (see73

[26] for information on the smoothness of scale functions). Then, νq(s) =
W ′q(s)
Wq(s)

is the logarithmic74

derivative of Wq, and may be interpreted as the “survival function of excursions lengths” [25].75

The non-smooth ruin probability has a more complicated explicit formula involving a second scale76

function Zq [1] – see remark 1 below.77

The drawdown/regret/loss/process. Motivated by applications in statistics, mathematical
finance and risk theory, there has been increased interest recently in the study of the running
maximum and of the drawdown/regret/loss/process reflected at the maximum, defined by

Yt = Xt − Xt, Xt := sup
0≤t′≤t

Xs.

Of equal interest is the infimum, and the drawup/gain/process reflected at the infimum, defined by

Yt = Xt − Xt, Xt = inf
0≤t′≤t

Xs.

See [27–29] for references to the numerous applications of drawdowns and drawups.78

Drawdown and drawup times are first passage times for the reflected processes:

τd := inf{t ≥ 0 : Xt − Xt > d},
τd := inf{t ≥ 0 : Xt − Xt > d}, d > 0.

(3)

Such times turn out to be optimal in several stopping problems, in statistics [30] in mathematical79

finance/risk theory – see for example [1,31–34] – and in queueing. More specifically, they figure in80

risk theory problems involving capital injections or dividends at a fixed boundary, and idle times81

until a buffer reaches capacity in queueing theory.82

Remark 1. The second scale function Z [1,3,35] useful for solving the spectrally negative non-smooth83

ruin probability (and many other problems) is best defined via the solution of the non-smooth total84

discounted “regulation” problem.85

Let X[0
t = Xt + Lt denote the process Xt modified by Skorohod reflection at 0, with regulator86

Lt = −Xt, let E[0
x denote expectation for this process and let87

T[0
b = Tb,+ 1{Tb,+<T0,−} + τb 1{T0,−<Tb,+} (4)

denote the first passage to b of X[0
t .88

1 The fact that the survival probability has the multiplicative structure (2) is equivalent to the absence of positive jumps, by
the strong Markov property.
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a) The Laplace transform of the total regulation (“capital injections/bailouts”) into the process89

reflected non-smoothly at 0, until the first smooth up-crossing of a level b, may be factored as [3,90

Thm. 2]:91

IE[0
x

[
e
−qT[0

b −θL
T[0b

]
=


Zq,θ(x)
Zq,θ(b)

, θ < ∞

IEx

[
e−qT[0

b ; Tb,+ < T0,−

]
=

Wq(x)
Wq(b)

, θ = ∞
, (5)

with Zq,θ(x) determined up to a multiplying constant.92

b) Decomposing (5) at min(T+
b , T0,−) yields a formula (1) for the ruin probability [3]. Indeed:

IE[0
x

[
e
−qT[0

b −θL
T[0b

]
=

Zq,θ(x)
Zq,θ(b)

=
Wq(x)
Wq(b)

+ IEx

[
e−qT0,−+θXT0,− ; T0,− < Tb,+

] Zq,θ(0)
Zq,θ(b)

=⇒ (6)

Ψb
q,θ(x)Zq,θ(0) = IEx

[
e−qT0,−+θXT0,− ; T0,− < Tb,+

]
Zq,θ(0) = Zq,θ(x)−Wq(x)Wq(b)−1Zq,θ(b). (7)

To simplify this formula, it is customary to choose Zq,θ(0) = 1.93

For non-homogeneous spectrally negative Markov processes, it is possible [5] to extend the
equalities (2), (7) to analogue expressions involving scale functions of two variables

Ψb
q(x, a) =

Wq(x, a)
Wq(b, a)

, Ψb
q,θ(x, a) = Zq,θ(x, a)−Wq(x, a)Wq(b, a)−1Zq,θ(b, a). (8)

However, it is simpler to start, following [6], with differential versions, whose existence will be94

assumed throughout this paper.95

Assumption 1. For all q, θ ≥ 0 and y ≤ x fixed, assume that Ψb
q(x, y) and Ψb

q,θ(x, y) are differentiable in b
at b = x, and in particular that the following limits exist:

