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Fakeons And The ClassicizationOf Quantum Gravity:The FLRW MetricDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisaand INFN, Sezione di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italydamiano.anselmi@unipi.it
AbstractUnder certain assumptions, it is possible to make sense of higher derivative theories byquantizing the unwanted degrees of freedom as fakeons, which are later projected away.Then the true classical limit is obtained by classicizing the quantum theory. Since quantum�eld theory is formulated perturbatively, the classicization is also perturbative. Afterderiving a number of properties in a general setting, we consider the theory of quantumgravity that emerges from the fakeon idea and study its classicization, focusing on theFLRW metric. We point out cases where the fakeon projection can be handled exactly,which include radiation, the vacuum energy density and the combination of the two, andcases where it cannot, which include dust. Generically, the classical limit shares manyfeatures with the quantum theory it comes from, including the impossibility to write downcomplete, �exact� �eld equations, to the extent that asymptotic series and nonperturbativee�ects come into play.
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1 IntroductionTypically, higher derivative quantum �eld theories propagate ghosts, if they are formulatedin the usual ways. The ghosts are unphysical degrees of freedom that cannot be projectedaway without violating unitarity. Recently, a new quantization prescription [1, 2] has beenset forth, to quantize various types of degrees of freedom as �fakeons�, i.e. fake particles.The main virtue of the fakeons is that they can be projected away from the physicalspectrum consistently with unitarity.The fakeon prescription can be used to turn the ghosts and possibly some physicalparticles into fake particles. Its main application is to quantum gravity [1, 3, 4], sinceone fakeon χµν of spin two, together with a scalar �eld φ, is able to make the theoryrenormalizable while preserving unitarity.In this paper we investigate some remarkable features of the classical limits of thetheories of particles and fakeons. We recall that the fakeon quantization prescription has atruly quantum nature, since it amounts to a nonanalytic operation on the loop diagrams,called average continuation. The average continuation is the arithmetic average of theanalytic continuations that circumvent the thresholds associated with the processes thatinvolve fakeons [5, 2].The idea originates from a thorough analysis of the cutting equations, which are dia-grammatic identities that encode the unitarity relation S†S = 1 [6]. The fakeons also allowus to reformulate and actually better understand the Lee-Wick models [7]. For a reviewof these topics, see ref. [8].The backlash of the fakeon prescription on the classical theory turns out to be nontrivial[8], because the quantization process includes an additional step, as shown in �g. 1. Thestarting local action is just an interim one, being unprojected. The �nalized classicalaction can be obtained only after the quantization, and emerges from the classicization ofthe quantum theory.The interim classical action of quantum gravity coupled to matter can be expressed intwo ways. The standard way is by means of higher-derivative terms [1]:
SQG(g,Φ) = − 1

2κ2

∫

d4x
√
−g

[

2ΛC + ζR+ α

(

RµνR
µν − 1

3
R2

)

− ξ

6
R2

]

+ Sm(g,Φ).(1.1)Here α, ξ, ζ and κ are real positive constants. We make no assumption on the sign of thecosmological constant ΛC . The Planck mass is MPl = 1/
√
G =

√
8πζ/κ. Moreover, Φ arethe matter �elds and Sm is the action of the matter sector. For example, Sm can be the2



quantization

fakeon projection

interim

classical theory

quantum

field theory

classical

limit

classicization

classical fakeon projectionFigure 1: Quantization/classicization schemeaction of the standard model, or a standard model extension, as long as it is covariantizedand contains all the nonminimal couplings that are compatible with renormalizability.For simplicity, in this paper we work at ΛC = 0 and view the cosmological constantas a component of dark energy. An equivalent version of the interim classical action (1.1)is obtained by means of extra �elds, which allow us to remove the higher derivatives. We�nd [4]
SQG(g, φ, χ,Φ) = SH(g) + Sχ(g, χ) + Sφ(g̃, φ) + Sm(g̃e

κφ,Φ), (1.2)where g̃µν = gµν + 2χµν and
SH(g) = − ζ

2κ2

∫

d4x
√
−gR, Sφ(g, φ) =

3ζ

4

∫

d4x
√
−g

[

∇µφ∇µφ−
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φ

κ2
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1− eκφ
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]

,

Sχ(g, χ) = SH(g̃)− SH(g) + ∫ d4x

[

−2χµν
δSH(g)
δgµν

+
ζ2

2ακ2

√
−g(χµνχ

µν − χ2)

]

g→g̃

. (1.3)As we see, the theory describes the graviton, a scalar �eld φ of squared mass m2
φ = ζ/ξ, aspin-2 fakeon χµν of squared mass m2

χ = ζ/α and the matter �elds.It is easy to show, from the expression of Sχ, that the χµν quadratic action is of thePauli-Fierz type, but with the wrong overall sign [4]. For this reason χµν must be quantizedas a fakeon. At present we do not know whether φ should be quantized as a physicalparticle or a fakeon. Thus, we have two possibilities: one is the graviton/scalar/fakeon(GSF) theory and the other one is the graviton/fakeon/fakeon (GFF) theory. Throughoutthis paper, we work with the second option, because we plan to investigate the fakeonsin the Friedmann-Lemaitre-Robertson-Walker (FLRW) scenario, which is not sensitive to
χµν .We recall that if we quantize every degree of freedom by means of the standard Feynmanprescription, the action (1.1) gives the Stelle theory [9] (after we drop Sm). In that case, noprojection is possible and the classicization is trivial. However, the Stelle theory propagatesghosts.The fakeon projection is inherited from quantum �eld theory, so it is formulated per-turbatively. Its classical limit amounts to take the average of the retarded and advanced3



