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This paper presents the moment of uid method as a liquid/gas interface reconstruction method coupled with a mass momentum conservative approach within the context of numerical simulations of incompressible twophase ows. This method tracks both liquid volume fraction and phase centroid for reconstructing the interface. The interface reconstruction is performed in a volume (and mass) conservative manner and accuracy of orientation of interface is ensured by minimizing the centroid distance between original and reconstructed interface. With two-phase ows, moment of uid method is able to reconstruct interface without needing phase volume data from neighboring cells. The performance of this method is analyzed through various transport and deformation tests, and through simple two-phase ows tests that encounter changes in the interface topologies. Exhaustive mesh convergence study for the reconstruction error has been performed through various transport and deformation tests involving simple two-phase ows. It is then applied to simulate atomization of turbulent liquid diesel jet injected into a quiescent environment. The volume conservation error for the moment of uid method remains small for this complex turbulent case.

Motivation and Objectives

Multiphase ows are ubiquitous in nature that are encountered in applications ranging from weather forecast to aircraft engines. In gas turbines and aircraft engines, the liquid fuel introduced in combustion chamber undergoes atomization, evaporation, mixing with the oxidizer, and subsequently combustion. Atomization process of the liquid fuel has a direct impact on the eciency of combustion and amount of pollutants produced as by-products of combustion. This multiphase ow process is, by its nature, multi-scale. Consequently, with the current supercomputing facilities, the available numerical methods, and tools are not large enough to perform detailed predictive numerical simulations of the liquid fuel atomization for typical aircraft engine combustion chamber geometry.

The main challenge in performing multiphase ow simulations is the ability of the numerical method to handle change in uid properties across the interface. For example, the density ratio between the fuel and air can be as high as 600 in aircraft engines and the methods should be able to handle it with least error. The bottleneck with such conditions is the discretization of Navier-Stokes equations. A force due to surface tension exists between the phases due to the nature of multiphase ows. This force acts only on the interface separating the phases. The challenge for the numerical method is to handle the singular nature of this force. Its computation can be dicult as the information about interface curvature is a prerequisite. Next, reconstruction and transport of the interface between the phases pose a challenge to these numerical methods and tools. The accuracy of the interface capture and transport has a direct impact on conservation of mass and stability of the solution of the Navier-Stokes equations and has been one of the main topics of extensive research in the numerical atomization research community [START_REF] Gorokhovski | Modeling primary atomization, Annual Review of Fluid Mechanics[END_REF]. Finally, the liquid fuel atomization process can generate droplets of varying sizes and scales. It is this multi-scale nature of atomization process requiring high resolution for the numerical simulations increases the computational expense. Of these challenges for numerical simulations of multiphase ows, this work addresses the development of accurate liquid/gas interface reconstruction and transport method.

Many interface capturing methods have been developed over the past decades, the prominent being volume of uid (VOF) method [START_REF] Aulisa | A geometrical areapreserving Volume-of-Fluid advection method[END_REF][START_REF] Hernández | A new volume of uid method in three dimensionsPart I: Multidimensional advection method with face-matched ux polyhedra[END_REF][START_REF] López | A new volume of uid method in three dimensionsPart II: Piecewise-planar interface reconstruction with cubic-Bézier t[END_REF]. The mass conservation is ensured in this method since the interface is represented by liquid volume fraction as scalar quantity. Due to its discontinuity across the interface, the advection requires accurate numerical schemes [START_REF] Owkes | A mass and momentum conserving unsplit semi-Lagrangian framework for simulating multiphase ows[END_REF]. Variety of the VOF based methods exists (see for example, [START_REF] Aulisa | Interface reconstruction with least-squares t and split advection in three-dimensional cartesian geometry[END_REF][START_REF] Cifani | A comparison between the surface compression method and an interface reconstruction method for the VOF approach[END_REF][START_REF] Grosshans | Development of a Combined VOF-LPT Method to Simulate Two-phase Flows in Various Regimes[END_REF][START_REF] Orazzo | A VoF-Based Consistent Mass-Momentum Transport for Two-Phase Flow Simulations[END_REF]) that improves the dierent limitations of the original VOF method.