νq(x, y) := lim
ε↓0

1−Ψx+ε
q (x, y)
ε

(9)

and

δq,θ(x, y) := lim
ε↓0

Ψx+ε
q,θ (x, y)

ε
(10)

Remark 2. A necessary condition for Assumption 1 to hold is that X is upward regular and creeping96

upward at every x in the state space – see [6, Rem. 3.1]. Within this class, it seems difficult to provide97

examples where Assumption 1 is not satisfied.98

It turns out that the differentiability of the two-sided ruin and survival probabilities as functions99

of the upper limit provides a method for computing other first passage quantities; for example, (12),100

(23) below may be computed by solving the first order ODE’s in Theorem 3. Informally, we may say101

that the pillar of first passage theory for spectrally negative Markov processes is proving the existence102

of ν, δ.103

In the Lévy case note that by (2) νq(x, y) =
W ′q(x−y)
Wq(x−y) = νq(x − y), and δq,θ(x, y) = δq,θ(x − y)

where [5]

δq,θ(x) := Zq,θ(x)−Wq(x)
Z′q,θ(x)

W ′q(x)
. (11)
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Remark 3. For diffusions, Wq(x, a) is a certain Wronskian–see for example [23]. Also, for Langevin104

type processes with decreasing state-dependent drifts, Wq(x, a) solves a certain renewal equation105

[22]. The case of Ornstein-Uhlenbeck/Segerdahl-Tichy processes with exponential jumps is currently106

under study in [36]. Some information about the generalization to Ornstein-Uhlenbeck processes107

with phase-type jumps can be found in [24]. Beyond that, computing Wq(x, a) or νq(x, a) is an open108

problem. This is an important problem, and we conjecture that the method of [24] may be extended,109

at least to affine diffusions with phase-type jumps, and possibly to all diffusions with phase-type110

jumps.111

The drawdown exit functions. Recently, control results with drawdown times τd replacing112

classic first passage times started being investigated – see for example [27,28]. Two natural objects113

of interest for studying τd are the two sided exit times114

Tb+,d = min(τd, Tb,+), Ta−,d = min(τd, Ta,−).

In terms of the two dimensional process t 7→ (Xt, Yt), these are the first exit times from the regions115

(−∞, b]× [0, d] and [a, ∞)× [0, d].116

Fundamental in the study of say Tb+,d are the following two Laplace transforms UbD/DbU
(up-crossing before drawdown/drawdown before up-crossing), which are analogues of the killed
survival and ruin probabilities :

UbDb
q,θ,d(x) = IEx

[
e−qTb,+−θ(XTb,+

−b); Tb,+ < τd

]
= IEx

[
e−qTb,+−θ(XTb,+

−b); Xτd > b
]

DbUb
q,θ,d(x) = IEx

[
e−qτd−θ(Yτd−d); τd < Tb,+

]
= IEx

[
e−qτd−θ(Yτd−d); Xτd < b

]
.

(12)

For spectrally negative Lévy processes, these have again simple formulas:117

1.

UbDb
q,d(x) := IEx

[
e−qTb,+ ; Tb,+ ≤ τd

]
= e
−(b−x)

W′q(d)
Wq(d) , (13)

2. The function DbU may be obtained by integrating the fundamental law [27, Thm 1], [28, Thm118

3.1] 2
119

δq,θ(d, x, s) := IEx

[
e−qτd−θ(Yτd−d); Xτd ∈ ds

]
=
(

νq(d) e−νq(d)(s−x)+ ds
)

δq,θ(d)

⇔ IEx

[
e−qτd−θ(Yτd−d)−ϑ(Xτd−x)

]
=

νq(d)
ϑ + νq(d)

δq,θ(d) (14)

where δq,θ(d) is given by (11). Integrating yields

DbUb
q,θ,d(x) =

(
1− e

−(b−x)
W′q(d)
Wq(d)

)
δq,θ(d). (15)

Remark 4. The probabilistic interpretation of νq, the logarithmic derivative of Wq. Taking a = 0 for120

simplicity, the last formula in (2) has the interesting interpretation as the probability that no arrival121

