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Abstract. Closed-form analytical formulae are developed to analyze the bend-

ing response of submerged composite rectangular plates subjected to underwa-

ter explosions (UNDEX). These explosions are supposed to occur at a suffi-

ciently large stand-off distance so that a uniformly distributed pressure pulse 

can be applied and the corresponding bubble effects can be ignored. The plate is 

considered in an air-backed condition. The derivation steps are divided into two 

main stages. In the first stage, the impulsive velocity due to the interaction of 

shock wave and structure is determined by using Taylor’s fluid-structure inter-

action (FSI) formulation while supposing a negligible structural deformation. 

Transmission of shock waves through the thickness of the plate is considered by 

assuming the material under uniaxial strain. At the end of the first stage, cavita-

tion is supposed to occur all over the plate. In the second stage, deformation of 

the plate will commence which is followed by the collapse of the cavitation 

zone. The corresponding mechanical response of the plate is determined by im-

posing a simply-supported boundary conditions and by applying Lagrangian 

Energy approach to derive the motion equation, taking into account the water 

inertial effects. The proposed method is then tested with isotropic (steel) and 

laminated composite (carbon-fiber/epoxy) plates to analyze for both impulsive 

velocity and UNDEX responses. The obtained analytical results are compared 

with those from non-linear finite element explicit code, LS-DYNA. Finally, the 

advantages and limitations of the present method are evaluated.  

Keywords: Underwater Explosion (UNDEX), Fluid-Structure Interaction 

(FSI), Analytical Formulations, Composite Rectangular Plate, LS-DYNA. 
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1 Introduction 

During recent years, composites have been widely used in the fields of civil and mili-

tary naval structures due to their advantages over conventional materials such as steel. 

However, there is still a major concern about how these composite structures will 

respond when subjected to an intense dynamic loading such as underwater explosion 

or hydrodynamic impacts. These loadings are usually comprised of complicated phys-

ical phenomena such as shock wave propagation, fluid-structure interaction, cavita-

tion, and so on. In order to capture all these phenomena accurately, one needs to use 

complex non-linear finite element codes such as LS-DYNA/USA. Nevertheless, this 

numerical approach is not only very complicated to set up but can also take a lot of 

computation time. It is, thus, not well-suited for the preliminary design phases espe-

cially when solutions with rapid and reasonable accuracy are only desired. In this 

context, this research is intended to solve the issue by introducing simplified analyti-

cal formulae to predict the response of submerged composite rectangular plates to a 

reasonable accuracy when subjected to underwater explosive loads. The primary ob-

jective is to propose various design solutions for the preliminary design of subma-

rines, surface ships and fast composite boats. The application area will concern with 

the underwater shock loadings applied to the composite surface ship sonar domes, 

submarine acoustic windows as well as hydrodynamic impacts to the composite hulls. 

The analytical formulations will be developed by assuming that explosion occurs at 

a sufficiently large stand-off distance so that planar pressure pulse can be considered 

and the influence of bubble shock waves can be ignored. The calculation steps will 

involve two main stages. Stage I, which is the fluid-structure interaction phase, will 

include determination of the impulsive velocity due to the interaction of the shock 

waves with the structure by using Taylor FSI formulation [1]. The plate is considered 

to be in an air-backed condition. The deformation of the plate is assumed to be negli-

gibly small during Stage I. Transmission of the shock waves throughout the thickness 

of the plate is taken into account by assuming the material under uniaxial strain. In 

Stage II, the mechanical response of the plate is determined by imposing a simply-

supported boundary condition and by applying Lagrangian Energy approach to derive 

the equation of motion, accounting for the water-added inertial effects. Closed-form 

analytical solutions will be proposed at the end. The developed formulations are first 

tested with steel to check their validity. Only then, they are applied to a more compli-

cated case of composite plates. The predicted results for both materials are compared 

with those from non-linear finite element explicit code, LS-DYNA. Finally, the accu-

racy as well as limitations of the proposed method will be evaluated. 
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2 Literature Review 

Underwater explosion has long been the focus of naval research since World War I 

and II. The majority of these extensive researches has been published through three 

volumes of ‘Underwater Explosion Research’ issued by the office of Naval Research 

in 1950 [2]. Cole [3] also systematically presented some of the useful summaries 

regarding the physical effects of UNDEX. A general literature review about the 

noticeable worldwide research efforts in the fields of blast loaded marine structures 

can be found in Porfiri and Gupta [4].  

Experimental works dealing with underwater explosion can be divided into two: 

one testing with real explosive facilities and the other using laboratory environment. 

In the past, experiments of the former type were mostly performed. For example, in 

the 1980s, experimental shock tests were conducted on a large number of glass-

reinforced plastic (GRP) composite panels and a full-scaled midship section to deter-

mine suitable materials for the newly-built mine hunter [5]. During the 1990s, a series 

of underwater explosive tests were performed on GRP composite laminates by Mouritz 

[6-9] in order to analyze the damage response behavior of stitched or non-stitched 

GRP laminates, fatigue properties, flexural strength, and so on. Arora et al. [10] have 

conducted full-scale experimental studies on glass-fiber reinforced polymer (GFRP) 

and carbon-fiber reinforced polymer (CFRP) sandwich composite panels and laminate 

tubes when they are subjected to air and underwater blast loadings. A Dyno-Crusher 

test, an alternative way of studying a 1D response of multi-layered pyramidal core 

sandwich panel due to the water blast, can be found in Wadley [11,12].  