Another class of family of methods for interface reconstruction is level set based methods [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF]. This method implicitly represents the interface as a zero level isocontour of a signed distance function. Such a representation has a considerable advantage in computing the geometrical quantities such as interface curvature. This method, in a way, paves way for the solution of the computation of the surface tension force as described above.

This smooth implicit function can be maintained as signed distance function through a simple re-initialization process. Furthermore, the parallellization of the code is straightforward and the transport of this level set function can be performed using a simple Eulerian transport equation. Therefore, more accurate numerical schemes can be used for the discretization of this transport equation. Although this method proves to be robust, it is aected by the loss of mass. Multiple variations and improvements have been made to alleviate this issue. For example, the accurate conservative level set (ACLS) method [START_REF] Olsson | A conservative level set method for two phase ow[END_REF][START_REF] Desjardins | An accurate conservative level set/ghost uid method for simulating turbulent atomization[END_REF][START_REF] Chiodi | A reformulation of the conservative level set reinitialization equation for accurate and robust simulation of complex multiphase ows[END_REF] uses a tangent hyperbolic prole for the representation of the level set function and re-initialized using conservative equations. An alternative approach is local mesh renement to increase the accuracy such as adaptive mesh renement (AMR), rened level set grid (RLSG) method [START_REF] Herrmann | A balanced force rened level set grid method for twophase ows on unstructured ow solver grids[END_REF]. In RLSG method, the Navier-Stokes equations are solved on a coarser mesh while the level set function is transported on a ner mesh. Finally, the mass conservation property of the level set family of methods can be achieved by coupling with VOF method resulting in coupled level set volume of uid method (CLSVOF) method [START_REF] Sussman | A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows[END_REF][START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF][START_REF] Le Chenadec | A 3D Unsplit Forward/Backward Volumeof-Fluid Approach and Coupling to the Level Set Method[END_REF]. In this method, the interface is reconstructed using the sharp level set function while the mass conservation is ensured by using the liquid volume fraction that is correcting the level set function.

Although these improved methods have proved to be useful in simulating multiphase ows, they can still fail in the computation of geometrical properties especially for under-resolved interface topologies [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF]. One of the ways to accurately capture the under-resolved interfacial ligaments was demonstrated by Ahn and Shashkov [START_REF] Ahn | Multi-material interface reconstruction on generalized polyhedral meshes[END_REF] using the moment of uid (MOF) method [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF]. MOF method was introduced by Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF] as an extension to the VOF method by additionally using the phase centroid for the interface reconstruction. Originally, this method was developed for nding optimal multi-material partitions [START_REF] Ahn | Adaptive moment-of-uid method[END_REF][START_REF] Schoeld | Multi-material incompressible ow simulation using the moment-of-uid method[END_REF]. Recently, Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF], Li et al. [START_REF] Li | Incompressible multiphase ow and encapsulation simulations using the moment-of-uid method[END_REF], Asuri Mukundan et al. [START_REF] Asuri Mukundan | Interface reconstruction method for multiphase ows in under-resolved regions[END_REF][START_REF] Asuri Mukundan | Numerical study of interface reconstruction method in under-resolved regions of the ow for liquid jet primary breakup[END_REF][START_REF] Asuri Mukundan | A comparative study of dns of airblast atomization using clsmof and clsvof methods[END_REF] applied this method to multiphase ows simulations. Various implementations to the MOF method have been made in the past years, for example, Freiss et al. [START_REF] Freiss | A Multi-Material CCALE-MOF Approach in Cylindrical Geometry[END_REF] extended this method to cylindrical coordinates for simulating axisymmetric ows, Galera et al. [START_REF] Galera | A 2D unstructured multi-material Cell-Centered Arbitrary LagrangianEulerian (CCALE) scheme using MOF interface reconstruction[END_REF] and Breil et al. [START_REF] Breil | A multi-material ReALE method with MOF interface reconstruction[END_REF] applied the numerical method for arbitrary Lagrangian Eulerian (ALE) meshes. A notable improvement to the MOF interface reconstruction method was presented by Lemoine et al. [START_REF] Lemoine | Moment-of-uid analytic reconstruction on 2D Cartesian grids[END_REF] in which an analytical approach to reconstruct the interface was introduced thereby avoiding the geometric approach. Further to the ability of MOF method to capture under-resolved interfacial regions, it is imperative to know the convergence of the error in interface reconstruction. This information is required to have a rst-hand knowledge of the optimal mesh resolution to be employed in simulating engineering fuel injection scenarios, for example simulating fuel injection in diesel and aircraft engines. In the study by Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF] multiple tests and mesh convergence analyses were performed, but the errors were reported only for coarse mesh resolutions.