potentials [8]. What happens when we try and resum the perturbative expansion of theclassicization? Can we grasp the �exact� classical �eld equations and the fakeon projec-tion at the nonperturbative level? In this paper, we investigate these issues and uncoverinteresting, and to some extent surprising, properties.At the quantum level, we are accustomed to build a theory perturbatively, by adding,so to speak, quantum after quantum, or interaction after interaction. We do not expectanything like that to occur in a classical framework. One of the surprises of the theory ofquantum gravity built on the fakeon idea is precisely that the classical limit shares manyfeatures with the quantum theory it comes from, including the impossibility to write downcomplete, exact �eld equations. Unless we have knowledge about the nonperturbative sec-tor of quantum gravity, the projected classical �eld equations we get are also perturbative.In general, asymptotic series come into play and nonperturbative corrections may have tobe included. However, in special cases, the resummation can be handled exactly.We study these issues in a general setting and then concentrate on the FLRW solutionof the classicized theory of quantum gravity. We show that the fakeon projection can behandled exactly in the cases of radiation, the vacuum energy density and the combinationof both. Instead, in the case of dust it cannot, so asymptotic series are generated andnonperturbative e�ects may come into play.Quantum gravity, as it emerges from the fakeon idea, is in line with high-energy par-ticle physics. In particular, it follows from the same principles that lead to the standardmodel: unitarity, locality and renormalizability [10]. The scattering amplitudes are de-�ned perturbatively by means of Feynman diagrams, which can be calculated with ane�ort comparable to the one required by analogous computations in the standard model[3, 4].Several proposals for quantum gravity have appeared in the past decades. We mentionstring theory [11], loop quantum gravity [12], holography (the AdS/CFT correspondence)[13], lattice gravity [14] and asymptotic safety [15]. However, their predictive powersare limited. Some proposals, like string theory, have a huge space of free parameters [16].Others, like the AdS/CFT correspondence, rely on conjectured dualities. Some, like latticegravity, asymptotic safety and the AdS/CFT correspondence, do not admit perturbativeexpansions and deal with strongly coupled quantum �eld theory. Others, like string theoryand loop quantum gravity, involve mathematics that is not well understood.Here are some of the reasons why we claim that the solution provided by the fakeons isthe right theory of quantum gravity. As far as calculability, predictivity and falsi�ability4



are concerned, the fakeon solution tops the competitors by far. Actually, it may be turnout to be the most predictive theory ever, since it is able to cover a huge range of energies(from the infrared limit up to and beyond the Planck scale) perturbatively and with fewindependent parameters.The masses mφ and mχ of φ and χµν might be smaller, or even much smaller, thanthe Planck mass MPl. The perturbative expansion, which is formulated in powers of thefakeon/graviton �ne structure constants αφ = m2
φ/M

2Pl and αχ = m2
χ/M

2Pl, makes sense aslong as the renormalization group �ow keeps these parameters smaller than unity, whichlikely means somewhere above the Planck scale. At some point, up there, nonperturbativee�ects start to become important. The theory predicts new physics below the Planck scale[3, 4], at energies around mφ and mχ. At low energies, it reduces to the nonrenormalizabletheory made of the Hilbert-Einstein action plus the counterterms turned on by renormal-ization [17]. Note that the low-energy expansion is independent of the prescription withwhich the �elds are quantized.It is important to stress that the fakeon idea does not make assumptions about thenature of spacetime at in�nitesimally small distances. Instead, the new understanding ofspacetime at the microscopic level emerges from the theory itself. It is encoded in theviolation of microcausality [4, 8]: the concepts of space and time, past, present and future,cause and e�ect lose meaning at energies larger than the lightest fakeon mass. Our presentknowledge of the laws of physics leaves enough room for this prediction to be accurate,both from the theoretical and experimental viewpoints.Over the years, the concept of causality has been gradually put aside in quantum �eldtheory. The reason is that it is not well understood, which makes it hard to elevate it to therank of a fundamental principle. A de�nition that matches the intuitive notion is missing[18] and Bogoliubov's proposal [19], which implies the Lehmann-Symanzik-Zimmermannone (i.e. that the �elds commute at spacelike separated points), is an o�-shell conditionfor the Feynman diagrams and the correlation functions. At the experimental level, thedi�culty with causality comes from the fact it is hard to localize particles described byrelativistic wave packets that are on shell.The paper is structured as follows. In section 2 we study the fakeons and the classi-cization in nonrelativistic mechanics. In section 3 we study the asymptotic expansion ofthe fakeon projection. In section 4 we analyze the issues that arise at the nonperturbativelevel. In section 5 we recall the basic aspects of the classicization of quantum gravity. Insection 6 we study the FLRW solution. In section 7 we give details on how to proceed in5



the non-higher-derivative approach (1.2). Section 8 contains the conclusions.2 Fakeon projection in nonrelativistic mechanicsIn this section and the next one we study the fakeon projection and its resummation insome models of nonrelativistic mechanics, which provide a simple environment where mostkey conceptual issues are already in play. We consider the higher-derivative Lagrangian
LHD =

m

2
(ẋ2 − τ 2ẍ2)− V (x, t), (2.1)where x is the coordinate, m is the mass and τ is a real constant.The simplest case is V (x, t) = −xFext(t), where Fext(t) is an external force. Theunprojected equation of motion is mKẍ = Fext, where

K = 1 + τ 2
d2

dt2
, (2.2)and the projected one reads

mẍ = 〈Fext〉K . (2.3)As recalled in the introduction, the classical fakeon average is
〈A〉X ≡ 1

2

[

1

X

∣

∣

∣

∣rit + 1

X

∣

∣

∣

∣adv]A, (2.4)the subscripts denoting the retarded and advanced potentials, respectively. We �nd [8]
mẍ =

