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Rigid obstacle impacted by a supercritical cohesive granular flow using a 3D discrete
element model
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This study examines the drag coefficient of an obstacle impacted by a 3D cohesive granular flow using a discrete element model. A specific numerical setup is

used to carry out reproducible and controlled normal impact simulations, in which the upstream flow properties are fully controlled parameters. The

micromechanical

 

contact

 

model

 

involves

 

the

 

physical

 

properties

 

of

 

friction,

 

normal

 

elastic–plastic

 

repulsion,

 

dissipation,

 

and

 

a

 

normal

 

cohesion

 

factor

 

that

 

induces

 

bulk

 

cohesion

 

in

 

the

 

granular

 

assembly.

 

The

 

effect

 

of

 

cohesion

 

on

 

the

 

obstacle

 

load

 

is

 

investigated

 

through

 

a

 

micro-scale

 

analysis.

 

We

 

show

 

that

 

increasing

 

the

 

cohesion

 

leads

 

to

 

an

 

increase

 

of

 

the

 

obstacle

 

drag,

 

through

 

a

 

densification

 

of

 

the

 

contact

 

network,

 

which

 

enhances

 

the

 

transmission

 

of

 

contact

 

forces

 

to

 

the

 

obstacle.

 

This

 

experiment

 

is

 

extended

 

to

 

a

 

wide

 

range

 

of

 

supercritical

 

flows,

 

with

 

Froude

 

numbers

 

between

 

1.5

 

and

 

11.2.

 

The

 

resulting

 

drag

 

coefficient

 

curves

 

are

 

represented

 

as

 

power

 

law

 

functions

 

of

 

the

 

Froude

 

number.

 

We

 

then

 

demonstrate

 

the

 

dependency

 

of

 

the

 

power

 

law

 

exponent

 

on

 

the

 

ratio

 

between

 

inertia

 

and

 

gravitational

 

forces.

 

Our

 

results

 

suggest

 

that

 

the

 

assessment

 

of

 

drag

 

coefficient

 

critical

 

values

 

by

 

conventional

 

avalanche

 

protection

 

guidelines

 

could

 

be

 

improved

 

by

 

a

 

mechanical

 

consideration

 

of

 

cohesion

 

for

 

certain

 

snow

 

types.

1. Introduction

The design of passive protection structures against snow avalanches

requires an estimation of the drag coefficient, which is based on a sim-

ple static relationship between the impact pressure and the inner flow

kinetic energy. Due to the lack of knowledge on the interaction between

an avalanche and an obstacle, i.e. how the upstream flow is disturbed,

and what the consequence is on the obstacle load, protection structure

designers adopt drag coefficients that are simply based on the geomet-

rical properties of the structure, and on the flow regime. For example,

the Swiss guidelines recommend to use 1 or 2 for small round-shape

or square-shape obstacles, respectively (Salm et al., 1990). Based on

impact pressure measurements made at the Ryggfonn test site (Norem,

1990), the Norwegian guidelines recommend to use drag coefficients

from 2.5 to 6.3 depending on the snow moisture content. An attempt

to standardise all these recommendations was made by the European

Commission in Barbolini et al. (2009).

The first substantial studies investigating the pressure exerted by

snow avalanches on a structure were performed by Voellmy (1955),

Mellor (1968) or Shen and Roper (1970). The avalanche was assumed

to behave as a steady stateflow and the impact pressure was initially

formulated as a function of the squared velocity only, before the

addition of a flow density term based on deposition zone data

analysis (Schaerer, 1973). In order to get realistic data, full-scale

experiments on snow avalanches were also performed. The pressure

was measured by load cells fixed on a supporting structure immersed

within the avalanche (Mcclung et al., 1985; Nishimura et al., 1993;

Schaer and Issler, 2001). More recently, in-situ experiments were

also performed by Sovilla et al. (2008a,b) at the Vallée de la Sionne

test site, and by Gauer et al. (2007) at the Ryggfonn test site. Based

on a possible influence of the supporting structure on the pressure

recorded by load cells, a different approach was to investigate the

impact pressure by inverse analysis of the deformations of an

avalanche-scale structure (Berthet-Rambaud et al., 2008; Thibert et al.,

2008).

The calculation of the drag coefficient requires to know the tem-

poral evolution of the drag force, the inner flow density and velocity.

In Thibert et al. (2008), the density is assumed to increase linearly

over time between densities measured in the starting zone and in

the deposition zone, but this method involves important major

uncertainties since the bulk density is more a function of the Froude

number, the first decreasing while the latter increasing. In the same

publication, the velocity is estimated from surface velocity, whereas

inner and surface dynamics can be fairly different (Jop et al., 2005).

All these sources of errors contribute to add uncertainties to the

resulting drag coefficient.