In this work, we study the MOF method for its accuracy in interface reconstruction through multiple tests and investigated the mesh convergence of the error in reconstruction for mesh resolutions that are comparable to those generally employed for simulating primary atomization. Moreover, we have coupled our MOF method with our in-house solver ARCHER [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF][START_REF] Tanguy | Application of a level set method for simulation of droplet collisions[END_REF][START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF] that uses ghost uid method (GFM) for the computation of surface tension force and that computes mass ad momentum ux consistently [START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF]. It is to be remarked that the MOF method presented in this paper is mainly intended to augment the consistent mass and momentum ux computation feature available in ARCHER for simulating atomization applications. Thus, no signicant improvements in the liquid/gas interface reconstruction method has been made within the context of MOF interface reconstruction and advection methods in comparison to that presented in the works of Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF], Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF]. This paper is organized as follows. Section 2 presents the Navier-Stokes equations and transport equations for the liquid volume fraction and level set fucntion. Section 3 presents the numerical method of moment of uid (MOF) -the procedure employed for the interface reconstruction and transport. This is followed by the presentation of verication tests in Section 4 that reports the error in reconstruction. In these tests, we compare results from MOF method to those from CLSVOF method of Ménard et al. [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF]. Section 5 then presents the solution procedure employed for solving the Navier-Stokes equa-tions, GFM method, formulation of viscous term, and the time integration scheme used in our ow solver. Section 6 focus on validation tests with the presentation of simulations of convection dominated double shear layer and Rayleigh-Taylor instability test for assessing the accuracy of MOF method.

Finally, Section 7 present the results from the simulation of atomization of turbulent liquid diesel jet.

Governing equations 2.1. Incompressible NavierStokes equations

To describe the multiphase ows, the pressure and velocity elds describing the ow are obtained by solving the incompressible NavierStokes equations. The following conservative form of the equations are solved in our ow solver [START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF]:

∇ • u = 0, (1) 
∂ρu ∂t + ∇ • (ρu ⊗ u) = -∇P + ∇ • (2µD) + B, (2) 
where u is the velocity eld, P is the pressure eld, µ is dynamic viscosity, ρ is density, D is the strain rate tensor given as D = 1 2 (∇u + (∇u) T ), and B is the sum of the body and surface tension forces. B = B b + B st where B b is the force due to gravity and B st is the force due to surface tension which is given as B st = σκδ I n. σ represent the surface tension, κ is the curvature of the interface computed using the level set function φ in our solver as

κ(φ) = -∇ • ∇φ ∇φ 2 , (3) 
and δ I is the Dirac delta function centered on surface of the interface. In this work, we neglect eect due to gravity unless explicitly specied.

Within the context of two-phase ows, an interface Γ separates the liquid from the gaseous phase. The material properties are constant in each phase, i.e., ρ = ρ liq and µ = µ liq in liquid phase and ρ = ρ gas and µ = µ gas in gaseous phase. At the interface, these properties are subject to a jump that can be written as [ρ] Γ = ρ liqρ gas and [µ] Γ = µ liqµ gas . The velocity eld remain continuous across the interface, hence [u] Γ = 0. However, the pressure is not continuous across the interface and it is possible to write the pressure jump [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF] as

[P ] Γ = σκ(φ) + 2[µ] Γ (∇u • n) • n, ( 4 
)
where n is the interface unit normal.

