
HAL Id: hal-02368958
https://hal.science/hal-02368958v1

Submitted on 21 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tree Based Language for Music Score Description.
Dominique Fober, Y Orlarey, S Letz, R. Michon

To cite this version:
Dominique Fober, Y Orlarey, S Letz, R. Michon. A Tree Based Language for Music Score Description..
International Symposium on Computer Music Multidisciplinary Research, Oct 2019, Marseille, France.
�hal-02368958�

https://hal.science/hal-02368958v1
https://hal.archives-ouvertes.fr

A Tree Based Language for Music Score Description.

D. Fober1, Y. Orlarey1, S. Letz1, and R. Michon1

Grame CNCM Lyon - France
{fober,orlarey,letz,michon}@grame.fr

Abstract. The presented work is part of the INScore project, an environment for
the design of augmented interactive music scores, oriented towards unconven-
tional uses of music notation and representation, including real-time symbolic
notation capabilities. This environment is fully controllable using Open Sound
Control [OSC] messages. INScore scripting language is an extended textual ver-
sion of OSC messages that allows you to design scores in a modular and incre-
mental way. This article presents a major revision of this language, based on the
description and manipulation of trees.

Keywords: Music notation · Programming language · INScore.

1 Introduction

There is a large number of musical score description languages (Lilypond [11], Guido
[9], MuseData [8], MEI [12], MusicXML [7] etc.) that are all turned towards common
western music notation. The extension of some of these languages has been considered,
in order to add programmability e.g. operations to compose musical scores in Guido [5],
or the Scheme language in Lilypond. There are also programming languages dedicated
to common music notation, like CMN [13] or ENP [10] that are actually Lisp dialects.

The approach proposed by INScore [4] is different: symbolic music notation is sup-
ported (via the Guido language and rendering engine [2,9]), but it constitutes one of the
means of music representation among others, without being privileged. Purely graphic
scores can be designed. All the elements of a score (including purely graphical ele-
ments) have a temporal dimension (date, duration and tempo) and can be manipulated
both in the graphic and time space. The notion of time is both event-driven and con-
tinuous [6], which makes it possible to design interactive and dynamic scores. Figure
1 presents an example of a score realised using INScore. It includes symbolic notation,
pictures, a video, and cursors (the video is one of them) which positions are synchro-
nised by the performer gestures.

INScore has been initially designed to be driven by OSC messages [14]. OSC is
basically a communication protocol. A textual version of the OSC messages constitutes
the INScore storage format, which has been extended to a scripting language, [3] al-
lowing greater flexibility in music scores design. These extensions (variables, extended
addresses, Javascript section, etc.) have nevertheless suffered from a rigidity inherent to
an ad hoc and incremental design. For example, the parser makes a clear distinction be-
tween OSC addresses and associated data, which prevents the use of variables in OSC
addresses. Thus, a major revision of this language became necessary. It is based on the

2 Fober et al.

Fig. 1. A score realised using INScore, used as part of a sensor-based environment for the pro-
cessing of complex music called GesTCom (Gesture Cutting through Textual Complexity) [1].

manipulation of a regular tree structure that is also homogeneous to the INScore model.
Figure 2 gives an example of such model hierarchy, that can be described in the current
scripting language (i.e. OSC) by listing all branches from the root.

After some definitions, we will present the basic operations on trees and the corre-
sponding grammar.Then we introduce mathematical operations on trees, the concepts of
variables and nodes in intention and we’ll present how this language is turned into OSC
messages. The final section gives an example of the new language before concluding.

2 Definitions

A tree t consists of a value v (of some data type) and the (possibly empty) list of its
subtrees.

t : v × [t1, ..., tk]

A tree with an empty list of subtrees t : v × [] is called a leaf.
A value is among literal (i.e., text, number) or special values of the following types:

– forest (∅): denotes a tree including only subtrees,
– mathematical operators: indicates a mathematical operation between subtrees,
– variable: denotes a tree whose value refers to another tree,
– expand: indicates a tree to be expanded,
– slash (/): used for conversion to OSC

Use and evaluation of these values is detailed in the next sections.

A Tree Based Language for Music Score Description. 3

ITL

scene

obj1

x

0

y

0

date

0

obj2

x

0.5

y

0.5

date

1

Fig. 2. A score sample including 2 objects obj1 and obj2, having x, y, and date attributes. Time
properties (date, duration) are notably used to represent the time relationship between objects.

3 Operations on Trees

We define two abstract operations on trees: sequencing and paralleling. These opera-
tions have no musical semantics, neither from a temporal nor from a graphic point of
view. They are defined as methods for algorithmic construction of OSC messages and
operate on the topological organisation of the trees.

3.1 Putting Trees in Sequence

Putting two trees t and t′ in sequence adds t′ as child of all the leaves of t. We will note
| the sequencing operation. Let 2 trees t : v × [t1, ..., tk] and t′. Then:

v × [t1, ..., tk]| t′ → v × [t1| t′, . . . , tk| t′]

with: {
v × []| t′ → v × [t′]
v × []| ∅× [t1, ..., tk]→ v × [t1, ..., tk]

The right arrow (→) indicates the result of an expression evaluation.