Because in-situ measurements are complex, the hypothesis of

snow avalanches behaving much like granular flows is increasingly
⁎ Corresponding author. Tel.: +33 4 76 82 42 10.
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used to study this complex natural phenomenon in the laboratory or

with numerical simulations. Snow is a complex granular material

which evolves over time with respect to snow metamorphism ther-

modynamical laws (Rognon et al., 2008a). Therefore, a wide variety

of snow grain shapes, sizes and mechanical properties co-exist within

the snow cover. The geometrically complex grains of newly deposed

fresh snow rapidly transform into more dense and smaller spherical

grains, stuck together through the sintering process which forms

small ice bonds between grains. When temperature rises above the

melting point, ice bonds and grain surfaces melt, grains grow to

reach a few millimetres and are linked by capillary cohesion. The

deposit of a snow avalanche is composed of snow balls. Their typical

size is in the order of a few centimetres, as shown by De Biagi et al.

(2012) using a fractal approach, and seems to evolve as an increasing

function of the moisture content, as shown by Bartelt and McArdell

(2009). These snow balls were formed within the dense part of the

rapid shear flow of the avalanche. Small-scale in-situ investigations

(Rognon et al., 2008a) made on dry natural snow have also identified

a typical size of a few centimetres.

It is not well known how the bulk cohesion influences the impact

pressure of snow avalanches. Recently, really high values of the drag

coefficient, up to 5 times the maximum value of 6 recommended by

Norem (1990), were obtained from analysis of snow avalanches

performed by Sovilla et al. (2008a, 2010) and Baroudi et al. (2011).

The authors explain this by the presence within the snow avalanche

of force chains (Sovilla et al., 2010). For example, the formation and

destruction of such force chains were identified as a possible cause

of the high impact load fluctuations in the case of wet-snow avalanches

(Baroudi et al., 2011). The presence of force chains seems to be related

to the flow density (Geng and Behringer, 2005), which is a decreasing

function of the vertical shearing which itself is higher for rapid dry

avalanches. For plug-flow like avalancheswith a Froude number around

1, the low amount of shearing seems to facilitate the formation of force

chains due to capillary cohesion.

Using this analogy between snow avalanches and granular flows,

small-scale laboratory experiments have been performed to study

granular flows impacting obstacles (Faug et al., 2011; Hauksson et

al., 2007; Ma et al., 2009; Platzer, 2006; Valentino et al., 2008). This

approach is useful to develop controlled experiments in which quan-

tities can be measured in a reproducible manner, as for example

velocity in Barbolini et al. (2005). However, the drag coefficient

depends on quantities such as density and velocity within the flow.

The experimental approach cannot provide this information because a

sensor inserted in the flow disturbs the flow characteristics. Numerical

approaches, on the other hand, can provide all the parameters needed

to compute the drag coefficient, but these models have to agree with

experimentation in order to be reliable, as done by Moriguchi et al.

(2009) using a continuum method, or by Teufelsbauer et al. (2011)

using a discrete method.

So far, studies on the influence of the Froude number Fr on the

obstacle drag coefficient Cd are sparse. Some of them cover a wide

range of Froude number. Thibert et al. (2008), Baroudi and Thibert

(2009) performed in-situ avalanche experiments for Froude numbers

between 0.5 and 7. Chehata et al. (2003) performed laboratory exper-

iments on granular flows impacting a round-shape obstacle in a wide

range of subcritical regimes. Both research groups established a rela-

tionship between the drag coefficient as a power law function, such as

Cd=aFr−b. The first group obtained a b value between 1.2 and 1.3,

and the second obtained a b value of 2, which shows that the velocity

does not influence the drag coefficient for subcritical regimes.

In this paper, we study the drag coefficient of an obstacle impacted

by a supercritical cohesive granular flow for a wide range of Froude

numbers, using a discrete approach. A specific numerical tool based

on a discrete element method is set up to compute the drag coeffi-

cient from fully controlled flow parameters. The first two sections

are dedicated to the description of the model, Section 2 for the contact

model, and Section 3 for the setup of the numerical tool. Section 4

gives the results obtained with the numerical model. It is subdivided

into two parts, the first one showing that cohesion contributes to

increase the drag coefficient through a densification of the contact

network in the granular flow, the second extending the first one to a

wide range of supercritical flow regimes.

2. The discrete numerical model

The granular flow experiments were modelled with a discrete

element method called Molecular Dynamics (first formulated by

Cundall and Strack (1979)), implemented in the open-source code

YADE1 (presented in Kozicki and Donzé (2008)). AMolecular Dynamics

simulation is started by first generating an assembly of discrete ele-

ments, which are used to represent both, fixed “boxes” and moving

“particles”. The contact forces between elements are then computed

according to the contact model (see the following Section), considering

a normal and a tangential contribution for each binary contact. Newton's

second law is applied to each particle to determine its resulting acceler-

ation, which is time integrated to obtain the updated particle velocity

and position. This process is repeated until the simulation is over. All

elements have a fixed geometry, particles are spherical and boxes are

parallelepipedic.