Volume fraction equation

Liquid volume fraction F within this work is dened as

F (x, t) = 1 | C Ω | C Ω H(φ(x), t)dx ( 5 
)
where H is the Heaviside function expressed as

H(φ(x)) = 1, if φ(x) > 0 0, otherwise (6) 
with the sign convention of then level set function φ taken as

φ(x) = > 0, if x is inside liquid phase < 0, if x is inside gas phase, (7) 
and C Ω represents a computational cell in the numerical simulation domain Ω. Thus, F obey the bounds of 0 ≤ F ≤ 1. The gaseous phase volume fraction is given as 1 -F . The density is then computed using the liquid volume fraction as follows.

ρ(x) = ρ liq F + ρ gas (1 -F ) (8) 
Within this work, liquid volume fraction is considered as a passive scalar and hence its transport equation is given as

∂F ∂t + ∇ • (F u) = 0. (9) 
A directionally split advection technique following the algorithm presented in Weymouth and Yue [START_REF] Weymouth | Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids[END_REF] is employed for solving Equation [START_REF] Orazzo | A VoF-Based Consistent Mass-Momentum Transport for Two-Phase Flow Simulations[END_REF]. The advection directions are swapped alternatively between the adjacent time steps, i.e.,

t n → t n+1 : x -y -z t n+1 → t n+2 : y -z -x t n+2 → t n+3 : z -x -y repeat. ( 10 
)
The following modied form of the transport equation consistent to the algorithm of Weymouth and Yue [START_REF] Weymouth | Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids[END_REF] is solved.

∂F

∂t + ∇ • (F u) = c (∇ • u); c = 1, F > 0.5 0, otherwise. (11) 
The dilatation term ∇ • u appears in this equation due to the usage of operator split method of advection. In each step of this directionally split algorithm, the liquid volume fraction is advected along a one-dimensional ow which is not divergence free. Hence without this term, there will be jetsam and oatsam in the ow. Moreover, the bounds of 0 ≤ F ≤ 1 cannot be maintained otherwise. It is to be remarked that by using the algorithm of Weymouth and Yue [START_REF] Weymouth | Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids[END_REF], there is no loss of liquid volume in the domain.

Level set function

Level set (LS) function φ within this work is considered as a passive scalar variable that is used for three purposes: 1) initialization of phase interface using which initial liquid volume in the domain is computed; 2) computation of interface curvature; and 3) representation of liquid gas interface results

shown in Sections 4 and 7. It is advected using the same transport equation and advection scheme as that of liquid volume fraction (c.f. Equation ( 9)) [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF].

Coupling level set with volume of uid

To ensure that an accurate measure of level set is maintained in the simulation, care is taken in correcting the level set signed distance function based on the liquid volume fraction in each computational cell. This way, the computation of the interface curvature is not aected. Moreover, the reinitialization of level set function is performed as decribed by Ménard et al. [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF]. The implementation of the level set advection, correction and coupling with VOF method is performed similar to a classical CLSVOF method as described Ménard et al. [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF]; details of it are not recalled here.

Quite often numerical simulations of atomization process produces very small unphysical liquid structures in the domain. Such structures are, in general, under-resolved in the simulation domain. Our solver has the option to remove these structures from the domain and this process is carried out using level set function φ. The criteria for the removal is that, when there is no change in the sign of φ between a computational cell and all its neighbours, any liquid volume present in this cell is deleted. This process is called VOF restriction in our solver. It is possible to switch on or o the capture of these small structures. When these under-resolved liquid structures are not reconstructed accurately, it can have a detrimental eect on the stability of the solution of the Navier-Stokes equations. It is important to not remove these structures but also to maintain stability of the solution. It is for tackling this quintessential issue, the proposed MOF method is developed. More information on the signicance and application of this VOF restriction, the reader is referred to Section 6.1.

Moment of Fluid method

Original method

The original moment of uid (MOF) method of Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF] and Ahn and Shashkov [START_REF] Ahn | Multi-material interface reconstruction on generalized polyhedral meshes[END_REF] aims at nding the partitions of dierent materials in the context of multi-material applications containing M materials.

According to Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF], in order to nd the divisional layout of the various materials, it was necessary to know the proximity of their partitions and to know the approximate mixed cell partitions that are of interest. To this end, they used VOF method to detect and reconstruct the partitions/interfaces between the dierent materials and used the material centroids to accurately orient the interface in a volume conservative manner.