2 Note that [27, Thm 1] give a more complicated "sextuple law" with two cases, and that [28, Thm 3.1] use an alternative to
the function Zq(x, θ), so that some computing is required to get (14), (11).
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has occurred between times x and b, for a nonhomogeneous Poisson process of rate νq(s), s ∈ [x, b].122

Alternatively, differentiating (2) yields123

d
ds

Ψb
q(s)− νq(s)Ψ

b
q(s) = 0, Ψb

q(b) = 1. (16)

This equation coincides the Kolmogorov equation for the probability that a deterministic process124

Ỹs = s, killed at rate νq(s), reaches b before killing, when starting at s. It turns out, by excursion theory,125

that such a process Ỹs may be constructed by excising the negative excursions from Xt, and by taking126

the running maximum s as time parameter.127

The logarithmic derivative νq(s) will be needed below in the de Finetti problem (17), where we128

will use the fact that the expected dividends vq(b) paid at a fixed barrier b, starting from b, equal the129

expected discounted time until killing, which is exponential with parameter νq(b), being therefore130

simply the reciprocal of the killing parameter νq(b):131

vq(b) := IEb

[∫ Tb]
0,−

0
e−qtd(Xt − b)

]
= νq(b)−1. (17)

We see in the equation above and others that νq may serve as a convenient alternative132

characteristic of a spectrally negative Markov process, replacing Wq. Just as Wq, it may be extended133

to the case of generalized drawdown killing introduced in [9,10].134

Contents. We start in Section 1 by presenting a pedagogic first passage example illustrating the135

W, Z paradigm: the first time136

TR = Ta,b,d = Ta,− ∧ Tb,+ ∧ τd. (18)

when (X, Y) with X Lévy leaves a rectangular region R = [a, b]× [0, d].137

Remark 5. Note that letting a → −∞, b → ∞ reduces Ta,b,d to τd, and letting d → ∞, b → ∞ reduces138

Ta,b,d to Ta,−. Hence both classic first passage and drawdown times appear as special cases of Ta,b,d.139

For finite a, b, d, our region has two classic and one drawdown exit boundary.3140

In Section 2 we provide geometric considerations which reduce computations of the Laplace141

transforms of the “three-sided” exit times of (X, Y) to that of Laplace transforms of two-sided exit142

problems involving Ta,−, Tb,+ and τd (like (1), (12)) – see Figure 1.143

Only the strong Markov property is used; however, for the sake of simple notations we restricted144

the exposition to the family of Lévy processes (which have also the convenient feature that the scale145

functions W, Z may be computed by inverting Laplace transforms [1–3,17,25]).146

In Section 3 we enlarge the framework to that of generalized drawdown times [9,10]. This147

immediately entails that ν, δ become functions of two variables defined in (9), (10), and the extension148

to the spectrally negative Markov case becomes natural. We turn therefore to exits from certain149

trapezoidal-type regions in Section 4, under the spectrally negative Markov model.150

In Section 5 we consider processes reflected at an upper barrier and formulate a Finetti’s optimal151

dividends type objective with combined ruin and generalized drawdown stopping; this involves152

adding one reflecting vertex to our trapezoidal region. Included here is a new variational problem for153

de Finetti’s dividends with generalized drawdown stopping (33); since the solution is not immediate154

even in the Lévy case, this has been provided in the parallel paper [12].155

3 Choosing a, b, d optimally in various control problems involving optimal dividends and capital injections should be of
interest, and will be pursued in further work.
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1. Geometric considerations concerning the joint evolution of a Lévy process and its drawdown156

in a rectangle157

In order to study the process (Xt, Yt), it is useful to start with its evolution in a rectangular region
R := [a, b]× [0, d] ⊂ R×R+, where a < b and d > 0. Define

TR = Ta,b,d := inf{t : (Xt, Yt) /∈ R} = τd ∧ Ta,− ∧ Tb,+.

A sample path of (X, Y), where X is chosen to be a spectrally negative Lévy process, and the158

region R is depicted in Figure 1.