∫ ∞

−∞

du
sin(|u|/τ)

2τ
Fext(t− u). (2.5)2.1 Fakeon averagesBefore moving to the cases where the resummation of the fakeon projection plays animportant role, it is useful to check out the fakeon average 〈Fext〉K in some simple examples.If the external force is Gaussian,

Fext(t) = exp
(

−γ

2
t2
)

, (2.6)the fakeon average returns a wiggling function, as shown in �g. 2:
〈Fext〉K =

√

π

2γ
e−1/(2γ) Im

[

eitErf(γt+ i√
2γ

)]

.6
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Figure 2: Fakeon average (continuous line) of a Gaussian function (2.6) (dashed line) with
τ = 1 and γ = 1/8.The average 〈Pn(t)〉K of a polynomial Pn(t) of degree n is another polynomial Qn(t)of the same degree, which can be determined from KQn = Pn. For example, 〈1〉K = 1,
〈t〉K = t, 〈t2〉K = t2 − 2τ 2. These results can be also veri�ed by taking the limits

lim
γ→0

〈

Pn(t)e
−γt2/2

〉

K
. (2.7)Similarly, we �nd

〈eiωt〉K =
eiωt

1− ω2τ 2
, 〈eit/τ 〉K =

eit/τ

4τ
(τ − 2it),etc., for ω < 1/τ .The resummation of the fakeon projection often leads to multiple averages, such as

〈〈Fext〉〉, 〈〈〈Fext〉〉〉, etc. If we want to know how to handle these expressions, we must goback to the origin of the projection, rooted in quantum �eld theory. In ref. [2] it wasshown that when two or more fakeon thresholds coincide, they must be treated as limitsof distinct thresholds. From this property we can easily prove the identity
lim
ε→0

P
∏n+1

i=1

1

x− εci
=

(−1)n

n!

dn

dxn
P 1

x
, (2.8)where P denotes the principal value and ci are arbitrary distinct numbers. This formulaallows us to �raise P to arbitrary powers� and so compute the multiple averages.Speci�cally, if F̃ext(ν) is the Fourier transform of Fext(t), we have

〈Fext〉K = P
∫ +∞

−∞

dν

2π

e−iνtF̃ext(ν)
1− τ 2ν2

.7



�Squaring the average� by means of (2.8), we �nd
〈〈Fext〉K〉K = 〈Fext〉K +

1

2

d

dt
[〈tFext〉K − t〈Fext〉K ]

=

∫ ∞

−∞

du

4
(sin |u| − |u| cosu)Fext(t− τu). (2.9)With the help of a limit like (2.7), it is easy to check that 〈〈1〉K〉K = 1, 〈〈t〉K〉K = tand 〈〈t2〉K〉K = t2 − 4τ 2. In analogous ways, formulas for more repeated averages can beworked out.2.2 Harmonic oscillator with an external forceThe resummation of the projection is important in the next example, which is the harmonicoscillator with an external force:

V (x, t) =
m

2
ω2x2 − xFext(t).We view ω2 as the expansion parameter. The unprojected equation of motion is

mKẍ+mω2x = Fext = mK̃

(

d2

dt2
+ Ω2

)

x, (2.10)where
Ω =

1

τ
√
2

√

1−
√
1− 4τ 2ω2, Ω̃ =

1

τ
√
2

√

1 +
√
1− 4τ 2ω2, K̃ = τ 2Ω̃2 + τ 2

d2

dt2
.The resummed projected equation, which makes sense for ω < 1/(2τ), can be quicklyobtained by inverting the operator K̃ according to the classical fakeon prescription. Theresult is

m

(

d2

dt2
+ Ω2

)

x = 〈Fext〉K̃ =

∫ ∞

−∞

du
sin
(

Ω̃|u|
)

2τ 2Ω̃
Fext(t− u). (2.11)If we expand the average back in powers of ω2, we �nd

〈Fext〉K̃ = 〈Fext〉K + τ 2ω2(1 + τ 2ω2)〈〈Fext〉K〉K + τ 4ω4〈〈〈Fext〉K〉K〉K +O(ω6),which shows that the identity (2.8) is crucial to deal with the multiple averages that leadto the projected equation (2.11) from the unprojected equation (2.10).The fakeons that are projected away are the solutions of K̃x = 0, i.e.
x(t) = C cos

(

Ω̃t+ ϕ
)

.8



The result of the resummation highlights some nontrivial, nonperturbative e�ects thatcome into play beyond the convergence radius of the expansion. Indeed, for ω > 1/(2τ)the frequencies Ω and Ω̃ become complex and the fakeon projection jumps into another�phase�, where all four independent solutions are unacceptable and must be projected away.In more complicated cases it may be hard to tell what the fakeon projection becomesnonperturbatively. In principle, settling this issue requires knowledge of the nonperturba-tive sector of quantum �eld theory. However, workarounds are available in lucky situations,as we show in section 6.3 Fakeon projection by asymptotic expansionWhen the potential V contains anharmonic terms, the equations must be treated selfconsistently. One way to handle the fakeon projection, which we investigate in this sec-tion, is by means of an iterative procedure. The projected equations that we obtain arenonpolynomial and must in general be interpreted as asymptotic expansions.To begin with, let us consider the Lagrangian (2.1) with the potential
V =

m

2
ω2x2 +

λ

4!
x4. (3.1)The unprojected equation of motion is

m

(

d2

dt2
+ τ 2

d4

dt4
+ ω2

)

x = mK̃

(

d2

dt2
+ Ω2

)

x = −λx3

3!
. (3.2)We assume ω < 1/(2τ). If we resum the expansion in powers of ω2 as explained in theprevious section, we obtain the projected equation