3.2 Putting Trees in Parallel

Putting two trees t and t′ in parallel consists in putting them in a forest. We will note ‖
the parallelisation operation. Let 2 trees t and t′:

t ‖ t′ → ∅× [t, t′]

The result is a tree which value ∅ denotes a forest.
Parallelisation applied to a forest preserves the subtrees order:{

∅× [t1, ..., tk] ‖ t′ → ∅× [t1, . . . , tk, t′]
t′ ‖ ∅× [t1, ..., tk] → ∅× [t′, t1, . . . , tk]

4 Fober et al.

4 Grammar

A tree is syntactically defined in BNF as follows:

tree := value → t : value []

| tree tree → t : tree | tree
| / tree → t : ’/’ | tree
| tree , tree → t : tree ‖ tree

| (tree) → t : tree

;

The right arrow (→) indicates the tree built for each syntactical construct. The tree
whose value is slash (/) plays a special role in the tree conversion to OSC messages.
This role is described in section 6.

5 Values and Evaluation

This section explains how the trees carrying the special mathematical operators, vari-
ables and expand special values are evaluated.

5.1 Mathematical Operators

Mathematical operations on trees are seen as operations on their values that preserve the
subtrees. These operations include arithmetic and logical operations, trigonometric and
hyperbolic functions, exponential and logarithmic functions, power, square root, etc.

We will designate these operations by op. Then for 2 trees t : v × [t1, ..., tk] and
t′ : v′ × [t′1, ..., t

′
k]:

op× [t, t′]→ (op v v′)× [t1, . . . , tk, t′1, . . . , t′k]

5.2 Variables

The special value type variable denotes a tree whose value refers to another tree. Eval-
uation of a variable tree consists in expanding the referred tree at the variable position.
Let’s define a variable var and a variable tree t′ as follows:{

var = v × [t1, ..., tk]
t′ : $var × [t′1, ..., t

′
k]

then
t′{var} → v × [t1, ..., tk] | ∅× [t′1, ..., t

′
k]

t’{var} denotes the tree t′ with an environment containing a definition of the variable
var.
Example :

x = x 0;

y = y 0;

/A/B $x, $y; ⇒ /A/B (x 0), (y 1);

A Tree Based Language for Music Score Description. 5

Local Environnements Each tree is evaluated in an environment containing the list of
all the variables of its parent. However, a variable can be evaluated in a local environ-
ment, which is defined inside braces:{

var = t
$var{a = t1, b = t2, . . .} → t{a,b,. . .}

5.3 Expand Value

An expand value is a special value that is expanded to a forest. It can also be seen as a
loop control structure. The syntactic form is as follows:

id[n. . .m] where n and m are integers
id[ab. . .xy] where a, b, x, y are letters.

We will note ε the expansion operation:
ε(id[n. . .m]) → ∅ [idn, idn+1, . . . , idm]
ε(id[ab. . .xy])→ ∅ [idab, idac, . . . , iday,

. . . ,
idxb, idxc, . . . , idxy]

where each idn is a tree v × [] whose value v is the concatenation of the base value id
and of the current index n.

Special Forms An expand value can also take the following special forms:

id[i : n. . .m] where i is an identifier
id[i : j : ab. . .xy] where i, j are identifiers.

The identifiers denote variables that are instantiated in the environment by the expansion
operation, with the current index value. For example:

ε(id[i : n. . .m]) → ∅ [idn{i=0}, idn+1{i=1}, . . . , idm{i=m−n}]

6 Conversion to OSC

An OSC message is made of an OSC address (similar to an Unix path) followed by a
list of data (which can possibly be empty) The slash special value of a tree is used to
discriminate the OSC address and the data. In order to do so, we type the values and we
define @ as the type of a value part of an OSC address.We’ll note type(v) to refer to
the type of the value v.

We’ll note ta a tree t which value is of type @ . Then we define a @ operation that
transforms a tree in to a typed tree:

@(v × [t1, ..., tk])→
{
∅× [ta1 , ..., t

a
k], v = /

v × [t1, ..., tk], v 6= /

The conversion of a tree t into OSC messages transforms the typed tree @(t) into a
forest of OSC addresses followed by data:

OSC(v × [t1, ..., tk])→
{
∅× [v × OSC(t1), . . . , v × OSC(tk)], type(v) = @
v × [OSC(t1), . . . ,OSC(tk)], type(v) 6= @

6 Fober et al.

7 Example

The script below presents an example of the new version of the INScore scripting lan-
guage. Variables are indicated in blue. Local variables are declared in red.

variables declaration
pi = 3.141592653589793;

’$step’ makes use of ’count’ a local variable
step = / (* 2, $pi), $count;