-6 -4 -2 0 2 4 6

0

2

4

6

8

10

Figure 1. A sample path of (X, Y) with X a spectrally negative Lévy process. The region R has
d = 10, a = −6 and b = 7; the dark boundary shows the possible exit points of (X, Y) from R. The
base of the red line separates R in two parts with different behavior

159

As is clear from the figure and from its definition, the process (X, Y) has very particular dynamics160

on R: away from the boundary ∂1 := {(x1, x2) ∈ R × R+ : x2 = 0} it oscillates during negative161

excursions from the maximum on line segments lXt
where, for c ∈ R, lc := {(x1, x2) ∈ R× R+ :162

x1 + x2 = c}.163

As Xt increases, the line segment lXt
on which (X, Y) oscillates advances to the right –164

continuously, in the spectrally negative case, and in general possibly with jumps.165

On ∂1, we observe the Markovian upward ladder process, i.e. the maximum X with downward
excursions excised, with extra spatial killing upon exiting R. If only time killing was present, with
d = ∞, this would be a killed drift subordinator, with Laplace exponent κ(s) = s + Φq (as a
consequence of the Wiener-Hopf decomposition [2]). In the rectangle, in the spectrally negative case,
the ladder process becomes a killed drift with generator Gϕ(s) := ϕ′(s)− νq(d)ϕ(s) [9,37]. Finally,
with generalized drawdown (when the upper boundary is replace by one determined by certain
parametrizations (d̂(s), d(s)) – see below), the generator will have state dependent killing:

Gϕ(s) := ϕ′(s)− νq(d(s))ϕ(s). (19)

Several functionals (ruin, dividends, tax, etc.) of the original process may be expressed as166

functionals of the killed ladder process. This explains the prevalence of first order ODE’s – see (25)167

for one example – when working with spectrally negative processes. Several implications for TR are168

immediately clear from these dynamics: for example, the process (X, Y) can leave R only through169

∂R ∩ {(x1, x2) ∈ R×R+ : x1 ≤ b− d} or through the point (b, 0) (see the shaded region in Figure 1).170

Also,171
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1. If b ≤ a + d, it is impossible for the process to leave R through the upper boundary of ∂R and172

for these parameter values TR reduces to Ta,− ∧ Tb,+. Here it suffices to know the functions (1)173

in order to obtain the Laplace transform of TR.174

2. If a + d ≤ x, it is impossible for the process to leave R through the left boundary of ∂R, and175

TR reduces to Tb,+ ∧ τd. Here it suffices to apply the spectrally negative drawdown formulas176

provided in [27,28].177

3. In the remaining case x ≤ a + d ≤ b, both drawdown and classic exits are possible. For the178

latter case, see Figure 1. The key observation here is that drawdown [classic] exits occur iff Xt179

does [does not] cross the line x1 = d + a. The final answers will combine these two cases.180

2. The three Laplace transforms of the exit time out of a rectangle for Lévy processes without181

positive jumps182

In this section we provide Laplace transforms of TR and of the eventual overshoot at TR. One can183

break down the analysis of TR to nine cases, depending on which of the three exit boundaries Ta,−,184

Tb,+ or τd occurred, and on the three relations between x, a, b and d described above.185

The following results are immediate applications of the strong Markov property and of known186

first passage and drawdown results.187

Theorem 1. Consider a spectrally negative Lévy process X with differentiable scale function Wq. Then, for188

fixed d ≥ 0 and a ≤ x ≤ b, letting UbD, DbU denote the functions defined in (13), (15), we have:189

a + d ≤ x ≤ b x ≤ a + d ≤ b b ≤ a + d

IEx
[
e−qTb,+ ; Tb,+ ≤ min(τd, Ta,−)

]
= UbDb

q,d(x) Ψ(a+d)
q (x, a)UbDb

q,d(a + d) Ψb
q(x, a)

IEx

[
e−qTa,−+θ(XTa,−−a); Ta,− ≤ min(τd, Tb,+)

]
= 0 Ψ(a+d)

q,θ (x, a) Ψb
q,θ(x, a)

IEx

[
e−qτd−θ(Yτd−d); τd ≤ min(Tb,+, Ta,−)

]
= DbUb

q,θ,d(x) Ψ(a+d)
q (x, a)DbUb

q,θ,d(a + d) 0

(20)