2.1. Description of the contact model

Two elements are in contact when there is an overlap between

them, which means that the distance between their centroids is

lower than the sum of their two radii. The contact force is computed

by applying the contact model to the relative displacement and veloc-

ity between the two contacting elements. The contact force is com-

posed of the normal force and the tangential force (represented in

Fig. 1), which are described by the normal (see Fig. 2) and the tangen-

tial (see Fig. 3) contact models respectively.

2.1.1. Normal contact: Linear hysteretic cohesive model

The normal contact force Fn is described by the piecewise elastic2

hysteretic cohesive model, shown in Fig. 2. This model was initially

proposed by Walton and Braun (1986) in its non-cohesive version,

and extended by Luding et al. (2005) and Luding (2008) to include

a cohesive behaviour to account for the sintering process. The normal

contact model represents successively a linear repulsive loading phase

(state 1) followed by an unloading process made up of a repulsive

phase (state 2) and two successive attractive phases (state 3 and state

4). Whatever the state, the evolution of the normal force falls into a

straight line for which the slopes are kn
1 for the first state, kn

2 for both

the second and third states, and kn
3 for the fourth one. The values of

stiffnesses kn
i (i=1,2,3) are uniform and constant for the duration of

each simulation. However, the normal contact model extrema, i.e. Fn
max

for the repulsive part and Fn
coh for the attractive part (see Fig. 2),

depends also on the initial relative velocity of the two contacting

elements, which can decrease or increase depending on whether addi-

tional energy is supplied by external elements impacting this prior

binary contact.

Amathematical description of the normal contactmodel is provided

below. In state 1, the contact force Fn is given by:

Fn ¼ k
1
n⋅δn; ð1Þ

1 https://yade-dem.org/wiki/Yade.
2 Using a Hertzian spring formulation would have been theoretically more accurate

for the elastic part, but the use of a linear spring leads to faster computations with sim-

ilar results because contact forces remain small (Silbert et al. (2001)).
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where δn is the normal overlap and kn
1 is the elastic contact stiffness

defined as:

k
1
n ¼ 2·

kAnk
B
n

kAn þ kBn
; ð2Þ

which is the harmonic average between the local kn
A and kn

B, which are

the local stiffnesses associated with elements A and B respectively,

and are defined as kn
i =Ei⋅Ri (i=A,B) with Ri being the radius of parti-

cle i and Ei being a local parameter (In case of a contact between a par-

ticle and a box, the box infinite radius is replaced by the particle radius

to compute the local stiffness.).

States 2 and 3 correspond to a hysteretic behaviour, for which the

resulting energy dissipation is conditioned by the value of a restitu-

tion coefficient en, defined by the ratio between initial and final rela-

tive normal velocities for a binary contact. Using this definition and

Newton's second law, the following relationship (demonstrated in

Walton and Braun (1986)) is obtained:

en ¼

ffiffiffiffiffi

k1n
k2n

s

; ð3Þ

from which the value of the hysteretic stiffness kn
2 can be computed.

To quantify the contribution of attractive forces, a normal cohesion

coefficient αc is defined by:

αc ¼
k3n
k1n

�

�

�

�

�

�

�

�

�

�

: ð4Þ

For a chosen normal cohesion coefficient, the value of the cohesive

stiffness kn
3 can be deduced.

When a new contact occurs, the contact force initiates from state

1. The value of the maximum contact force Fn
max depends on the initial

relative velocity between the two elements under consideration. This

value is saved for the whole duration of the contact, and it can be

updated. Starting from state 1, when Fn reaches Fn
max, the contact

goes into state 2, and the value of δn
c is computed during the transition

between these two states. From state 2, if both elements get closer,

there are two options. If kn
1 δn is higher than kn

2(δn−δn
c) then the con-

tact remains in the same state, otherwise the contact goes back to

state 1 which may lead to a change in Fn
max. From state 2, if both ele-

ments move away from each other, the resulting state depends on

the sign of kn
2(δn−δn

c). If it is positive, the contact remains in state 2,

whereas if it is negative, the contact changes to state 3.

Following the normal contact model, during the attractive phase

(states 3 and 4), when the contact is in state 3 and both elements

are getting closer, the contact goes back to state 2 if kn
2(δn−δn

c) is pos-

itive, or remains in state 3 if it is negative. Otherwise, both elements

are moving away from each other, and the next state depends on

the sign of kn
2(δn−δn

c)−kn
3δn. If positive, the contact remains in state

3, whereas if it is negative, the contact moves to state 4 and δn
c is

updated to a lower value (as for Fn
max and Fn

coh). From state 4, the con-

tact either goes back to state 3 if both elements get closer again, and

the contact force is then kn
2(δn−δn

c) (computed from the updated

value of δn
c), or it remains in state 4 otherwise. The contact finally dis-

appears when δnb0.