’$i’ is defined by the expansion of the address ’n_[i:1...9]’
x = math.sin (* $step, $i);
y = math.cos (* $step, $i);

the following variables select part of guido
music notation code to build a short score
dyn = (? (% $i, 3), ’\i<"p">’, ’\i<"ff">’);
note = (+ $dyn, " ", (? (% $i, 2), "e2", "g1/8"));

this is a classical OSC message that simply clears the scene
/ITL/scene/* del;

this is the main variable. It will be expanded to create
a series of small scores. The variables are computed
using locally defined variables.
notes = (/ITL/scene/$addr

(set gmn (+ "[", $note, "]")),
(scale 0.7),
(x * $x, $radius),
(y * $y, $radius));

finally ’$notes’ is used with addr, count and radius as local
variables, which could be viewed as a function call.
$notes{addr=n_[i:1...9], count=9, radius=0.7};

Evaluation of this script produces OSC messages fully compatible with the previous
version of the language, and which are schematically presented below.

/ITL/scene/n 1 set gmn ’[ı<"ff"> g1/8]’;

/ITL/scene/n 1 scale 0.7;

/ITL/scene/n 1 x 0.0;

/ITL/scene/n 1 y 0.7;

...

/ITL/scene/n 9 set gmn ’[ı<"ff"> c2]’;

/ITL/scene/n 9 scale 0.7;

/ITL/scene/n 9 x -0.411452;

/ITL/scene/n 9 y 0.56631;

In practice, this example expresses the score illustrated in Figure 3 in just a few lines.

A Tree Based Language for Music Score Description. 7

&
Á

Xxxx
xxxx
j

&
p

Xhhhhhhh

&
p

Xxxx
xxxx
j

&
Á

Xhhhhhhh

&
p

Xxxx
xxxx
j

&
p

Xhhhhhhh

&
Á

Xxxx
xxxx
j

&
p

Xhhhhhhh

&
p

Xxxx
xxxx
j

Fig. 3. INScore scene corresponding to the sample script given in section 7.

8 Conclusions

From two elementary operations on trees - sequencing and parallelisation - we have
homogeneously introduced the notions of variables and of mathematical and logical
operations on trees. The resulting language is much more expressive and more flexible
than the previous version of the INScore scripting language. It supports parallelisation
of the arguments of a message, variables to describe addresses, series of addresses ex-
pressed in a concise manner, use of local variables allowing reusing scripts or parts of
scripts in different contexts.

References

1. Antoniadis, P.: Embodied navigation of complex piano notation : rethinking musical interac-
tion from a performer’s perspective. Theses, Université de Strasbourg (Jun 2018)

2. Daudin, C., Fober, D., Letz, S., Orlarey, Y.: The Guido Engine – A toolbox for music scores
rendering. In: LAC (ed.) Proceedings of Linux Audio Conference 2009. pp. 105–111 (2009)

3. Fober, D., Letz, S., Orlarey, Y., Bevilacqua, F.: Programming Interactive Music Scores with
INScore. In: Proceedings of the Sound and Music Computing conference – SMC’13. pp.
185–190 (2013)

4. Fober, D., Orlarey, Y., Letz, S.: INScore - An Environment for the Design of Live Music
Scores. In: Proceedings of the Linux Audio Conference – LAC 2012. pp. 47–54 (2012)

8 Fober et al.

5. Fober, D., Orlarey, Y., Letz, S.: Scores Level Composition Based on the Guido Music No-
tation. In: ICMA (ed.) Proceedings of the International Computer Music Conference. pp.
383–386 (2012)

6. Fober, D., Orlarey, Y., Letz, S.: INScore Time Model. In: Proceedings of the International
Computer Music Conference. pp. 64–68 (2017)

7. Good, M.: MusicXML for Notation and Analysis. In: Hewlett, W.B., Selfridge-Field, E.
(eds.) The Virtual Score. pp. 113–124. MIT Press (2001)

8. Hewlett, W.B.: MuseData: Multipurpose Representation. In: E., S.F. (ed.) Beyond MIDI, The
handbook of Musical Codes. pp. 402–447. MIT Press (1997)

9. Hoos, H., Hamel, K., Renz, K., Kilian, J.: The GUIDO Music Notation Format - a Novel Ap-
proach for Adequately Representing Score-level Music. In: Proceedings of the International
Computer Music Conference. pp. 451–454. ICMA (1998)

10. Kuuskankare, M., Laurson, M.: Expressive Notation Package. Computer Music Journal
30(4), 67–79 (2006)

11. Nienhuys, H.W., Nieuwenhuizen, J.: LilyPond, a system for automated music engraving. In:
Proceedings of the XIV Colloquium on Musical Informatics (2003)

12. Roland, P.: The Music Encoding Initiative (MEI). In: MAX2002. Proceedings of the First
International Conference on Musical Application using XML. pp. 55–59 (2002)

13. Schottstaedt, B.: Common Music Notation., chap. 16. MIT Press (1997)
14. Wright, M.: Open Sound Control 1.0 Specification (2002), http://

opensoundcontrol.org/spec-1_0

http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0

	A Tree Based Language for Music Score Description.