m

(

d2

dt2
+ Ω2

)

x = − λ

3!
〈x3〉K̃ , (3.3)which must still be understood perturbatively in λ.One way to deal with (3.3) is to search for a solution of the form

x(t) = x0(t) +

∞
∑

n=1

λ̃nxn(t),where λ̃ = λ/m and x0(t) solves the homogeneous equation ẍ0 = −Ω2x0. We get
(

d2

dt2
+ Ω2

)

x1 = − 1

3!
〈x3

0〉K̃ ,
(

d2

dt2
+ Ω2

)

x2 = −1

2
〈x1x

2
0〉K̃ ,9



etc., which can be solved by means of the fakeon averages and the rules outlined before.Another way is to write a generic expansion for the right-hand side,
(

d2

dt2
+ Ω2

)

x = x
∞
∑

n=1

λ̃nτ 2n−2
n
∑

k=0

cn,kx
2n−2k(τ ẋ)2k, (3.4)insert it into the unprojected equation (3.2) and determine the unknown coe�cients cn,kby matching the monomials. So doing, we can build the projected equation to arbitrarilyhigh orders in λ̃. To the �rst order, we obtain

(

d2

dt2
+ Ω2

)

x = −
λ̃x
[

(Ω̃2 − 7Ω2)x2 − 6ẋ2
]

6τ 2(Ω̃2 − Ω2)(Ω̃2 − 9Ω2)
+O(λ̃2).At higher orders we �nd very involved expressions. For the sake of simplicity, from thispoint onwards we take ω = 0 (which means Ω = 0, Ω̃ = 1/τ). Every result can begeneralized straightforwardly to nonvanishing ω. To the third order we obtain

ẍ=− λ̃x

6

(

x2 − 6τ 2ẋ2
)

− λ̃2τ 2x

12

(

x4 − 48τ 2x2ẋ2 + 372τ 4ẋ4
)

− λ̃3τ 4x

6

(

x6 − 156τ 2x4ẋ2 + 4572τ 4x2ẋ4 − 31152τ 6ẋ6
)

+O(λ̃4). (3.5)The truncation of the projected equation to a �nite order n in λ̃ is polynomial. Theexpansion is asymptotic and the coe�cients grow very fast, although slower than (4n)!.In this table we give the orders of magnitude of the coe�cients cn,0 and cn,n for variousvalues of n, which we have computed up to n = 25:
n 5 10 15 20 25

cn,0 100 106 1013 1022 1032

cn,n 109 1028 1052 1078 10107
(3.6)Note that the expansion we are dealing with does not coincide with the �low-energy�expansion in powers of τ 2, which treats the higher-derivative term τ 2d2/dt2 as small.Instead, we are expanding in the dimensionless parameter λ̃, so each truncation givesa solution that in principle holds for all times. The price we pay is that we have tohandle more involved truncations. Indeed, the coe�cient cn,k, which is multiplied by

λ̃nτ 2n+2k−2, becomes relevant at the nth order of the expansion in powers of λ̃, but onlyat the (n+ k + 1)th order of the expansion in powers of τ 2. As we see already from (3.5),the latter grows much more slowly than the former.10
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Figure 3: Solution x(t) of the truncated equation (3.5) for x(0) = 1, ẋ(0) = 0, m = τ = 1,
λ = 1/10. The sparsely dashed line is n = 1. The densely dashed line is n = 2, while thecontinuous line is n = 3. The solution remains stable from n = 3 to n = 10.The expansion of the projected Lagrangian L can be worked out in a similar way. Wewrite a generic expansion in x, ẋ and determine its coe�cients by demanding that theLagrange equations be equivalent to (3.5). The result is

L
m

=
ẋ2

2
− λ̃x2

4!

(

x2 + 12τ 2ẋ2
)

+
τ 2λ̃2x2

72
(x4 − 54τ 2x2ẋ2 + 372τ 4ẋ4) +O(λ̃3).The energy E can be obtained from L or, again, by writing the most general expansionand working out the coe�cients that make dE/dt vanish on the solutions of (3.5):

E

m
=

ẋ2

2
+

λ̃x2

4!

(

x2 − 12τ 2ẋ2
)

− τ 2λ̃2x2

72
(x4 + 54τ 2x2ẋ2 − 1116τ 4ẋ4) +O(λ̃3).For each truncation to order n, the projected equations can be solved numerically. Ifwe compare the solutions for growing n, we observe the typical behaviors of the asymptoticsolutions. The lowest values of n give results that are acceptable, but not very accurate.Then we �nd stable results in a certain window n1 6 n 6 n2, which provides the bestapproximation of the exact solution. Finally, unreliable behaviors appear for n > n2. Ongeneral grounds, n2 is proportional to 1/λ̃. Asymptotic expansions cannot be arbitrarilyprecise, but in several situations the window n1 6 n 6 n2 is precise enough.For example, with the initial conditions x(0) = 1, ẋ(0) = 0 and m = τ = 1, λ = 1/10,we �nd the trajectories of �g. 3. The solution with n = 1 is not very accurate, whilethe one with n = 2 is considerably better. The trajectory remains stable in the window

3 6 n 6 10. The robust stability is a bene�t of the stability of the potential (3.1). Withdi�erent values of λ we �nd n2 ∼ 1/λ. 11