The experimental tests mentioned above are only concerned with the use of real 

explosives on the test samples. However, these tests are usually expensive, time-

consuming and involve extensive safety measures. Therefore, shock tests using lab-

scaled environment are getting more popular in the recent years. In those experiments, 

a projectile impact-based shock tube is widely employed. It typically consists of a gas 

reservoir, a high-speed camera, a projectile, a long water-filled shock tube, a thin 

piston plate and a test specimen. This kind of apparatus was initially used by Desh-

pande et al. [13] who studied the effect of underwater shock loading on the structures 

and proved the finding of Taylor [1]. Later it was modified by Espinosa [14] by de-

signing a divergent shock tube to overcome the dimensional limitation imposed by the 

apparatus size. Schiffer and Tagarielli [15] used a transparent shock tube in order to 

observe not only the dynamic response of circular composite plates but also the cavi-

tation effect. LeBlanc and Shukla [16-18] studied UNDEX response of composite 

plates and curved composite panels by detonating an explosive charge at one end of a 

water-filled conical shock tube. From 2012 to 2017, a series of papers were published 

regarding the use of Underwater Shock Loading Simulator by Avachat and Zhou 

[19-23] to investigate the shock response behavior of laminated composite plates and 

sandwich structures. Qu et al. [24] also employed the same apparatus to analyze the 

dynamic response of thick- and thin-walled composite cylinders. A recent paper of 

Huang [25] investigated the dynamic response and failure of composite circular lami-

nates by employing a lab-scaled underwater explosive simulator and the 3D Digital 

Image Correlation (DIC) technique. 
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With more development in computation power, numerical solutions have been 

widely employed in the fields of UNDEX and FSI problems. The most common 

approaches include the use of hydrocodes and Doubly Asymptotic Approximations 

(DAA)/Boundary Element Method (BEM) codes. Mair [26] gives a fairly comprehen-

sive literature review about the use of various hydrocodes to predict the UNDEX 

responses. Analysis using DAA code uses boundary element method developed by 

Geers [27, 28]. Its application in the numerical analysis can be found in Underwater 

Shock Analysis (USA) program. The main advantage of using such method is that the 

governing equations are expressed in terms of the wet surface variables only and thus, 

there is no need to model explicitly the surrounding fluid. Applications of LS-

DYNA/USA can be found in DeRuntz [29] and Le Sourne et al. [30].  

Analytical works regarding the response of composite structures subjected to 

UNDEX are not very common. One of the earliest theoretical works includes Taylor 

[1] who proposed a 1D FSI solution to analyze the response of a free-standing rigid 

plate with an infinite length impacted by a plane shock wave. Librescu [31] proposed 

an analytical approach based on 3D elasticity theory in the Lagrangian description to 

study the dynamic response of anisotropic sandwich flat panels subjected to underwa-

ter and in-air explosions. In Liu and Young [32], Taylor’s air-backed FSI model was 

extended to a water-backed model by introducing a new FSI parameter and then solv-

ing the governing equations to give pressure, velocity and displacement. Wang et al. 

[33] has provided a novel solution method based on state space methodology, a 

numerical inversion of the Laplace transform, to yield the elastic dynamic response of 

the laminated composite plates subjected to UNDEX. A theoretical model that could 

take into account the stretching forces, transverse shear deformation effect, flexural 

wave propagation and cavitation induced non-linearity effect has been developed by 

Schiffer and Tagarielli [34]. Hoo Fatt and Sirivolu [35] presented an analytical meth-

od by coupling Taylor’s 1D FSI formulation with the Lagrange’s equation of motion 

and then by expanding the displacement terms into double Fourier Series to describe 

the in- and out-of-plane deflections of the sandwich facesheets. Recently, Sone Oo et 

al. [36], has proposed a simplified analytical solution to predict the elastic response of 

the isotropic circular plate subjected to air and underwater blasts. Equations of mo-

tions are derived based on Lagrangian Energy approach and the time-varying water-

added mass term is predicted using Kirchhoff’s Retarded Potential Formulae (RPF) 

along with a constant averaging term.  

3 Analytical Model 

3.1 Problem Formulation 

Consider a simply-supported rectangular composite plate having the sides 𝑎, 𝑏 and 

constant thickness ℎ. A standard Cartesian coordinate (𝑥, 𝑦, 𝑧) system is defined at the 

origin and mid-surface of the plate as shown in Fig. 1. The displacements in the 𝑥, 𝑦, 𝑧 

directions are denoted as 𝑢, 𝑣, and 𝑤 respectively. Suppose that the plate has 𝑁 ortho-

tropic plies that are bonded together perfectly. The orthotropic axes of material sym-

metry of an individual ply do not necessarily need to coincide with the 𝑥, 𝑦, 𝑧 axes of  
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Fig. 1. Panel geometry and coordinate system of the problem 

the plate. Kirchhoff’s thin plate theory is considered in this paper and hence, the 

thickness ℎ of the plate is much smaller than the other physical dimensions. In-plane 

displacements 𝑢 and 𝑣 are assumed negligibly small as compared with the out-of-

plane displacement 𝑤. The bending strains are assumed infinitesimally small so that 

each ply obeys linear stress-strain relationship. In the model presented in this paper, 

any transverse shear deformation effects are ignored. Also damage and failure is not 

addressed within the scope of this paper.  