2.1.2. Tangential contact: Frictional cohesive model

The tangential contact model corresponds to a regularised Coulomb's

friction lawwith tangential cohesion (see Fig. 3). Fig. 3a shows the shear

strength Fs,max as a function of the normal contact force, and Fig. 3b

shows the tangential force Fs actually computed for a fixed value of

the normal contact force. A tangential stiffness is involved in the

regularisation, it is defined as:

k
i
s ¼ 2·

νAkAn·ν
BkBn

νAkAn þ νBkBn
� ξi; ð5Þ

where νA and νB are Poisson's ratio, and ξi is a numerical coefficient

depending on the normal contact model. The value of the subscript i

depends on the normal contact state: it is 1 for the elastic state

(for which ξi1=1), it is 2 for the hysteretic state (for which ξi2=kn
2/kn

1)

and it is 3 for the cohesive state (for which ξi3=|kn
3/kn

1|).

As shown in Fig. 3a, when the normal cohesion is computed with

the normal contact model, tangential cohesion is also computed with

the tangential contact model. Consequently, it is the normal cohesion

that induces cohesion in the model, at both the local and the global

scales. In the rest of the paper, for the sake of clarity, we will reserve

the word cohesion to the macroscopic scale. Wherever it is more

relevant to consider the microscopic scale, we will refer to normal

cohesion or tangential cohesion.

3. Description and setup of the granular launcher

In a previous work, Favier et al. (2009) modelled a whole impact

flow experiment, starting from the upstream triggering of the granu-

lar material at null velocity, and ending with the downward impact

event on the obstacle. Based on this “standard” model, we were able

Fig. 1. Two elements A and B are in contact when an overlap δn occurs between them.

The definitions of the normal direction n and tangential directions t1 and t2 are relative

to the contact plane.

Fig. 2. Schematic graph of the piecewise elastic (state 1), hysteretic (states 2 and 3)

and cohesive (states 3 and 4) normal contact model. kn
1, kn

2 and kn
3 are the corresponding

stiffnesses. Fn
max and Fn

coh are the maximum repulsive and attractive values that can be

reached by the contact force, respectively. The upper right diagram represents a 2D

view of the contact between two elements A and B, with an overlap δn.
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to compute the drag coefficient from internal characteristics of the

flow. However, due to the high calculation cost of this comprehensive

approach, it was not possible to perform extensive parametric studies.

Therefore, we propose here an efficient numerical tool, calibrated from

the standard model, to overcome this limitation.

3.1. Granular launcher principle and setup

The numerical tool, called “granular launcher”, is presented in

Fig. 4. The setup of the granular launcher requires four initial input

parameters: the launching distance Di, which is the distance separating

the downstream obstacle from the location from which the particles

will be thrown, the initial flow velocity Vi which is uniform, the initial

flow density ρi and thickness hi. The initial sample is generated by

creating a non-cohesive granular assembly by gravity deposition in a

parallelepipedic box (which has the same width as the canal). The

deposition process is over when the chosen initial density is reached

(the residual kinetic energy is then low). Then, the upper part of the

deposit is removed tomatch the chosen initial thickness, and a few ver-

tical layers are removed at the sample front and back to avoid boundary

effects on the granular flow experiments. During a simulation, all the

particles located upstream from the launching distance are given an ini-

tial velocity Vi. Thus, the part of the granular assembly located in this

area moves downward like a rigid body, without any internal deforma-

tions, while the downstream part flows under the effect of gravity.

With this method, only the flow/obstacle interaction is modelled,

which reduces drastically CPU time for each simulation (from days

to hours). Moreover, the initial conditions from which the drag coef-

ficient is calculated are fully controlled, and can thus be modified in

order to perform parametric studies.

3.2. Validation of the granular launcher

The granular launcher is validated by comparing the amplitude of

the obstacle load with the results produced by the standard model,

during the steady regime and for a non-cohesive granular flow

(equivalent to αc=0). The transient regime, characterised by both

non-steady flow properties and obstacle load (this definition will

be detailed in Section 1), is not considered because it depends on

the bulk properties at the front of the granular assembly, which are

totally different between the standard model (see Favier et al. (2009))

and the granular launcher.

The following parameters are used. The slope angle is 43° from the

horizontal and the canal is 20 cmwide. The obstacle is a c=4 cm side

square, positioned perpendicular to the (x,y) plane and centred in the

central flowline. The mean radius of the spherical particles is 2.5 mm,

with a scattering of 2%. The values of the micromechanical contact

parameters are presented in Table 1. These values are similar to the

ones used in a previous work (detailed in Favier et al. (2009)).