4 The nonperturbative fakeon projectionThe nonperturbative fakeon projection can only follow from the knowledge of the nonper-turbative sector of quantum �eld theory. Indeed, it is easy to show that, when asymptoticexpansions are the best we have, at the nonperturbative level the arbitrariness associatedwith the essential singularities takes us back to the unprojected equations.Let SHD(φ, λ, τ) denote a higher-derivative action that depends on the �elds φi, i =
1, . . . N , and their �rstM time derivatives. Let λ denote the couplings, such that SHD(φ, 0, τ)is free. Let τ denote the parameters that multiply the higher-derivative corrections, suchthat SHD(φ, λ, 0) is the non-higher-derivative action.We assume that all the degrees of freedom due to the higher derivatives are quantized asfakeons. We focus on the dependence on the time coordinate t and ignore any dependenceon the space coordinates x, y, z. It is understood that, when we talk about initial orintegration �constants�, they may be functions of x, y and z. We also assume that the�elds φi are �bosonic�, so the �eld equations depend on φi, φ̇i and φ̈i at τ = 0.We have three versions of the classical equations:(a) the higher-derivative equations

EiHD(φ, λ, τ) = 0, (4.1)which are exact, but unprojected; they are satis�ed by the acceptable solutions, but alsoby the fakeon solutions, which must be discarded;(b) the projected equations
EiP(φ, λ, τ) = 0 (4.2)which are understood perturbatively in λ;(b) the exact projected equations

EiPnP(φ, λ, τ) = 0, (4.3)which can in principle be determined by studying the nonperturbative sector of the parentquantum �eld theory.In the example treated above, (a) are (3.2) and (b) are (3.3). We assume that (c) arenot known. However, we assume that they exist.Now, let
φi = f i(t, λ, τ, cia) (4.4)12



denote the solutions of (4.1), where cia are the integration constants (a = 1, . . .M) thatparametrize the initial conditions. The solutions of the exact projected equations (4.3) areparticular cases of (4.4). They have the form
φi = f i(t, λ, τ, dia(ai, bi, λ, τ)), (4.5)where the constants dia are not independent, but functions

dia(ai, bi, λ, τ) (4.6)of λ, τ and 2N independent integration constants ai, bi. The solutions of (4.2) are particularcases of (4.5),
φi = f i(t, λ, τ, cia(ai, bi, λ, τ)), (4.7)where the functions cia(ai, bi, λ, τ) are only known as asymptotic expansions in powers of

λ and coincide with the asymptotic expansions of (4.6).The di�erence dia(ai, bi, λ, τ)−cia(ai, bi, λ, τ) is made of essential singularities for λ → 0,which cannot be worked out from the sole knowledge of (a) and (b). If we attempt aresummation (with the Borel method, for example, when applicable), the solution willunlikely satisfy (4.1). The space of functions that have the same asymptotic expansions andsatisfy (4.1) at the same time obviously coincides with the space of unprojected solutions(4.4).This means that, unless we have direct knowledge about the nonperturbative sectorof the parent quantum �eld theory, we cannot write �exact� classical �eld equations andmostly have to work with their perturbative form.However, workarounds may be available in special cases by means of resummations.Even in quantum �eld theory we have example of exact results that can be derived formthe perturbative expansion. We mention the anomalies (which are one-loop exact), therenormalization group �ow (which allows us to resum the leading logs, the next-to-leadinglogs, etc.), the particle self-energies, obtained by resumming the bubble diagrams (whichgive the particle lifetimes, among other things), and so on. Similarly, there are cases where,in spite of the di�culties stressed in this section, we can get to the exact projected solutions(4.5) in quantum gravity. In the following sections we describe some important examples.5 The classical limit of quantum gravityBefore proceeding, we brie�y recall the basic aspects of the classicization of quantumgravity. At the conceptual level, it is convenient to work with the non-higher-derivative13



interim classical action (1.2). The �eld equations of the metric read
Rµν − 1

2
gµνR =

κ2

ζ

[

e3κφfT µν
m
(g̃eκφ,Φ) + fT µν

φ (g̃, φ) + T µν
χ (g, χ)

]

, (5.1)where T µν
A (g) = −(2/

√−g)(δSA(g)/δgµν) are the energy-momentum tensors (A = m, φ,
χ) and f =

√

det g̃ρσ/ det gαβ. The �eld equations of the fakeons φ and χµν are [8]
− 1√−g̃

∂µ

(

√

−g̃g̃µν∂νφ
)

−
m2

φ

κ

(

eκφ − 1
)

eκφ =
κe3κφ

3ζ
T µν
m
(g̃eκφ,Φ)g̃µν ,

1√−g

δSχ(g, χ)

δχµν
= e3κφfT µν

m
(g̃eκφ,Φ) + fT µν

φ (g̃, φ). (5.2)Let 〈φ〉 and 〈χµν〉 denote the solutions of the equations (5.2), obtained with the halfsum of the retarded and advanced Green functions. The projected �eld equations are(5.1), once φ and χµν are replaced by 〈φ〉 and 〈χµν〉. They can also be derived as Lagrangeequations of the �nalized classical action
SGFFQG (g,Φ) = SH(g) + Sχ(g, 〈χ〉) + Sφ(ḡ, 〈φ〉) + Sm(ḡe

κ〈φ〉,Φ). (5.3)where ḡµν = gµν + 2〈χµν〉.As said, we have to understand the projection perturbatively and deal with the issuesexplained in the previous sections. In the next sections we study the resummation of theperturbative projection in the case of the FLRW solution. At the practical level, it is moreconvenient to work with the interim action (1.1), but in section 7 we give details on howto obtain the same results by working with (1.2).6 The classicization of the FLRW solutionIt is often convenient to search for solutions of the �eld equations starting from an ansatz,as in the case of the FLRW metric. However, in general, it is not legitimate to insert theansatz directly into the action and work out the Lagrange equations of the so-obtainedreduced action. Indeed, the ansatz reduces the space of con�gurations. A minimum,or more generally extremum, of the action on the reduced space of con�gurations is notguaranteed to be a minimum or extremum on the full space.However, under certain conditions it is possible to obtain the correct equations ofmotion by applying the variational principle to the reduced action. We derive the keyproperties to achieve this goal and then apply the method of the reduced action to theFLRW ansatz. 14