Proof: Note that in the third column the d boundary is invisible and does not appear in the results,190

and in the first column the a boundary is invisible and does not appear in the results. These two cases191

follow therefore by applying already known results.192

The middle column holds by breaking the path at the first crossing of a + d. The main points193

here are that194

1. the middle case may happen only if Xt visits a before a + d;195

2. the first case (exit through b) and the third case (drawdown exit) may happen only if Xt visits196

first a + d, with the drawdown barrier being invisible, and that subsequently the lower first197

passage barrier a becomes invisible.198

The results follow then due to the smooth crossing upward and the strong Markov property.199

Proof: Let us check the first and third row of the second column. Applying the strong Markov
property at Ta+d,+ yields

IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd, Ta,−)

]
= IEx

[
e−qTb,+ ; Ta+d,+ ≤ Ta,−

]
IEa+d

[
e−qTb,+ ; Tb,+ ≤ τd

]
=

Wq(x− a)
Wq(d)

e
−(b−a−d)

W′q(d)
Wq(d)



Version March 1, 2019 submitted to Risks 9 of 15

and

IEx

[
e−qτd−θ(Yτd−d); τd ≤ min(Tb,+, Ta,−)

]
= IEx

[
e−qτd−θ(Yτd−d); Ta+d,+ ≤ Ta,−

]
IEa+d

[
e−qτd−θ(Yτd−d); τd ≤ Tb,+

]
=

Wq(x− a)
Wq(d)

δq,θ(d)

(
1− e

−(b−a−d))
W′q(d)
Wq(d)

)
.

3. Generalized drawdown stopping for processes without positive jumps200

Generalized drawdown times appear naturally in the Azema Yor solution of the Skorokhod
embedding problem [7], and in the Dubbins-Shepp-Shiryaev, and Peskir-Hobson-Egami optimal
stopping problems [38–41]. Importantly, they allow a unified treatment of classic first passage and
drawdown times (see also [11] for a further generalization to taxed processes)–see [9,10]. The idea is
to replace the upper side of the rectangle R by a parametrized curve

(x1, x2) = (d̂(s), d(s)), d̂(s) = s− d(s),

where s = x1 + x2 represents the value of Xt during the excursion which intersects the upper
boundary at (x1, x2) (see Figure 2). Alternatively, parametrizing by x yields

y = h(x), h(x) = d̂−1(x)− x.

Figure 2. Affine drawdown exit of (X, Y) d(s) = 1
3 s + 1

201

Definition 2. [10] For any function d(s) > 0 such that d̂(s) = s− d(s) is nondecreasing, a generalized202

drawdown time is defined by203

τd̂(·) := inf{t ≥ 0 : Yt > d(Xt)} = inf
{

t ≥ 0 : Xt < d̂(Xt)
}

. (21)

Such times provide a natural unification of classic and drawdown times.204

Introduce
Ỹt := Yt − d(Xt), t ≥ 0

to be called drawdown type process. Note that we have Ỹ0 = −d̂(X0) < 0, and that the process Ỹt205

is in general non-Markovian. However, it is Markovian during each negative excursion of Xt, along206

one of the oblique lines in the geometric decomposition sketched in Figure 1.207
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Example 1. With affine functions208

d(s) = (1− ξ)s + d ⇔ d̂(s) = ξs− d, ξ ∈ [0, 1], d > 0, (22)

we obtain the affine drawdown/regret times studied in [9].209

Affine drawdown times reduce to a classic drawdown time (3) when ξ = 1, d(s) = d, and to a210

ruin time when ξ = 0, d̂(s) = −d, d(s) = s + d. When ξ varies, we are dealing with the pencil of lines211

passing through (x1, x2) = (−d, d). In particular, for ξ = 1 we obtain the rectangle case from section212

2, and for ξ = 0 we have an infinite strip with a vertical boundary at x1 = −d.213

One of the merits of affine drawdown times is that they allow unifying the classic first passage214

theory with the drawdown theory [9]; in particular, the generalized drawdown functions (23) below215

unify the classic and drawdown survival and ruin probabilities (and have relatively simple formulas216

as well – see [5]).217

Introduce now generalized drawdown analogues of the drawdown survival and ruin
probabilities (12) for which we will use the same notation:

UbDb
q,d̂(·)(x) = IEx

[
e−qTb,+ ; Tb,+ ≤ τd̂(·)

]
DbUb

q,θ,d̂(·)(x)) = IEx

[
e
−qτd̂(·)−θỸτ

d̂(·) ; τd̂(·) < T+
b

]
.