The values chosen for E and ν correspond to a fairly smooth

material, with typical overlaps of around one percent of the particle

radius. The reason of this choice is due to the relationship between

stiffnesses and the time step of the simulations, which prohibits any

large-scale study if the stiffness is too high. More important, this

choice is justified by the good fit obtained previously between the

standard model and the original laboratory experiments (again see

Favier et al. (2009)) with the same numerical contact properties,

although the experimental material was made of spherical glass par-

ticles, having a significantly larger stiffness. Note that a few studies

have already shown an agreement between flow properties from sim-

ulations and experiments (Hanes and Walton, 2000; Taberlet, 2005)

a) b)

Fig. 3. Frictional and cohesive tangential contact model. The tangential cohesion Fs
coh arises from the normal cohesion Fn

coh computed with the normal contact model, and the friction

angle ϕ. a) Shear strength. The case of a non-cohesive material is shown in dashed lines. b) The tangential contact force as a function of the tangential relative displacement is

computed using a regularised Coulomb's friction law.

a) t = 0 b) t > 0

Fig. 4. Granular launcher principle. a) An initial granular sample (created by gravity

deposit) is positioned at x=Di, it has an initial velocity Vi, a density ρi, and a thickness

hi. b) During the simulation, the particles located upstream x=Di (background in light

grey) are given a uniform initial velocity, whereas others undergo gravity (background

in darker grey).

Table 1

(a) Types of discrete elements and their micromechanical properties. Particles are

spherical and moving elements, while boxes are parallelepipedic, fixed elements and

represent either the obstacle or a wall. (b) Contact properties between the different

types of elements. These values are constant for all the results presented in the paper.

Element type Particle Obstacle Wall

E (N.m−2) 107 107 107/26

ν 0.21 0.34 0.31

Density (kg.m−3) 2500

Radius (mm) 5 (+/−2%)

(a)

Contact particle/.. Particle Obstacle Wall

Normal contact kn
1 (N.m−1) 25,000 25,000 964

en 0.5 0.5 0.5

Tangential contact ks
1 (N.m−1) 5250 6490 566

ϕ (°) 30 18 19

(b)
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for similar particle sizes and contact stiffnesses. An explanation of this

could be that the energy transmitted by a particle to the obstacle dur-

ing an impact is constant whatever the stiffness, the maximum load

being balanced by the duration of the contact. Applying a moving av-

erage to the load during the steady regime thus leads to a similar am-

plitude whatever the particle stiffness considered.

The granular launcher is validated with the following initial

parameters. The launching distance is chosen to be higher than the

obstacle influence zone on the granular flow, deduced from the stan-

dard model. This distance is assessed with the 2D projections of

particle velocities in the (x,y) plane for 1 cm high horizontal layers

obtained with the standard model (plotted in Fig. 5). Here, Di=

15 cm is chosen for the launching distance (represented by a horizon-

tal line as shown in Fig. 5a).

The vertical velocity and density profiles on the central part of the

canal obtained with the standard model are represented at x=Di in

Fig. 6a and b. The initial velocity and density are chosen to be equal

in average to their values from the standard model, i.e. Vi=3.2 m.s −1

and ρi=1250 kg.m−3. The initial thickness equals the thickness

obtained at x=Di, which is hi=3.05 cm according to Fig. 6c.

The resulting load applied on the obstacle is plotted in Fig. 7.

It was smoothed by applying a moving average to the raw results

(a moving average was also applied to the results of the standard

model, see Favier et al. (2009)). During the steady regime, the aver-

aged load equals 15.5 N, which is slightly higher than the value of

14.7 N obtained with the standard model. This deviation is sufficiently

low to validate the granular launcher.

4. Effect of a cohesive granular flow on the drag coefficient

We investigated the drag coefficient of an obstacle impacted by a

cohesive granular flow, for a supercritical range of Froude numbers.

First of all, we examine the effect of cohesion on the obstacle load,

and then we perform a more complete analysis of its coupled effect

with the Froude number on the drag coefficient.

4.1. Effect of cohesion

Cohesion is induced by the cohesive coefficient implemented in

the normal contact model (see Section 2). Here we explore the effect

of a variation of this normal cohesive coefficient αc on the obstacle

load. αc ranges from 0 (non-cohesive flow) to 1 (highly-cohesive

flow), and the other parameters of the study are detailed in Table 2.

Fig. 5. 2D projections of particle velocities in the (x,y) plane of 1 cm thick horizontal layers, from z=0 to z=4 cm, for the standard model. a) Basal section (0bzb1 cm), b) and

c) intermediate sections (1bzb3 cm) and d) top section (z>3 cm). The assumed value of Di is represented in a) by a horizontal line.

a) b) c)

Fig. 6. Vertical a) velocity and b) solid fraction profiles in the canal central part for x=Di=15 cm obtained with the standard model (black curves) and adapted for the validation of

the granular launcher (blue curves). Both curves of each graph in a) and b) have similar average values (shown by the vertical lines). c) Height of the free surface in the central

flowline with the standard model.

Fig. 7. Resulting smoothed load (The temporal width of the moving average is 0.005 s)

undergone by the obstacle during the validation of the granular launcher. Both the

transient and steady regimes clearly appear. During the steady regime, the average

load equals 15.5 N whereas it was equal to 14.7 N for the standard model (see Favier

et al. (2009) for more details about the standard model results). The overestimation

is in the order of a few percent, thus this experiment validates the granular launcher.

Table 2

Initial values used for the granular launcher to estimate the influence of cohesion on the

obstacle load (they differ from those used in the validation procedure, see Section 3).

The elements and contact parameters are similar to those mentioned in Table 1.