3.2 Underwater Blast Loading 

The pressure submitted to the plate due to underwater explosion can be near-field or 

far-field depending on the stand-off distance. The treatment on the compressibility of 

water and of several other important parameters will be different depending on 

whether the explosion is near-field and far-field. In this paper, it is assumed that the 

plate is located at a sufficiently far distance from the explosive source point so that a 

uniformly distributed planar pressure pulse can be applied. The corresponding bubble 

effects are ignored in accordance with the far-field assumption. Then, the response 

due to the aforementioned pressure loading can be calculated in two stages. Stage I, 

which is the early-time FSI phase, is one in which the maximum impulsive velocity of 

the plate due to the shock wave is determined by employing the procedures described 

in [1] and [3] and by assuming a negligible plate deformation. At the end of the Stage 

I, cavitation is supposed to occur close to the plate. Then comes the Stage II in which 

the deformation of the plate commences. The corresponding mechanical response of 

the plate is determined by adapting Lagrangian Energy approach. Water added mass 

is derived by using the natural frequency for the rectangular plate with water on one 

side as provided by [37]. It should, however, be aware that during Stage II, no more 

incident pressure loading is considered. According to the long-time response, only the 

water added mass effect will be considered in this Stage. The calculation and deriva-

tion steps in this paper are indeed analogous to the analytical solutions presented in 

[36] except that [36] considered only fundamental mode shape of vibration. 
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Stage I: Early-time Fluid-Structure Interaction Response. Suppose that a plane 

shock exponentially decaying pressure pulse 𝑃𝐼  is submitted onto the composite rec-

tangular plate of density 𝜌𝑐. The plate is in contact with water of density 𝜌𝑤 on one 

side and air 𝜌𝑎 on the other side. Note that the incident pressure pulse 𝑃𝐼  is a 1D 

shock wave propagating in negative 𝑧 direction at sonic speed in water 𝑐𝑤, as depicted 

in Fig. 2. For any arbitrary time 𝑡 and at any arbitrary distance 𝑧 from the fluid-

structure boundary OO′, the incident pressure 𝑃𝐼  can be written as: 

 𝑃𝐼(𝑧, 𝑡) = 𝑃0𝑒
−(𝑡 − 

𝑧

𝑐𝑤
) 𝜏⁄

 (1) 

where 𝑃0 is the peak pressure and 𝜏 is the decay time. Both quantities can be de-

termined by applying the principle of similarity, which states that the pressure and 

other properties of the shock wave will be the same if the scales of length and time are 

varied by the same scale factor [3]. However, in this paper, both quantities 𝑃0 and 𝜏 

will only be defined arbitrarily in order to test the accuracy of the proposed formulae.  

In Fig. 2, it can be seen that the problem is treated as a single degree of freedom 

(DOF) and hence, only transverse displacements are considered in the analysis. Any 

tangential components of velocity for both particles and plate are assumed to vanish. 

The particle velocities for incident, reflected and transmitted wave are denoted as 𝑧̇𝐼, 

𝑧̇𝑅 and 𝑧̇𝑇 respectively and the plate velocity as 𝑊̇(𝑡). Recall that during Stage I of 

the response, the plate is assumed to behave like a free-standing rigid plate with neg-

ligible deformation. Upon arrival of the shock wave at the FSI boundary OO′, the 

entire plate will respond with a high frequency, creating rarefaction waves during the 

process. Some portion of the incident pressure is reflected back into the fluid while 

the other part is transmitted through the plate depending on the mechanical impedance 

of the plate material. For composite, the mechanical impedance 𝑍𝑐 can be written as: 

 𝑍𝑐  =  𝜌𝑐𝑐3 (2) 

where 𝑐3 is the through-thickness wave speed in the transverse direction. Accord-

ing to Abrate [38], 𝑐3 can be calculated as: 

 𝑐3 =  √
𝐸33(1−𝜈12𝜈21)

Λ𝜌𝑐
 (3) 

where Λ = 1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈12𝜈23𝜈31.  

At the FSI boundary OO′ (𝑧 = 0), the incident pressure is: 

 𝑃𝐼(𝑡) = 𝑃0𝑒−t 𝜏⁄  (4) 

Let us describe the reflected pressure as: 

 𝑃𝑅(𝑡) = 𝑃0𝜑(𝑡) (5) 

where 𝜑(𝑡) is a temporal function to be determined. Note that 𝜑(𝑡) will decay with 

time and is indeed a component of the reflection and radiated waves due to the trans-

verse movement of the plate 𝑊̇(𝑡). Considering the incident wave, reflected wave, 
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transmitted wave and plate velocity shown in Fig. 2, the velocity continuity equation 

at the boundary OO′ can be written as follows: 

 𝑧̇𝐼(𝑡) – 𝑧̇𝑅(𝑡) =  𝑊̇(𝑡) + 𝑧̇𝑇(𝑡) (6) 

Then assuming that the fluid density and propagation velocity do not change signif-

icantly from the undisturbed values and also supposing sufficiently small disturb-

ances, the pressure and particle velocities in the waves can be related by the following 

equations, according to [3]: 

 𝑧̇𝐼 =
𝑃𝐼

𝜌𝑤𝑐𝑤
𝑧̇𝑅 =

𝑃𝑅

𝜌𝑤𝑐𝑤
𝑧̇𝑇 =

𝑃𝑇

𝜌𝑐𝑐3
 (7) 

where 𝑃𝐼 , 𝑃𝑅 and 𝑃𝑇  are incident, reflected and transmitted pressure respectively. 

The transmitted pressure 𝑃𝑇  can be given in terms of the incident pressure 𝑃𝐼  as: 

 𝑃𝑇 =
2𝜌𝑐𝑐3

𝜌𝑐𝑐3+𝜌𝑤𝑐𝑤
𝑃𝐼  (8) 

By substituting Eq. (7) and (8) into Eq. (6), the following equation for 𝜑(𝑡) can be 

obtained: 

 𝜑(𝑡) =
1

𝑃0
(𝜇𝑃0𝑒−𝑡/𝜏 − 𝜌𝑤𝑐𝑤𝑊̇) (9) 

where 𝜇 =
𝜌𝑐𝑐3−𝜌𝑤𝑐𝑤

𝜌𝑐𝑐3+𝜌𝑤𝑐𝑤
 is the reflection parameter.  

Now the total pressure 𝑃(𝑡) applied to the plate can be expressed by summing Eq. 