In nding the correct orientation of the reconstructed interface, the centroid defect, i.e., the distance between the material centroids of reconstructed and original interfaces had been used as a criterion for selection of the best orientation. In order to nd the interested choice of the mixed cell partitions, the order in which material interfaces to be reconstructed was required. They determined the right order by trying all the M ! possible combinations and chosen the one with the least centroid defect.

With this solution procedure for nding the interfaces among various materials, Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF] and Ahn and Shashkov [START_REF] Ahn | Multi-material interface reconstruction on generalized polyhedral meshes[END_REF] observed good mass conservation and also observed at least second-order of convergence of the interface reconstruction error metrics in comparison to the classical VOF and level set (LS) based approaches.

Interface normal computation

MOF method is a superset of the classical VOF method. MOF method tracks both liquid volume fraction (zeroth moment of liquid volume) and phase centroids (rst moment of liquid volume) in each mixed computational cell (cell with liquid volume fraction value between 0 and 1) in order to numerically reconstruct the interface. As described by Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF], we need these two information in order to reconstruct the material interfaces. Within this work, we dene the liquid phase volume fraction and phase centroid or center of mass (COM) respectively as

F = ω dx Ω dx , (12) 
x

COM = ω xdx Ω dx , (13) 
where F represent liquid volume fraction, x COM is the liquid phase centroid/center of mass, and ω is the domain of the liquid packet (with its volume denoted by | ω |) inside the computational cell C Ω (with its volume denoted by | C Ω |). In the rest of this paper, the phase COM will be referred as phase centroid. For the computation of centroid in Equation ( 13), the reader is referred to Appendix A. The availability of liquid volume fraction and phase centroid establishes a self-suciency of the required information to reconstruct the approximate interface in a cell, thus, eradicating data requirement from the neighboring cells. The consequence of this property is a uniform treatment of the internal and boundary cells in the mesh thus, yielding the resolution of the interface as high as the computational mesh itself. It has been shown [START_REF] Ahn | Multi-material interface reconstruction on generalized polyhedral meshes[END_REF][START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF] that MOF method reconstructs the linear interfaces exactly, thus, it is second-order accurate.

Problem formulation

Within the context of this work, MOF method is developed as a piecewise linear interface calculation (PLIC) method for reconstructing the interface.

Thus, the equation of the reconstructed interface plane in 3D (line in 2D) is given as ax+by +cz +d = 0 where interface normal n = [a, b, c] T . The reconstruction of original/reference interface means determining the components of interface normal n and shortest distance d of interface from cell center. This is carried out as the solution to a constrained optimization problem wherein both n and d have to be simultaneously determined such that volume is conserved (Equation ( 14)) and centroid defect E MOF is minimized (Equation ( 15))

F ref -F act (n, d) = 0, and (14) 
E MOF (n, d) = x ref COM -x act COM (n, d) 2 . ( 15 
)
All the variables containing the superscript ref represents the variables pertaining to the original (reference ) interface while those containing the superscript act represents the variables pertaining to the reconstructed (actual ) interface. For the purpose of illustration, Figure 1 shows a typical computational cell in 2D with the reference (solid curved line) and PLIC reconstructed (dashed straight line) interfaces based on liquid as reference uid.

n d COM refers to the liquid phase centroid in a com- putational cell computed after the advection of liquid volume fraction eld.

x act COM x ref COM x C Ω

Solution Algorithm

In contrast to the works of Dyadechko and Shashkov [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF] and Ahn and Shashkov [START_REF] Ahn | Multi-material interface reconstruction on generalized polyhedral meshes[END_REF], our work focuses mainly on the two-phase ows (the word material will be dropped hereon and will be referred as phases). This deems unnecessary for us to determine the best reconstruction order. Instead, following the proposition by Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF], we reconstruct the interface by choosing a reference phase with its reference centroid farthest from computational cell center, i.e.,