Parameter Symbol Value

Launching distance Di 15 cm

Initial velocity Vi 3 m.s−1

Froude number Fr 5.85

Initial thickness hi 4 cm

Initial flow density ρi 1250 kg.m−3

Normal cohesion coefficient αc 0 to 1
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4.1.1. Cohesion effect on the obstacle load

The smoothed temporal profiles of the obstacle loads are plotted

in Fig. 8a. As described earlier by Tai et al. (2002), Gray et al. (2003)

or Pudasaini and Kröner (2008), in each curve the transient regime

is characterised by a rapid increase of the initial load (see short load

peaks in Fig. 8a) followed by the upslope propagation of a shock

wave, seen as a sharp discontinuity of the free surface characterised

by an upward velocity decrease and a thickness increase. During the

transient regime, a dead zone composed of low-velocity particles

forms upstream the obstacle (our dead zone has a half-cylinder

shape similar to the one obtained by Teufelsbauer et al. (2009), see

Fig. 5). By the time the dead zone is fully formed, the granular flow

enters the steady regime and the load rapidly decreases to reach its

steady state value. The steady regime is then associated with smoother

spatial variations of the free surface, which is a consequence of a nearly

stagnant zone (the dead zone) coexisting with an inertial zone above

composed of particles deviated by the dead zone (as also described by

Faug et al. (2009, 2011) and Chanut et al. (2010)) for a wall spanning

the whole width of the canal.

The steady state load is computed as a function of the normal

cohesive coefficient in Fig. 8b: its value is nearly constant until αc=0.5

is reached, then it increases smoothly to finally double for the most

cohesive flow.

4.1.2. Cohesion effect on the flow parameters

Here, the dead zone refers to the area where particle velocity is

less than 1 m.s−1, which is about one third of the initial velocity

(the resulting dead zone can be observed in Fig. 5 in dark blue). As

shown in Fig. 9, the volume of the dead zone increases with the

amount of cohesion, which is also a consequence of the global decrease

in the bulk velocity.

The solid fraction vertical profiles in the central part are represented

as functions of height for x=5 cm (see Fig. 10a) and x=10 cm (see

Fig. 10b). These profiles are smoothed to facilitate comparisons between

curves. An increase of the cohesion induces an increase of the thickness

near the obstacle (at x=5 cm), along with a decrease of the solid frac-

tion. This could be explained by the fact that cohesive flows behave

non-homogeneously, as evidenced by the many empty spaces between

clusters of particles as mentioned by Rognon et al. (2008b), which

lowers the solid fraction.

The high increase of the obstacle load observed for an increase in

cohesion cannot be related to the changes of bulk velocity and solid

fraction, because they both decrease slightly. Thus, we now focus on

the possible contribution of the contact force network, and how it

evolves in relation to cohesion changes.

4.1.3. Cohesion effect on the contact force network

The effect of increasing the normal cohesion coefficient is to increase

the attractive forces in the granular assembly. This leads to an increase

of the contact persistency and consequently to an increase in the

a) b)

Fig. 8. Effect of cohesion (controlled with the normal cohesion coefficient αc) on the obstacle load. a) Smoothed load (The temporal width of the moving average is 0.025 s) profiles

for a series of normal cohesion coefficients between 0 and 1. The case where αc=0 is represented in black. The steady state load is computed within the average window between

both vertical dashed lines. b) Steady load as a function of αc.

Fig. 9. Increasing cohesion (see Table 2) increases the size of the dead zone, which here

covers the area where particle velocity is less than 1 m.s −1.

Fig. 10. Solid fraction vertical profiles in the central part as a function of height, for various cohesions, 5 cm (left side) and 10 cm (right side) from the obstacle. The profiles are

smoothed using a moving average to facilitate comparisons between curves.
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number of contacts. This is illustrated in Fig. 11, where the ratio be-

tween the mean duration of contacts b tc> and the mean time taken

by a particle to cross the flowing area b te> (i.e., between x=Di and

x=0 cm) is plotted. In a non-cohesive flow, a contact lasts an average

of one fifth the average time taken to cross the flowing area, whereas

for a highly-cohesive flow, the ratio is close to 1, indicating that most

of the contacts are rapidly created and do not break easily. The ratio

tends towards 1 when the normal cohesion coefficient is higher than

0.5, which is also the value from which the obstacle load increases in

Fig. 8b, indicating that the duration of intergranular force chains is of

great influence.

The higher contact persistency corresponds to a higher number of

contact per particle, i.e. the coordination number C (defined as the

ratio between the number of contacts divided by twice the number

of particles). The coordination is plotted in Fig. 12 as a function of

the distance to the obstacle. Whatever the bulk cohesion, the coordi-

nation increases in the vicinity of the obstacle. This may suggest that

the weight of the dead zone could contribute to the obstacle load.

Nevertheless, with our dead zone criteria, the contribution of the

dead zone represents at most 2% of the load whatever the cohesion

level.