6.1 Method of the reduced actionConsider an action S(φ) depending on the �elds φi, i = 1, . . .N . The Lagrange equationsare
δS

δφi
= 0. (6.1)Consider an ansatz

φi = f i(ϕ) (6.2)that expresses the �elds φi in terms of a reduced set of �elds ϕα, α = 1, . . .M , withM < N .The reduced action is then
Sr(ϕ) = S(f(ϕ))and its �eld equations read

0 =
δSr(ϕ)

δϕα
=

δS

δφi

∣

∣

∣

∣

φ=f(ϕ)

δf i(ϕ)

δϕα
. (6.3)Now, assume that(i) the M equations (6.3) are independent, and(ii) M equations (6.1) are independent and the other N − M equations (6.1) arealgebraic relations among the M independent ones.Then, the equations (6.1) are equivalent to the equations (6.3) derived from the reducedaction Sr.Typically, point (ii) can be established by means of symmetry arguments and otherproperties of the ansatz. Point (i) is easy to check directly.If the relations mentioned in point (ii) happen to be di�erential instead of algebraic,further assumptions must be advocated to obtain the right set of equations after thereduction.6.2 The FLRW metricNow we apply the method of the reduced action to the FLRWmetric, which we parametrizeas

ds2 = gµνdx
µdxν = b2(t)dt2 − a2(t)dσ2, (6.4)where, in spherical polar coordinates,

dσ2 =
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2.15



The lapse function b(t) is inserted to meet the requirements explained above and keep trackof the time reparametrizations. Indeed, we know that the FLRW ansatz reduces the �eldequations to two independent ones, so we need two independent functions a(t) and b(t) tohave a meaningful reduced action Sr. We can set b(t) ≡ 1 after applying the variationalprinciple to Sr.Under the usual assumptions of homogeneity and isotropy, the matter stress tensor is
(Tm)

ν
µ = ρ(t)δν0δ

0
µ − p(t)δνi δ

i
µ, (6.5)where ρ is the energy density and p is the pressure, i = 1, 2, 3 being a space index. Thenthe reduced version of the action (1.1) of quantum gravity coupled to matter reads

SQG → − 1

16πG

r2 sin θ√
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∫

dta3bR
(
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)

+ Sm, (6.6)where m2
φ = ζ/ξ and the Ricci curvature for the ansatz (6.4) is
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)

. (6.7)The arrow in formula (6.6) and in the formulas below means that we ignore the integralson r and the angles θ and ϕ, which give an overall (in�nite) factor that can be droppedfor the purpose of applying the variational principle.Note that the α-dependent terms of (1.1) cancel out, because they are proportional tothe square of the Weyl tensor Cµνρσ, up to a total derivative, and Cµνρσ vanishes identicallyfor the metric (6.4).We do not have a well-de�ned expression for Sm, with the stress tensor (6.5). However,the in�nitesimal variation δSm is enough for our purposes. It reads
δSm = −1
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r2 sin θ√
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dta2 (3pbδa− ρaδb) .If we vary the reduced action with respect to a and b and then set b(t) ≡ 1, we obtainthe unprojected equations
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= −4πG(ρ+ p), (6.8)where Σ and Υ are the operators
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. (6.9)16



The continuity equation
ρ̇+ 3(ρ+ p)

ȧ

a
= 0 (6.10)is the same as usual. It follows from the conservation of the stress-energy tensor and canbe checked by solving (6.8) for ρ and p.It is easy to verify that the equations (6.8) match those obtained by inserting the ansatz(6.4) with b(t) ≡ 1 into the �eld equations of (1.1) (which can be found for example in ref.[8]), as guaranteed by the method of the reduced action.6.3 ProjectionSince the left-hand sides of the equations (6.8) factorize the operators Σ and Υ, the re-summed fakeon projection is straightforward. If we multiply (6.8) by Σ−1 and Υ−1, de�nedby means of the classical fakeon prescription, we obtain the projected equations
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3
〈ρ− 3p〉Σ, (6.11)

ä
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− k

a2
=−4πG〈ρ+ p〉Υ, (6.12)where the fakeon averages are de�ned in (2.4).For some purposes, it is convenient to de�ne a modi�ed energy density ρ̃ and a modi�edpressure p̃ as

ρ̃=
1

4
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3

4
〈ρ+ p〉Υ, (6.13)

p̃=
1

4
〈ρ+ p〉Υ − 1

4
〈ρ− 3p〉Σ, (6.14)and rearrange (6.11) and (6.12) in forms that match the usual Friedmann equations:

ȧ2
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8πG

3
ρ̃, (6.15)

2
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ȧ2

a2
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k

a2
=−8πGp̃. (6.16)Adding the derivative of (6.15) to a suitable linear combination of the two equations,it is easy to get the second continuity equation

dρ̃

dt
+ 3

ȧ

a
(ρ̃+ p̃) = 0, (6.17)satis�ed by the modi�ed energy density and pressure.17



Depending on the problem at hand, the fakeon projection encoded in the equations(6.11) and (6.12) may or may not be the �nal, exact one. It is exact in some importantcases, which include the vacuum energy density, radiation and their combination. It isnot exact in other cases, which include dust (cold matter). There, however, approximatesolutions are enough for most purposes.Vacuum energy densityNow we show that in the case of the vacuum energy the solutions of the projected equationscoincide with the solutions of the Friedmann equations that follow from Einstein gravity.The equation of state is p = −ρ, so the continuity equation (6.10) gives ρ = ρ0 =constant. It is convenient to start by solving (6.12), since its right-hand side vanishes. Thesolution reads
a(t) = eσt +

k

4σ2
e−σt, (6.18)where σ is another constant. The third integration constant has been absorbed into a timetranslation.To study (6.11), note that (6.18) and ρ = ρ0 imply Σρ = ρ. Thus, we also have 〈ρ〉Σ = ρand, from (6.13)-(6.14), ρ̃ = ρ, p̃ = p = −ρ. Then, equation (6.11) gives a relation betweenthe two constants ρ0 and σ, which reads