(4) and (5) as follows: 

 𝑃(𝑡) = (1 + 𝜇)𝑃0𝑒−𝑡/𝜏 − 𝜌𝑤𝑐𝑤𝑊̇ (10) 

With the use of Eq. (10), the following equation of motion for Stage I is obtained: 

 𝜌𝑐ℎ𝑊̈(𝑡) + 𝜌𝑤𝑐𝑤𝑊̇(𝑡) = (1 + 𝜇)𝑃0𝑒−𝑡/𝜏 (11) 

where 𝑊̇(𝑡) and 𝑊̈(𝑡) represent velocity and acceleration of the plate. Analytical 

solution of Eq. (11) has already been proposed by Taylor [1] in which the maximum 

impulsive velocity of the plate is given as: 

 𝑣𝑖𝑚𝑝 =
(1+𝜇)𝜉𝑃0𝜏

𝜌𝑐ℎ
 (12) 

Recall that at the end of the Stage I, cavitation is supposed to occur all over the 

plate. Assuming fluid cavitation pressure to be zero, the cavitation inception time or 

the peak response time can be determined as: 

 𝑡𝑐 =
𝑙𝑛𝜓

𝜓−1
𝜏 (13) 

where 𝜉 = 𝜓
−

𝜓

𝜓−1 is the momentum reduction parameter and 𝜓 =
𝜌𝑤𝑐𝑤𝜏

𝜌𝑐ℎ
 is the Tay-

lor’s FSI parameter for the air-backed plate.  
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Fig. 2. Pressure and particle velocity at the fluid-structure boundary 

Stage II: Mechanical Response of the Submerged Composite Plate. As discussed 

before, the plate deformation is supposed to commence in the second stage of the 

response. The maximum impulsive velocity obtained at the end of the first stage is 

applied as an initial condition for Stage II. The incident pressure field is assumed to 

have vanished completely and the associated plate deceleration causes collapse of the 

cavitation zone, promoting the water-added inertia. The equation of motion for the 

plate can be derived by adapting Lagrangian Energy approach and then by describing 

the out-of-plane displacement term 𝑤(𝑥, 𝑦, 𝑡) in the form of double Fourier summa-

tion as: 

 𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑖𝑗(𝑡)𝜙𝑖𝑗(𝑥, 𝑦)∞
𝑗=1  ∞

𝑖=1  (14) 

where 𝑊𝑖𝑗(𝑡) is the temporal term for the modal participation and 𝜙𝑖𝑗(𝑥, 𝑦) is the 

spatial term that accounts for the mode shape. Assuming that the plate is simply-

supported on all four edges, the mode shapes that would satisfy the corresponding 

boundary conditions can be given as: 

 𝜙𝑖𝑗(𝑥, 𝑦) = sin (
𝑖𝜋𝑥

𝑎
) sin (

𝑖𝜋𝑦

𝑏
) (15) 

where 𝑖 and 𝑗 represent the mode number in x- and y- direction respectively. It 

must be noticed that the mode shape equation given in Eq. (15) satisfies the following 

orthogonality relation: 

 ∬ 𝜌𝜙𝑖𝑗𝜙𝑚𝑛Ω
𝑑Ω = 0, for i, j ≠ m, n (16) 

where Ω is the area of the plate considered. In accordance with the Eq. (16), all the 

equations of motion are uncoupled. Later this property will also be applied in the 

derivation of initial conditions for each uncoupled modal equation. 

According to the classical plate theory, only bending of the orthotropic plate is 

considered. Hence, the expression for the bending strain energy can be given as a 

form of modal summation using the following equation: 
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𝑈 =

1

2
∑ ∑ 𝐾𝑖𝑗𝑊𝑖𝑗

2∞
𝑗=1  ∞

𝑖=1

 𝐾𝑖𝑗 =
𝜋4

4𝑎3𝑏3
[𝐷11(bi)4 + 2(abij)2(𝐷21 + 2𝐷66) + 𝐷22(aj)4]

 (17) 

where 𝐾𝑖𝑗  is the stiffness term for each mode, 𝐷𝑚𝑛 =
1

3
∑ 𝑄̅𝑚𝑛|𝑘(𝑧𝑘

3 − 𝑧𝑘−1
3 )𝑁

𝑘=1  is 

the bending stiffness matrix for composite, 𝑁 is the number of layers in the laminate, 

and 𝑄̅𝑚𝑛|𝑘 is the reduced stiffness matrix for each 𝑘th layer. These matrices can be 

readily found in any classical composite literature, for example, see [39].  

Similarly, the kinetic energy 𝑇 can be derived as: 

 
𝑇 =

1

2
∑ ∑ 𝑀𝑖𝑗𝑊̇𝑖𝑗

2∞
𝑗=1  ∞

𝑖=1

𝑀𝑖𝑗 =
𝜌𝑐𝜋2

12𝑎𝑏
∑ (𝑧𝑘

3 − 𝑧𝑘−1
3 )𝑁

𝑘=1 [(𝑎𝑗)2 + (𝑏𝑖)2] +
𝜌𝑐ℎ𝑎𝑏

4

 (18) 

where the first term in the expression of 𝑀𝑖𝑗 corresponds to the rotatory inertia ef-

fect and the second term to mass inertia effect. 