(23)

Remark 6. In the spectrally negative case, these functions may be represented as integrals:

UbDb
q,d̂(·)(x) = e−

∫ b
x νq(s,d̂(s))ds,

DbUb
q,θ,d̂(·)(x) =

∫ b

x
e−
∫ y

x νq(s,d̂(s))dsνq(y, d̂(y))δq,θ(y, d̂(y))dy,
(24)

where νq(y, d̂(y)), δq,θ(y, d̂(y)) are defined in (9), (10).218

This is already apparent in [6, Cor 3.1], and may be easily understood probabilistically from219

figure 2: the first equation is the probability of no occurrence in a nonhomogeneous Poisson process,220

and the second decomposes the transform of the deficit, by conditioning on the point y ∈ [x, b] where221

the maximum occurred.222

We provide now a heuristic proof valid for the Lévy case when νq(y, d̂(y)) = νq(y − d̂(y)) =223

νq(d(y)) and δq,θ(y, d̂(y)) = δq,θ(y− d̂(y)) = δq,θ(d(y)).224

1. Due to creeping, UbD is a product of infinitesimal events

Ψy+ε
q (y, y− d(y)) =

Wq(d(y))
Wq(d(y) + ε)

∼ 1− ενq(d(y)) ∼ e−ενq(d(y)).

Taking product, with ε = dy, yields (24).225

2. Informally, we condition on the density Xt ∈ dy. The integrand of DbU is obtained multiplying226

survival infinitesimal events up to level y by an infinitesimal termination event in [y, y + dy].227

The probability of this event, conditioned on survival up to y, is given by the deficit formula228

Ψy+ε
q,θ (y, y− d(y)) = Zq,θ(d(y))−Wq(d(y))

Zq,θ(d(y) + ε)

Wq(d(y) + ε)

∼ ε(−Z′q,θ(d(y)) + νq(d(y))Zq,θ(d(y)) = ενq(d(y))δq,θ(d(y))

For a rigorous (rather intricate) proof, see [11].229

The end result for generalized drawdown times is [11, Thm1]:230
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Theorem 3. Consider a process X for which the functions Ψ, Ψ are differentiable in the upper variable b.
Assume d(x) > 0 and d̂(x) = x − d(x) nondecreasing. Then, ∀q, θ ≥ 0, b ∈ R, the functions UbD(x) =

UbDb
q(x, d̂(·)), DbU(x) = DbUb

q,θ(x, d̂(·)) satisfy (24). Alternatively, they satisfy the ODE’s

UbD′(y)− νq(y, d̂(y))UbD(y) = 0, UbD(b) = 1, (25)

DbU′(y)− νq(y, d̂(y))DbU(y) + δq,θ(y, d̂(y)) = 0, DbU(b) = 0. (26)

Remark 7. The operator involved in the ODE’s above is the generator of the upward ladder process,231

under time and spatial killing, and with the downward excursions excised. Once this known,232

variations involving different boundary conditions are easily obtained as well.233

4. The three Laplace transforms of the exit time out of a curved trapezoid, for processes without234

positive jumps235

We will replace now the classic drawdown time in section 2 by a generalized one. Similar236

geometric considerations, with d(·), a + h(a) replacing d, a + d in Theorem 1, yield:237

Theorem 4. Consider a spectrally negative Lévy process X with differentiable scale function Wq. Then, for238

a ≤ x ≤ b and d(·) satisfying the conditions of Definition 2, we have:239

a + h(a) ≤ x x ≤ a + h(a) ≤ b b ≤ a + h(a)

IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd̂(·), Ta,−)

]
= UbDb

q,d̂(·)
(x) Ψa+h(a)

q (x, a)UbDb
q,d̂(·)