Fig. 12 shows also that coordination increases as cohesion increases.

When the granular assembly is non-cohesive, C ranges from1 to 2, indi-

cating that the contact network is very loose. An immediate conse-

quence is a weak propagation of the contact force through discrete

particles. When cohesion increases, C rapidly increases from around 3

(for αc=0.2 and 0.5) to reach 4 for αc=1. For the latter, each particle

is thus in contact with at least 3 other particles on average and the con-

tact force transmission inside the granular volume ismore efficient. This

suggests that a better transmission of the normal contact forces inside

the granular assembly contributes to the observed increase of the obsta-

cle load (again, see Fig. 8).

The increase of the obstacle load is also in good agreement with

Fig. 13, which shows the normal contact force network upstream

the obstacle. The contact network is made up of the numerous small

bonds representing the normal contact forces that link the centres

of two particles in contact. Their colour corresponds to the state in

which the contact stands (see Section 2), and their thickness is a

linear function of the normal contact force intensity. When αc=0,

there is no normal cohesion so the green colour disappears, and the

brown colour thus corresponds to a null contact force with a residual

overlapping. Fig. 13 shows again that adding cohesion to the granular

assembly has a key role in the densification of the contact network,

which is related to an increase of the contact chain persistency and

an increase of the coordination. To conclude, it is likely that these

modifications in the contact network are responsible for the increase

of the obstacle load.

4.2. Coupled effect of cohesion and Froude number

4.2.1. Definitions and previous studies

The Froude number Fr is defined as the ratio of flowing material

inertia to gravitational forces, such that:

Fr ¼
V i
ffiffiffiffiffiffiffi

ghi
p ; ð6Þ

where g=9.81 m.s−2 is the gravity acceleration. The drag coefficient

Cd is the ratio of the load applied on the obstacle to the dynamic pres-

sure inside the flow and it is given by:

Cd ¼
Fx

c21
2ρiV

2
i

; ð7Þ

with c2 being the surface area of the obstacle and Fx the drag force

applied on the obstacle.

Some other studies made on a sufficiently wide range of Froude

numbers present the evolution of Cd as a power law function of Fr,

such that:

Cd ¼ aFr
−b

; ð8Þ

Fig. 11. Ratio between the mean duration of contacts b tc> and the mean time to go

through the flow zone b te> as a function of the normal cohesion coefficient. Averages

are computed from 10 particles uniformly distributed inside the flow zone.

Fig. 12. Coordination number C as a function of the distance upstream the obstacle, for various normal cohesion coefficients. C is computed during the steady regime inside the

volume described in the diagram on the right.
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where a and b are empirical coefficients (Baroudi and Thibert, 2009;

Chehata et al., 2003; Thibert et al., 2008).

The granular launcher was validated for Fr=5.85, therefore the

same order of magnitude is used for the present parametric study.

When Fr is lower than 1.5, due to gravity, the granular flow collapses

before impacting the obstacle with no possibility to calculate any drag

coefficient. Thus, the initial velocity Vi is chosen in the range 0.94–

7.01 m.s−1, which corresponds to Fr in the range 1.5–11.2. The

other initial parameters of the granular launcher, the thickness hi,

the flow density ρi, the launching distance Di and the normal cohesion

coefficient αc are given in Table 2.

4.2.2. Results and discussion

The results of the parametric study are presented in Fig. 14 in the

form of the drag coefficient as a function of the Froude number. We

used a double logarithmic scale to facilitate the comparisons with the

power law used in the literature (see Eq. 8). The results from Thibert

et al. (2008) and Baroudi and Thibert (2009) are also represented.

As previously obtained for Fr=5.85 (see Section 3), the drag coeffi-

cient increases with the bulk cohesion, for the whole range of Froude

numbers. The curves are nearly parallel, except for a slight deviation

for αc=1 with the other curves for high Froude numbers. For a non-

cohesive flow, Cd ranges from 1.5 to 3.3, whereas for a highly-cohesive

flow, Cd increases largely from 2.5 to 8.

All the curves exhibit a convex decrease when the Froude number

increases. This convexity seems to show that the use of a power law

to establish a relationship between the drag coefficient and the

Froude number should consider a non-constant value for the power

law exponent b, when the range of Froude numbers is sufficiently

wide. This is because when Fr is close to 0 (i.e. subcritical flows),

the flow is mainly controlled by gravitational forces. For this regime,

studies have shown that the drag is independent of the flow velocity

(see Wieghardt (1974) for a cylinder moving inside a media com-

posed of sand, Albert et al. (1999) and Chehata et al. (2003) for a

granular flow made of granular spherical particles, and for full-scale

snow avalanche experiments in Sovilla et al. (2008a)). This regime

then corresponds to Eq. 8 associated with b=2, which gives Fx=1/

2ac2 ⋅ρghi, without inertial terms which have vanished. When Fr in-

creases from subcritical to supercritical regimes, the flow is increas-

ingly controlled by inertial forces rather than gravitational forces.