Equations (17) and (18) are finally solved in general Lagrangian Equation: 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑊̇𝑖𝑗
) − (

𝜕𝐿

𝜕𝑊𝑖𝑗
) = 𝑄𝑖𝑗  (19) 

where 𝐿 = 𝑇 − 𝑈 and 𝑄𝑖𝑗  is the non-conservative force function for each mode due 

to the external load. Since the current solution portrays the UNDEX response as a free 

vibration problem, any 𝑄𝑖𝑗  term will be equal to zero. By solving Eq. (19), the follow-

ing equation of motion can be derived: 

 𝑀𝑖𝑗𝑊̈𝑖𝑗(𝑡) + 𝐾𝑖𝑗𝑊𝑖𝑗(𝑡) = 0 (20) 

Note that Eq. (20) is valid only for AIRBLAST or impulsive velocity responses. In 

order to include the water-added inertia term, Eq. (20) must be modified into: 

 (𝑀𝑖𝑗 + 𝑀𝑎𝑖𝑗)𝑊̈𝑖𝑗(𝑡) + 𝐾𝑖𝑗𝑊𝑖𝑗(𝑡) = 0 (21) 

where 𝑀𝑎𝑖𝑗  is the water-added inertia term and can be calculated by using wetted 

natural frequency of the submerged plate given by Greenspon [37], 

 𝑀𝑎𝑖𝑗 =
𝜌𝑤𝑙

2𝜌𝑐ℎ
𝛽𝛼𝑖𝑗𝑀𝑖𝑗 (22) 

where 𝑙 is the longer side of the plate, 𝛽 = 𝑓(
𝑎

𝑏
) is a correction term for various as-

pect ratios of the plate, 𝛼𝑖𝑗 is a correction term for boundary conditions and mode 

shapes. The term 𝛽 is bounded between 0 and 1 for 𝑎/𝑏 =  0 and 𝑎/𝑏 =  1 respec-

tively. For intermediate values of 𝑎/𝑏, 𝛽 can be expressed as a polynomial function: 

 𝛽 = 1.5 (
𝑎

𝑏
)

3

− 3.12 (
𝑎

𝑏
)

2

+ 2.6 (
𝑎

𝑏
) + 0.0098 (23) 

When applying Eq. (23), it should be noted that 𝑏 = 𝑙 is the longer side of the plate 

so that 0 < 𝑎/𝑏 < 1.  
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The modal term 𝛼𝑖𝑗 can be determined by using: 

 𝛼𝑖𝑗 = (∫ ∫ 𝜙𝑖𝑗𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0
)

2

(𝑎𝑏 ∫ ∫ 𝜙𝑖𝑗
2𝑑𝑥𝑑𝑦

𝑏

0

𝑎

0
)⁄  (24) 

The initial conditions for each mode 𝑖 and 𝑗 can be derived by using the initial im-

pulsive velocity calculated from Stage I and the orthogonality of the mode shapes. By 

differentiating Eq. (14), the transverse velocity of the plate can be written as:  

 𝑤̇(𝑥, 𝑦, 0) = ∑ ∑ 𝑊̇𝑖𝑗(0)𝜙𝑖𝑗(𝑥, 𝑦)∞
𝑗=1  ∞

𝑖=1  (25) 

By multiplying Eq. (25) by 𝜙𝑚𝑛(𝑥, 𝑦) on both sides and then integrating over the 

surface area, only one term will remain on right-hand side of the equation by virtue of 

the orthogonality property. Knowing that 𝑤̇(𝑥, 𝑦, 0) = 𝑣𝑖𝑚𝑝 at the initial condition, 

the equations for initial conditions become: 

 𝑊𝑖𝑗(0) = 0 and 𝑊̇𝑖𝑗(0) = 𝐴𝑖𝑗𝑣𝑖𝑚𝑝   (26) 

where 𝐴𝑖𝑗 = (∫ ∫ 𝜙𝑖𝑗𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0
) (∫ ∫ 𝜙𝑖𝑗

2𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0
)⁄  is the correction term for any 

odd number modes. 𝐴𝑖𝑗 will be zero for any even number modes due to the fact that 

the loading and the deformation are axisymmetric.  

Finally, analytical solution can be given in terms of modal participation and natural 

frequency as: 

 𝑊𝑖𝑗(𝑡) =
𝐴𝑖𝑗𝑣𝑖𝑚𝑝

𝜔𝑖𝑗
𝑠𝑖𝑛 𝜔𝑖𝑗𝑡 (27) 

where 𝜔𝑖𝑗 = √
𝐾𝑖𝑗

Mij+𝑀𝑎𝑖𝑗
 is the wetted natural frequency. Note that when 𝑀𝑎𝑖𝑗 = 0, 

the response is simply analogous to that of AIRBLAST or impulsive velocity. 

4 Numerical Models 

Numerical simulations are performed in LS-DYNA, a non-linear finite element ex-

plicit code. Two types of numerical simulations are studied. The first type concerns 

with the impulsive velocity response in which only 2D finite element plate was mod-

elled. The second type includes both fluid and plate models. Detailed modelling steps 

are provided in the subsequent sections.  

4.1 Materials 

Two types of material models, steel and CFRP/epoxy laminate, are considered. 

However, the same geometry of the plate is used for both models. A hypothetical 

square plate with the dimensions of 203.2 mm and an overall constant thickness of 
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Table 1. Characteristics of material 1 (steel) 

Item Values Units 

Density ρ 7822.8 kgm-3 

Young modulus E 207 GPa 

Poisson ratio υ 0.3  

Yield stress σy 545 MPa 

Table 2. Characteristics of material 2 (carbon-fiber/epoxy laminate) 

Item Values Units 

Density ρc 1548 kgm-3 

Young modulus E11 137.67 GPa 

Young modulus E22 = E33 8.98 GPa 

Shear modulus G12 3.66 GPa 

Shear modulus G23
1 162 GPa 

Shear modulus G31
2 183 GPa 

Poisson ratio υ12 = υ13 0.281  

Poisson ratio υ23 0.385  

Tensile strength XT 2214 MPa 

Compressive strength XC 1030 MPa 

Tensile strength YT 47.5 MPa 

Compressive strength YC 80.7 MPa 

Shear strength SC 25.6 MPa 

6.12 mm is constructed. Therefore, the aspect ratio of the plate ℎ/𝑎 is about 0.03. 