(a + h(a)) Ψb
q(x, a)

IEx

[
e−qTa,−+θ(XTa,−−a); Ta,− ≤ min(τd̂(·), Tb,+)

]
= 0 Ψa+h(a)

q,θ (x, a) Ψb
q,θ(x, a)

IEx

[
e
−qτd̂(·)−θ(Yτ

d̂(·)
−d)

; τd̂(·) ≤ min(Tb,+, Ta,−)

]
= DbUb

q,θ,d̂(·)
(x) Ψa+h(a)

q (x, a)DbUb
q,θ,d̂(·)

(a + h(a)) 0

Proof: Note that if b ≤ a + h(a) (narrow band), it is again impossible for the process to leave R240

through the upper boundary of ∂R, and TR reduces to Ta,− ∧ Tb,+, and nothing changes. Similarly, if241

a + h(a) ≤ x (flat band), it is impossible for the process to leave R through the left boundary of ∂R,242

and TR reduces to Tb,+ ∧ τd. Finally, the two zones in the intermediate case are separated by a + h(a)243

(instead of a + d).244

5. De Finetti’s optimal dividends for spectrally negative Markov processes with generalized245

drawdown stopping246

In this section we revisit the de Finetti’s optimal dividend problem for spectrally negative247

Markov processes with the point b becoming a reflecting boundary, instead of absorbing, as it was248

in section 2.249

Define the Skorokhod reflected/constrained process at first passage times below or above by:250

X[a
t = Xt + Lt, Xb]

t = Xt −Ut. (27)

Here251

Lt = L[a
t = −(Xt − a)−, Ut = Ub]

t =
(
Xt − b

)
+ (28)

are the minimal “Skorohod regulators” constraining Xt to be bigger than a, and smaller than b,252

respectively.253
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Let now

Vb](x) = Vb]
q,d̂(·)

(x) := IEx

[∫ τd̂(·)∧Ta,−

0
e−qtdUb]

t

]
(29)

denote the present value of all dividend payments at b, until the the first passage time either below
a, or below the drawdown boundary for the process Xb]

t reflected at b, starting from x ≤ b (a
generalization of the famous de Finetti objective). By the strong Markov property, it holds that

Vb](x) = IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd̂(·), Ta,−)

]
v(b), v(b) = vq(b, d̂(b)) := IEb

[∫ τd̂(·)

0
e−qtdUb]

t

]
.

(30)

Remark 8. The function v(b), the expected discounted time until killing for the reflected process,
when starting from b, equals the time the process reflected at b spends at point (b, 0) in Figure 2,
before a downward excursion beyond d̂(b) kills the process. In the Lévy case, it is well-known [2]
that this time is exponential with parameter νq(b, d̂(b)), and thus its expectation is the reciprocal of
the killing parameter νq(b, d̂(b)), i.e.

v(b) = νq(b, d̂(b))−1 (31)

Excursion theoretic arguments show that (31) continues to hold in the spectrally negative Markov254

case (for a proof under a similar setup, see [42, Sec 4]).255

Furthermore, by [11, Thm1] included above as (24), it holds that

IEx

[
e−qTb,+1{Tb,+<τd(·)}

]
= e−

∫ b
x νq(z,d̂(z))dz. (32)

When a = −∞, we arrive finally to an explicit formula256

Vb](x) =
e−
∫ b

x νq(y,d̂(y))ds

νq(b, d̂(b))
(33)

expressing the expected dividends in terms of νq(y, d̂(y)). Note that in the Lévy case the equation (33)257

simplifies to:258

Vb](x) =
Wq(d(x))
Wq(d(b))

νq(d(b))−1

(using x− l(x) = d(x)), which checks with [43, Lem. 3.1-3.2].259

The problem of choosing a drawdown boundary to optimize dividends in (33) is solved in [12]260

via Pontryaghin’s maximum principle.261

6. Example: Affine drawdown stopping for Brownian motion262

Consider optimizing expected dividends Vb](x) given in Equation (29) with respect to the263

optimal dividend barrier b for Brownian motion with drift X(t) = σBt +µt and with affine drawdown264

stopping d(x) = (1− ξ)x + d, where ξ ∈ [0, 1], d ≥ 0, a ≤ x ≤ b.265

Note that if a + h(a) > b, where h(x) = d(x)/ξ, then the drawdown constraint is invisible and266

the problem reduces to the classical de Finetti objective. Hence, we consider a + h(a) ≤ b.267