ρ0 =
3σ2

8πG
. (6.19)RadiationSimilar conclusions hold in the case of radiation, where p = ρ/3. The continuity equation(6.10) gives

ρ(t) =
ρ′0
a4

, (6.20)where ρ′0 is constant. Solving (6.11), whose right-hand side vanishes, we get
a(t) =

√

t(σ′ − kt), (6.21)up to a time translation, σ′ being another constant.Using (6.20) and (6.21) we easily �nd Υρ = ρ, so 〈ρ〉Υ = ρ, ρ̃ = ρ, p̃ = p = ρ/3. Then,equation (6.12) gives
ρ′0 =

3σ′2

32πG
.18



Combination of radiation and vacuum energy densityConsider the equation of state
p =

ρ

3
+ p0 =

1

3
(ρ− 4ρ0), (6.22)where ρ0 and p0 = −4ρ0/3 are constants. The interesting feature of (6.22) is that it allowsus to treat the combination of radiation and the vacuum energy density, which can beuseful to study in�ation. As before, we can solve the projected equations exactly, since(6.13) and (6.14) give p̃ = (ρ̃ − 4ρ0)/3. For convenience, we write ρ0 = 3σ2/(8πG). Thecontinuity equation (6.17) gives

ρ̃(t) =
3

8πG

(
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σ′2

4a4

)

, (6.23)where σ′ is constant. Inserting this solution into (6.15), we get
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sinh(σt)

)

, (6.24)up to a time translation. We can check that (6.24) satis�es (6.16) identically. When σ → 0we retrieve (6.21). For σ′ → 0 and k < 0, we obtain a time-translated version of (6.18).We can �nd the energy density ρ from the second unprojected equation of formula(6.8). The result is very similar to (6.23),
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8πG
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4a4

)

, σ′′2 = σ′2

(

1 +
4σ2

m2
φ

)

,the only change being the coe�cient of the contribution due to the radiation. This is alsothe only correction to the result obtained from the Einstein equations.General caseIn general, if we assume the equation of state p = wρ, the modi�ed pressure and densitysatisfy an a-dependent di�erential equation of state, which reads
p̃ = wρ̃− (1 + w)(1− 3w)

3(1 + w)Σ + (1− 3w)Υ
∆ρ̃. (6.25)where ∆ = Υ−Σ and the reciprocal operator that appears here has to be de�ned by meansof the fakeon prescription (2.4). 19



The continuity equation (6.10) gives the usual relation
ρ(t) =

3σ′2

32πG

1

a3(1+w)
,where σ′ is constant. It is convenient to introduce a function u(t) by writing

a(t) = [3σ′(1 + w)u(t)/4]
2/(3(1+w))

.Then the unprojected equations (6.8) give, in the simple case k = 0,
m2

φ(1− u̇2) = 2u̇
...
u− ü2 − 4w

1 + w

u̇2ü

u
− 1− 3w

1 + w

u̇4

u2
. (6.26)The fakeon projection of this equation is rather hard, since it contains no parameterthat we can use to approach the problem perturbatively, other than τ ≡ 1/mφ. If weexpand in powers of τ we obtain the usual low-energy expansion

u(t) = t

[

1− 1− 3w
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1
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2
+

13 + 34w − 219w2

24(1 + w)2
1

m4
φt

4
+O

(

1

m6
φt

6

)]

. (6.27)As in section 3, the series is asymptotic and the numerical coe�cients grow very fast.For example, in the case of dust (w = 0) the coe�cient of 1/(mφt)
14 is of order 108.Depending on the values of mφt, various terms of the asymptotic expansion may o�er astable, satisfactory approximation of the exact solution.The reason why the projections that appear in (6.11) and (6.12), which are resummedversions of those obtained by expanding around �at space, are not the exact projectionsfor the problem we are dealing with, is that the solutions for a(t), ρ(t) and p(t) must beworked out self-consistently. The equations would be exact if a(t) had to be found forgiven ρ(t) and p(t) (see comments below).We expect that the masses of the fakeons χµν and (possibly) φ have values that aremuch smaller than the Planck mass. On general grounds, they could be around 1012GeV[4]. If that is the case, the value of the parameter τ ∼ 1/mχ ∼ 1/mφ, which multipliesthe higher time derivative d/dt, is around 10−36s. We know that the �rst moments of thelife of the universe were dominated by radiation, with a crossover to matter dominanceat t ∼ 5 · 104 years. The matter dominated epoch lasted about 1010 years, followed bythe dark energy era. Thus, an exact treatment of the matter dominated epoch is notstrictly necessary in cosmology and the �rst few orders of (6.27) can be enough for mostpurposes. As shown previously, the radiation dominated era can be treated exactly, evenin superposition with the vacuum energy density.20