Material characteristics for isotropic material (steel) are given in Table 1. 

As for the composite, a laminated carbon-fiber/epoxy plate with the layout 

[±45/0/0/0 /±45/0/0/0/90/90/0]𝑆 is considered. Each ply is unidirectional and 

has the thickness of 0.278 mm. For ±45 degree plies, each one will have about 0.139 

mm thickness so that overall thickness of the laminate is about 6.12 mm.  

To make sure that the material shows only the bending response, the out-of-plane 

shear stiffness, that is, 𝐺23 and 𝐺31, is artificially increased to 50 times that of the 

actual values. This has been done just to make sure that the analytical results are 

comparable to the numerical one, keeping in mind that the out-of-plane shear defor-

mation will need to be coupled into the formulation in the near future. Material char-

acteristics for composite laminate is given in Table 2.  

                                                           
1  Out-of-plane shear stiffness G23 increased by 50 times (original value = 3.24 GPa) 
2  Out-of-plane shear stiffness G31 increased by 50 times (original value = 3.66 GPa) 
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4.2 Details of the Finite Element Models 

Models using only Impulsive Velocity. The finite element model for the plate is 

comprised of 2D shell elements. For steel, Belytschko-Tsay element formulation is 

applied. Material model for steel uses *MAT_PIECEWISE_LINEAR_PLASTICITY 

without taking into account the strain rate effect. Five through-thickness integration 

points are considered. A shear correction factor of 0.83 is applied to correct zero trac-

tion conditions at the top and bottom surfaces of the shell. 

Regarding the composite plate model, fully integrated shell elements are employed. 

With *PART_COMPOSITE card, the thickness and orientation of each ply can be 

defined. A total of 22 through-thickness integration points is used, each representing 

one laminate ply. The author has performed various sensitivity analyses regarding 

through-thickness integration points and concluded that there is not much influence. 

However, the simulation time could be affected a lot and thus, it is decided that one 

integration point for each layer is sufficient for the desired accuracy. A laminated 

shell theory is applied by setting LAMSHT=1 to correct for the differences in the 

elastic constants from ply to ply. The material model for the composite uses 

*MAT_ENHANCED_COMPOSITE_DAMAGE. However, within the scope of this 

paper, the problem will be limited to only elastic response without having any dam-

age.  

Simply-supported boundary conditions are imposed at edges of the plate for both 

material models. However, due to the symmetry of the problem, only a quarter of the 

plate has been modeled and the symmetric plane is defined through 

*BOUNDARY_SPC card in LS-DYNA. As explained above, modelling with the 

impulsive velocity requires neither pressure loading nor fluid elements. Only impul-

sive velocity is applied on the nodes of the plate model as an initial condition. The 

amplitude of the initial velocity is limited to small values so that materials remain in 

an elastic regime without suffering any damage.  

 

Models including Fluid-structure Interaction. The fluid is modeled using acoustic 

solid element formulation in LS-DYNA employing acoustic material 

(𝜌𝑤=1025 kgm-3, 𝑐𝑤=1500 m𝑠−1). These elements are similar to the Eulerian ele-

ments since only the nodes attached to the Lagrangian elements are allowed to 

move. The length of the fluid model needs to be selected very carefully in order not to 

have very long computation time as well as the returning wave effects that could 

come back from the far end of the fluid boundary. In this paper, the effect of varying 

the fluid column length is analyzed too. The mesh size of the fluid element is chosen 

as 1 mm in the thickness direction (negative z-direction). This fluid mesh size needs 

to be fine enough in order to accurately capture the shock wave propagation and cavi-

tation behavior, satisfying the criterion 2𝜌𝑤𝑡𝑤 < 5𝜌𝑠𝑡𝑠 where 𝑡𝑤 and 𝑡𝑠 are the thick-

ness of the fluid element and structure respectively. The nodes of the structure and the 

fluid are shared so that fluid-structure coupling is automatically treated in LS-DYNA. 

The lateral surfaces of the fluid elements are constrained in the x- and y-directions to 

ensure 1D wave propagation. Cavitation is considered in the analysis by activating the  
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Fig. 3. Typical finite element model of the rectangular plate: (a) with impulsive velocity and (b) 

with acoustic fluid elements 

cavitation flag so that when the pressure becomes negative, it will be forced to ze-

ro. Numerical damping (BETA=0.25) is applied on the acoustic fluid element for 

the stability issue. As a consequence, the peak pressure will become slightly less and 

the decay time slightly long. However, analyzing the impulse at the nearest element 

to the plate shows that the results are in good accordance with the transferred impulse 

value provided by Taylor’s formations. A typical finite element quarter plate model 

with or without the fluid elements are shown in Fig. 3.  

4.3 Details of the Finite Element Analyses Performed 

In Table 3 and Table 4, various numerical simulations performed using steel and 

carbon-fiber/epoxy laminate are shown respectively. The purpose is to analyze the 

effect of changing the mesh size. Here, it should be noticed that case 1 (steel) and 

case 4 (composite) contain only shell elements since these cases correspond to impul-

sive velocity simulations. On contrary, cases 2, 3, 5 and 6 are simulations with fluid 

models. As explained in the previous section, it is very important to use the correct 

length of the water column. It needs to be sufficiently long in order to avoid the re-

turning pressure wave reflected from the free end of the fluid column. Therefore, in 

cases 2 and 3, the length of the fluid (water) column is varied from 0.25 m to 0.5 m 

respectively to be able to check if there is the returning wave effect. Note that the 

calculation time becomes almost doubled due to the increased number of solid ele-

ments. The size of the plate mesh is kept the same in those two cases. On the other 

hand, in cases 5 and 6, the effect of varying the plate mesh is studied by using 2 mm 

and 8 mm mesh size respectively. The tested plate mesh sizes are given in the last 

column of Table 3 and Table 4. It should also be aware that for composites, the im-

pulsive velocity and applied loading is decreased by about 3 and 4 times respectively 

to guarantee that the response of the plate remains in elastic region. 
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Table 3. Numerical simulations performed in LS-DYNA (steel) 