The scale function of Brownian motion is

Wq(x) =
2e−µx/σ2

∆
sinh(x∆/σ2) =

1
∆
[e(−µ+∆)x/σ2 − e−(µ+∆)x/σ2

],
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where ∆ =
√

µ2 + 2qσ2. Assume that x ≥ a + h(a) = a + d(a)
ξ = a+d

ξ , then as a special case of
spectrally negative Levy process, the expected dividends for Brownian motion equals

Vb](x) = IEx

[
e−qTb,+ ; Tb,+ ≤ min(τd̂(·), Ta,−)

]
v(b) =

(
Wq(d(x))
Wq(d(b))

) 1
1−ξ Wq(d(b))

W ′q(d(b))
, (34)

see [9, Thm. 1.1], with tax parameter γ = 0, and [9, Rem. 7], with tax parameter γ = 1. The barrier268

influence function which must be optimized in b becomes269

BI(b, d, ξ) =
Wq((1− ξ)x + d)1− 1

1−ξ

W ′q((1− ξ)x + d)
=

σ2

2

exµ/σ2
csch

(
x
√

µ2 + 2qσ2/σ2
)

coth
(
(d + x− xξ)

√
µ2 + 2qσ2/σ2

)
− µ/

√
µ2 + 2qσ2

. (35)

The critical point b∗ satisfies270

W ′′q Wq

(W ′q)2 ((1− ξ)b∗ + d) = − ξ

1− ξ
, (36)

that is b∗ satisfies

−
qσ2 + µ2 + µ

√
2qσ2 + µ2 sinh

(
2b∗
√

2qσ2+µ2

σ2

)
−
(
qσ2 + µ2) cosh

(
2b∗
√

2qσ2+µ2

σ2

)
(√

2qσ2 + µ2 cosh
(

b∗
√

2qσ2+µ2

σ2

)
− µ sinh

(
b∗
√

2qσ2+µ2

σ2

))2 = − ξ

1− ξ
.

In Figure 3 given below, we have an illustration of plot of barrier influence function and its derivative271

for Brownian motion with drift µ = 1/2 and σ = 1.

1 2 3 4 5 6

0.5

1.0

BI(b)

BI'(b)

Figure 3. Optimizing dividends with affine drawdown stopping where µ = 1/2, q = 1/10, σ = 1,
ξ = 1/3, b = 20, d = 1. The critical point b∗ = 2.12445.

272

Remark 9. Note that once ξ is fixed, we get nontrivial results for the optimal barrier. However, if273

we maximize over ξ as well, the optimum is achieved by the classical de Finetti solution ξ = 0 =⇒274

W ′′q (b∗+ d) = 0, corresponding to forced stopping below−d (d is just a shift of the origin, with respect275

to the classical solution W ′′q (b∗) = 0) [12]. In the diffusion case, it is not yet known whether examples276

in which the generalised De Finetti problem improves on the classic De Finetti solution are possible.277
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Remark 10. Let us note now that the equation (36) holds in fact for any spectrally negative Lévy278

process. Similar computations may be therefore performed for any spectrally negative Levy process,279

by plugging exact or approximate formulas for the scale function into the function280

W ′′q Wq

(W ′q)2 (37)

which is required to solve (36).281

The easiest case is the Cramér-Lundberg process with phase-type claims, since in this case the282

scale function is a sum of exponentials. For example, for a Cramér-Lundberg process with premium283

rate c > 0, Poisson arrivals of intensity λ and exponential claims with mean 1/µ, the scale function is284

Wq(x) = c−1( µ+∆+
∆+−∆− e∆+x − µ+∆−

∆+−∆− e∆−x), x ≥ 0, where ∆± =
q+λ−µc±

√
(q+λ−µc)2+4cqµ

2c , and similar285

computations may be performed (see also [43, Example 5.2]).286
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