In this regime, Thibert et al. (2008) and Baroudi and Thibert (2009)

performed in-situ experiments and obtained the relation Cd=

10.8Fr−1.3 and Cd=3.6Fr−1.1 respectively for Froude numbers be-

tween about 0.5 and 6. Thus, it seems that not only the drag coeffi-

cient decreases with the Froude number, but also the contribution

of inertial effects increases and consequently the contribution of

gravitational effects decreases.

For the smallest values of Fr investigated, the exponent of the

power law is very similar whatever the cohesion, around 0.7. This is

not equal to the in-situ curves, but the convexity of our curves suggests

that our power law exponent would have tended to be higher if the

Froude number had been lower. Thus, our results are in agreement

with those of Thibert et al. (2008) and Baroudi and Thibert (2009) for

low Froude numbers around 1. Moreover, an extension of our curves

seems to lead to drag coefficient of at least 10 for the subcritical regimes

and for a highly-cohesive flow,while for a non-cohesiveflow, the values

are more in agreement with the maximum value recommended by

Norem (1990). On the other hand, for the highest Froude numbers,

Fig. 13. 3D view of the normal contact force network. The colour code corresponds to the contact states (top left, as described in Section 2). For clarity reasons, only contacts located

directly upstream the obstacle are represented (i.e. the lateral corridors are not represented).

Fig. 14. Drag coefficient as a function of the Froude number, for various cohesions. A

double logarithmic scale is adopted. Analogous results from Thibert et al. (2008) and

Baroudi and Thibert (2009) are also plotted (dashed lines).
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we found higher values of Cd comparatively to the in-situ curves, and

our power law exponent tends towards 0 (for Fr=11.2, the exponent

is between 0.06 for a highly-cohesive flow and 0.32 for a non-

cohesive flow).

For any value of the Froude number, cohesion has a strong effect

on the drag coefficient as long as the normal cohesion αc>0.5 (see

Fig. 8b). This threshold also corresponds to the value above which

the intergranular force chains never break up (see Fig. 11). The for-

mation and destruction of the force chains within snow material

were identified as a possible cause explaining the high fluctuations of

load pressure applied by wet-snow avalanches on a pylon (Baroudi

et al., 2011; Sovilla et al., 2010). This conclusion is supported by numer-

ical modelling of slow drag motion around an obstacle using discrete

models (Geng and Behringer, 2005). Besides, Sovilla et al. (2010) and

Baroudi et al. (2011) also obtained high values of the drag coefficient,

much higher than the ones expected using the predictions of conven-

tional avalanche engineering guidelines, which could be related to the

forming of these force chains.

According to our results, the increase of cohesion densifies the

contact network which increases the contact chains' persistency as

well. Therefore, intergranular contact forces are easily transmitted

between discrete particles and can propagate to the obstacle, with a

resulting increase of the drag coefficient.

5. Conclusion

In the present study, a numerical tool based on a discrete element

method was developed to simulate the impact of a granular flow on

an obstacle. Our model enables us to conduct extensive parametric

studies with fully controlled initial flow parameters, such as velocity,

density and thickness. Controlling the initial flow leads to an accurate

computation of the drag coefficient, which is the ratio between the

load applied on the obstacle and the dynamic pressure.

The micromechanical laws take into account a cohesive elasto-

plastic normal component and a cohesive frictional tangential com-

ponent. The effect of cohesion on the load undergone by the obstacle

was investigated. In a substantial way, the higher the cohesion, the

higher the load. According to our model, this is due to a densification

of the contact network and an increase of the contact chains persis-

tency, which facilitate the propagation of the normal contact forces

inside the flowing granular material towards the obstacle surface,

and contribute to increase its load.

The coupled effect of cohesion with the Froude number on the drag

coefficient was also investigated. A strong effect of cohesion on the drag

pressure was observed, for all Froude numbers tested (ranging from 1.5

to 11.2). Our study also shows an increased influence of the gravitational

forces over inertial forces as the Froude number decreases, for all values

of cohesion. This means that the drag coefficient needs to be considered

as a power law function of the Froude number with a non-constant

value of the power law exponent. It has been shown that this exponent

depends on the ratio between inertial and gravitational effects.

The drag coefficient considered in the construction of avalanche pro-

tection structures depends simply on the obstacle shape, andon themois-

ture content of the flowing avalanche. However, it doesn't account for

snow cohesion whereas it obviously exists within snow avalanches, and

is thought to have significant consequences for wet-snow avalanches.

Indeed, according to our study, for Froude numbers between 1 and 2,

the drag undergone by the obstacle could be three times higher for a

highly-cohesive granular flow comparatively to a non-cohesive flow.

The values obtained for the drag coefficient were higher than the highest

one recommended by Norem (1990), and the convex curvature of our

numerical results suggests that they could be much higher for subcritical

regimes, typical of wet-snow avalanches. This strongly suggests that

snow cohesion is lacking and should be of great interest to provide

better estimates of the drag coefficient used by the protection structure

designers.
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