Cases Description Water 

column 

length (m) 

Peak 

pressure 

(MPa) 

Decay 

time 

(ms) 

Impulsive 

velocity (ms-1) 

Plate mesh 

size (mm) 

1 
Taylor impulsive 

model3 
- - - 0.576 ms-1 ≈ 3.4 

2 FSI model 0.25 1 0.05 - ≈ 8 

3 FSI model 0.5 1 0.05 - ≈ 8 

 

Table 4. Numerical simulations performed in LS-DYNA (carbon-fiber/epoxy laminate) 

Cases Description Water 

column 

length (m) 

Peak 

pressure 

(MPa) 

Decay 

time 

(ms) 

Impulsive 

velocity (ms-1) 

Plate mesh 

size (mm) 

4 
Taylor impulsive 

model 
- - - 0.182 ms-1 ≈ 8 

5 FSI model 0.25 0.25 0.05 - ≈ 2 

6 FSI model 0.25 0.25 0.05 - ≈ 8 

 

5 Results & Discussion 

The current analytical formulations can be applied to steel by imposing 𝐸11 = 𝐸22 =

𝐸, 𝜈12 = 𝜈23 = 𝜈13 = ν and 𝐺12 = 𝐺23 = 𝐺13 =
𝐸

2(1+𝜈)
. The rest of the formulation 

will be the same except that the composite density 𝜌𝑐 is replaced by steel density 𝜌𝑠. 

The purpose is to check the validity of the current formulation before directly solving 

for more complex cases of composite. Only after the result of isotropic material is 

verified, the formulations are applied to investigate the UNDEX response of compo-

site plate.  

5.1 Response of Isotropic Rectangular Plate 

The central-deflection time histories of the steel rectangular plate subjected to Tay-

lor’s impulsive velocity as well as water blast loading are shown in Fig. 4 along with 

                                                           
3  Modelling using Taylor impulsive velocity does not require fluid elements. Hence no infor-

mation regarding water column length, peak pressure or decay time is available. Only the in-

itial impulsive velocity value is given. 
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the LS-DYNA results. Based on these results, many important observations can be 

made. First of all, it can be observed that the present formulations work very well 

(with 1% discrepancy) for the AIRBLAST response in which only impulsive velocity 

is modelled. As for UNDEX, added mass inertia term becomes important especially 

for longer time step. As can be seen in Fig. 4, the response might be seriously under-

estimated (about 30%) without the water-added mass. The two plots of LS-DYNA 

(Case 2 and 3) are overlapped. This means that either using water column length of 

0.25 m or 0.5 m does not matter since the results are exactly the same. The analytical 

result of UNDEX is also similar to finite element results except that the response is 

slightly faster in the analytical. This is mainly due to the two stage approximations in 

the analytical calculations. Recall that added mass term could begin only after the end 

of Stage I. In numerical solutions, added mass inertia might have already evolved 

since Stage I because the consideration of negligibly small deformation during Stage I 

of analytical calculation is in fact too idealized assumption. As a consequence, there is 

slightly more added mass term, leading to slightly longer response (also slightly high-

er strain energy) in the numerical results. In Fig. 5, normalized Von-Mises stress spa-

tial distribution is plotted with respect to normalized x-coordinates and then compared 

with the finite element solutions. It can be seen that present analytical results overes-

timate the peak by about 25%. But it is not surprising given the fact that the current 

analytical solution considers only bending. Other modes of deformation, for example, 

transverse shear or stretching or both are not negligible in the numerical results. 

5.2 Response of Composite Rectangular Plate 

The results of the composite rectangular plate are shown in Fig. 6 and Fig. 7. It can be 

seen that the current solution predicts very well for the impulsive velocity response 

since the discrepancy does not exceed 6% and the profiles of the time history curves 

are very similar. However, there is an obvious difference in the two curves of 

UNDEX response between analytical and LS-DYNA although the peak amplitude 

shows only 4% difference. The peak response time in LS-DYNA is obviously faster 

than that of analytical one. This effect might come from the non-linearity of cavita-

tion. Consideration of the through-thickness wave speed could also reduce the im-

pulse transferred to the composite plate. Perhaps modelling using 2D shell elements in 

LS-DYNA may not consider this kind of effect, resulting higher response within a 

shorter period. This issue still needs to be investigated more in the future. The LS-

DYNA results shown in Fig. 6 and Fig. 7 for case 5 (fine mesh) and case 6 (coarse 

mesh) are very similar, meaning that the convergence of the results has been reached. 

Evaluating the stress results in the material direction (𝜎11) for the lowest ply (45 

deg) gives satisfactory results as can be seen in Fig. 7 although the numerical results 

clearly show more damped behavior. It is not surprising, however, because the present 

analytical solution describes the problem as free vibration response and therefore, 

there is no damping or compressibility of the fluid. 
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5.3 Advantages and Limitations 

Table 5 (a) compares the time needed to finish one calculation and % discrepancies 

of the central-deflection calculated in all the analysis cases are shown in Table 5 (b). 