Other cases where the projection can be worked out exactlyWe conclude by pointing out other situations where the projection can be handled exactly.The �rst case is when we need to �nd the FLRW metric for given sources, i.e. ρ and p donot have to be determined self-consistently, but are given functions, known from the start.Then, the projection encoded in equations (6.11) and (6.12) is exact. The solutions do notcoincide with those predicted by Einstein gravity and averages similar to those found insection 2 appear. The case is to some extent similar to the case of the harmonic oscillatorwith an external force, whose fakeon projection is encoded in formula (2.11).We stress that, on the contrary, when ρ, p have to be solved self-consistently togetherwith the metric, the projection contained in the equations (6.11) and (6.12) must still beunderstood perturbatively. The iterative methods of section 3 can be used to work out theasymptotic expansions of the solutions, which may be satisfactory for some purposes. Anexample is the FLRW metric for nonrelativistic matter.The second case where we can handle the fakeon projection exactly is when for somereason we are given an equation of state expressing p̃ as a function of ρ̃ only. Then, theproblem of solving the equations (6.15) and (6.16), with the help of (6.17), matches theproblem of solving the Friedmann equations of Einstein gravity.One may wonder whether it is possible to make the fakeon averages e�ectively disappearby rede�ning the density and pressure everywhere, so that ρ̃ and p̃ describe the quantitieswe really observe or measure, instead of ρ and p. In general, it is not legitimate to doso, but in some cases, depending on the data available to us, we may have no otheroption. More precisely, the relations (6.13) and (6.14) between ρ̃, p̃ and ρ, p depend on theparticular problem we deal with, to the extent that they contain the metric and the ansatzwe are using. Other problems may lead to di�erent formulas for the modi�ed quantities
ρ̃ and p̃. Moreover, di�erent interactions, such as the electromagnetic ones, are sensitiveto the unmodi�ed ρ and p. Thus, it possible to probe the relations between ρ̃, p̃ and ρ,
p by comparing di�erent physical situations. However, when these comparisons are outof reach, maybe because not enough data are available, it may be impossible to tell thatequations (6.15) and (6.16) are actually descendants of the parent equations (6.11) and(6.12).A similar conclusion extends to the problem of detecting the violations of microcausal-ity. Unless we are able to cross check di�erent physical situations, it may be impossible touncover the violation, because it may be easily hidden inside rede�nitions of the quantitieswe measure. 21



7 Non-higher derivative approach to the FLRW solutionFor completeness, we report how the solutions are worked out from the action (1.2). Westart from the ansatz
gµνdx

µdxν = b̄2(t)dt2 − ā2(t)dσ2,

χµνdx
µdxν = d(t)dt2 − e(t)dσ2, φ = φ(t). (7.1)With this choice, we have the right amount of independent functions to derive the �eldequations by means of the reduced action approach. Alternatively, we can insert the ansatzdirectly into (5.1) and (5.2).Anticipating the result, it is convenient to de�ne

b̄2 = B2 − 2d, ā2 = A2 − 2e, A = ae−κφ/2, B = be−κφ/2.The metric that e�ectively couples to matter reads
g̃µνe

κφdxµdxν = b2(t)dt2 − a2(t)dσ2,where g̃µν = gµν + 2χµν .Now we study the ā, b̄, φ, d and e �eld equations, starting from the φ one, which reads
Σ(1− e−κφ) = −8πG

3m2
φ

(ρ− 3p). (7.2)It can be projected straightforwardly, leading to
1− e−κφ = −8πG

3m2
φ

〈ρ− 3p〉Σ. (7.3)If we set
e−κφ = 1− R

3m2
φ

, (7.4)where R is still given by (6.7), equation (7.3) becomes equivalent to equation (6.11).Since the FLRW metric has a vanishing Weyl tensor, the functions d(t) and e(t) shouldmake the α dependence disappear from the �eld equations. This goal is achieved bychoosing
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where m2
χ = ζ/α. Once we set b(t) ≡ 1, we can drop the χµν �eld equations, obtained fromthe variations with respect to d and e, since it is easy to prove that they are equivalent tothe equations obtained from ā and b̄. At the end, the equations (5.1) coincide with (6.8)and can be projected as before, leading to (6.11) and (6.12).In the case of radiation, (7.4) gives φ = 0, while in the case of the vacuum energydensity we obtain

φ = −1

κ
ln

(

1 +
4σ2

m2
φ

)

, (7.5)where σ is the constant appearing in (6.18). Formula (7.5) also holds in the case of radiationcombined with the vacuum energy density. Conversely, if we start from the ansatz φ =constant, equation (7.2) implies ρ − 3p = constant, which is the equation of state of thecombination of radiation and the vacuum energy density.We see that by extending the standard FLRW ansatz (6.4) to (7.1), the presence of the
χµν does not a�ect the solution. It is conceivable that many results obtained in in�ationarycosmology [20] can be extended to the full theory of quantum gravity studied here, whichhas the advantage of being renormalizable.8 ConclusionsWhen fakeons are present, the starting, local classical action is just an interim one. Thetrue classical action emerges only at the very end, after the quantization, by means of aprocess of classicization of the quantum theory. The reason is that the fakeon prescriptionis not classical, but emerges from the loop corrections.Quantum �eld theory is formulated perturbatively, so the classicization is also pertur-bative. The consequences of this fact are quite striking: instead of having complete, exactclassical equations, we deal with the typical problems of quantum �eld theory, even if wework at the classical level. These include the appearance of asymptotic series (when wewrite the equations, not just when we search for their solutions) and possibly importantroles played by the nonperturbative corrections. As far as we know, this backlash of thequantization on the classical limit is unprecedented.We have investigated the problems related to the resummation of the perturbativeexpansion associated with the fakeon projection and applied the results to the FLRWmetric in quantum gravity. In some cases (like the vacuum energy, radiation and thecombination of the two), the fakeon projection can be resummed to all orders. In more23
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