The closed-form solutions are implemented in MATLAB (version R2015a). It can be 

seen in Table 5 (a) that the present approach takes little or almost no time to finish the 

calculations as compared with LS-DYNA numerical approach. In fact, this much time 

is necessary in order to store the calculated data for each modal result at each time 

step. Anyway, it is obvious that adapting analytical approach could improve the cal-

culation time by as much as 1857 times as shown in the last column of Table 5 (a). Of 

course, it depends on how much elements have been used in the numerical model. It is 

also worth noticing that the calculation time for both analytical and numerical ap-

proaches increases for cases 4, 5 and 6. This is normal since cases 4, 5 and 6 represent 

composite plate and so, requiring storage for the additional variables and of course, 

more calculation time. 

According to Table 5 (b), the proposed analytical approach shows discrepancy less 

than 10 % compared to LS-DYNA results. It also provides more physical insights into 

the complicated problem such as underwater explosion. 

However, some drawbacks must be pointed out too. One of these is the ignorance 

of the transverse shear deformation. With the knowledge that transverse shear defor-

mation could decrease the natural frequency of the plate, the actual response of the 

composite plate would be longer than what has been predicted by the current analyti-

cal method and the amplitude may be lower. Another drawback of the solution is the 

consideration of two calculation stages. As discussed before, the action of cavitation 

is in reality non-linear and depends on a lot of factors such as plate aspect ratio, load 

duration time as well as the material or orientation considered. That is why some 

numerical approach such as DAA considers early-time and long-time responses with a 

smooth transition between the two. The current analytical method simply does not 

consider this phenomenon and so there is no smooth transition between the two steps. 

This could be improved by coupling DAA method into the analytical model in which 

the pressure and structural equations are solved simultaneously for each time step. 

Table 5. Comparison of the simulation time and the accuracy between LS-DYNA and present 

analytical method 

(a) Simulation time (sec)   (b) Central-deflection (mm) 

Case LS-DYNA Analytical Faster by   Case LS-DYNA Analytical %  

1 24 0.2 120   1 0.212 0.209 -1% 

2 199 0.25 796   2 0.292 0.3 3% 

3 363 0.25 1452   3 0.291 0.3 3% 

4 47 1.9 25   4 0.068 0.064 -6% 

5 3547 1.91 1857   5 0.139 0.134 -4% 

6 277 1.91 145   6 0.139 0.134 -4% 
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Fig. 4. Response of isotropic rectangular plate (Central-deflection Vs Time; 𝑎 = 𝑏 = 0.2032 m; 

ℎ = 6.12 mm; First and third terms in Fourier Series 𝑖 = 𝑗 = 1, 3; Taylor’s impulsive velocity 

response: 𝑣𝑖𝑚𝑝 = 0.576 ms-1; UNDEX: 𝑃0 = 1 MPa,  𝜏 = 0.05 ms) 

 

Fig. 5. Spatial distribution of the normalized Von-mises stress (𝜎𝑉𝑀/𝜎𝑌) for the bottom plane 

with respect to normalized coordinates (𝑥/𝑎) at the time of the maximum UNDEX response 

(𝑡max analytical = 0.495 ms, 𝑡max LS-DYNA = 0.514 ms; WC = water column length) 

 

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
en

tr
al

-d
ef

le
ct

io
n
 (

m
m

)

Time (ms)

Analytical - Impulsive Analytical - UNDEX

LS-DYNA Case 1: Impulsive LS-DYNA Case 2: UNDEX

LS-DYNA Case 3: UNDEX

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
ed

 V
o

n
-m

is
es

 s
tr

es
s 

(σ
v
m

/σ
y
)

Normalized x-coordinates (x/a)

Analytical - UNDEX

LS-DYNA Case 2:

UNDEX (WC=0.25m)

LS-DYNA Case 3:

UNDEX (WC=0.5m)

UNDEX 

Taylor’s impulsive 

velocity 



18 

 

Fig. 6. Response of composite rectangular plate (Central-deflection Vs Time; a = b = 0.2032 m; 

h = 6.12 mm; First and third terms in Fourier Series 𝑖 = 𝑗 = 1, 3; Taylor’s impulsive velocity 

response: 𝑣𝑖𝑚𝑝 = 0.182 ms-1; UNDEX: 𝑃0 = 0.25 MPa,  𝜏 = 0.05 ms) 

 

 

Fig. 7. Response of composite rectangular plate (𝜎11Vs Time; a = b = 0.2032 m; h = 6.12 mm; 

First and third terms in Fourier Series 𝑖 = 𝑗 = 1, 3; At bottom ply 45 deg; UNDEX: 𝑃0 =
0.25 MPa,  𝜏 = 0.05 ms) 
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6 Conclusion & Future Works 

This paper presented simplified analytical formulae by adapting Lagrangian Energy 

approach and Taylor’s 1D FSI method. Results are analyzed for two different types of 

material models; isotropic rectangular plate and carbon-fiber/epoxy laminated plate. 

However, only the elastic perturbation of the problem has been focused since the 

main interest of this research is mainly to find an analytical solution for composite 

UNDEX response. Using steel material in this case should, in fact, be seen as a trial 

case before actually applying to more complicated composite cases. Comparisons of 

the results with LS-DYNA show that the current formulations could predict the max-

imum central deflection with a discrepancy less than 10%. The stresses are also cap-

tured quite well, only showing 13% discrepancy.  

However, it must be kept in mind that this solution considers only bending and so, 

as long as the plate aspect ratio remains in the correct range, it would be valid. Test-

ing with different aspect ratios as well as varying loading levels still need to be per-

formed. Also, it is of practical interest to couple the transverse shear deformation 

effect into the current approach. Moreover, the authors intend to develop analytical 

formulations for the water-backed plate. Extending the current formulae for the stiff-

ened or curved plate cases would also be interesting. All of these mentioned above 

will be for future work and the corresponding results will be published elsewhere. 

Finally, degradation of the strength due to damage will be investigated by adapting 

some classical failure criteria and then by decreasing the elastic moduli of the plies.  
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