Reference phase

= liquid, x liq COM -x C Ω 2 > x gas COM -x C Ω 2 gas, otherwise. (16) 
In other words, the centroid defect is minimized for the phase with the least volume in the cell. An illustration in 2D for choosing the reference uid phase is shown in Figure 2. The rationale behind this approach is that, a small modication in the position of the centroid of the phase with largest volume has a high impact on the orientation of the interface. This is because a small error in the location of the x act arising from the interface reconstruction (performed using this phase) will put the phase with least volume at the wrong location in the cell, consequently changing the orientation of the interface. Thus, it is imperative to reconstruct the interface using the phase with least volume to have the least error in interface reconstruction.

x liq COM x gas COM x C Ω (a) Reference phase = gas x gas COM x liq COM x C Ω (b) Reference phase = liquid
Once the reference uid is chosen, the Equations ( 14) and ( 15) are solved respectively for d and n according to the following algorithms.

Step 1: determine interfacecell center distance d

The parameter d is related to the shortest distance between the interface plane and the computational cell center. It is computed as a result of satisfying the volume conservation condition (Equation ( 14)) upto the machine precision. We have implemented the geometric method of Gueyer et al. [START_REF] Gueyer | Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows[END_REF] to compute the parameter d.

Step 2: determine interface unit normal n

The computation of optimal interface unit normal n is obtained as a result of the minimization of the centroid defect E MOF in Equation [START_REF] Herrmann | A balanced force rened level set grid method for twophase ows on unstructured ow solver grids[END_REF]. Multiple methods exist for the minimization of this defect. In this work, we adopt the method explained by Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF] for the computation of interface unit normal. The minimization problem reads: nd n such that E MOF is minimum. To this end, we rst parameterize the unit normal in spherical coordinates as

n =   a b c   =   sin Φ cos Θ sin Φ sin Θ cos Φ   . ( 17 
)
We therefore simplied the resolution of the least square problem. Thus, the new problem statement reads: nd the optimal values (Φ opt , Θ opt ) such that

E MOF (Φ, Θ, d) = g(Φ, Θ, d) is minimum.
This can be framed mathematically as

E MOF min (Φ opt , Θ opt , d) = min(E MOF (Φ, Θ, d)) = min ∀(Φ,Θ):Eq.(14) holds g(Φ, Θ, d) 2 , (18) 
where g(Φ,

Θ, d) = x ref COM -x act COM (Φ, Θ, d) with g : R 3 → R 2 .
This equation is solved as a non-linear least square problem using Gauss-Newton minimization algorithm [START_REF] Fletcher | Practical Methods of Optimization[END_REF][START_REF] Björck | Numerical Methods for Least Squares Problems[END_REF]. This algorithm is a superset of the Newton-Raphson method, thus, the initial guess has a signicant impact in the convergence to the minima. To that end, we compute the initial guess for the normal from level set function φ as

N 0 = 1 2∆x   φ i+1,j,k -φ i-1,j,k φ i,j+1,k -φ i,j-1,k φ i,j,k+1 -φ i,j,k-1 .   (19) 
This is then normalized

n 0 = N 0 N 0 2 (20) 
to obtain the initial guess for the unit normal n 0 . It is straightforward to retrieve the initial guess for the normal angles (Φ 0 , Θ 0 ) using the relation given in Equation [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF]. Since our solver uses equidistant structured Cartesian mesh, it becomes relatively easier to compute the initial guess for the interface unit normal from the level set function. Algorithm 1 gives a pseudocode of the steps involved in Gauss-Newton minimization algorithm implemented in our solver. This algorithm is repeated for each mixed computational cell for each time step in the solution procedure. The partial derivatives in the computation of Jacobian matrix J are determined using central dierence scheme as follows

∂g ∂Φ = g(Φ + , Θ) -g(Φ -, Θ) 2 , ( 21 
) ∂g ∂Θ = g(Φ, Θ + ) -g(Φ, Θ -) 2 , (22) 
Algorithm 1 Gauss-Newton minimization algorithm function GaussNewton_MOF(a

0 , b 0 , c 0 , d 0 , Φ 0 , Θ 0 , F ref , x ref COM ) ctr = 1 tolg = 1E -08 tolJ = 1E -13 loop d ctr ←| F ref -F act (n ctr-1 , d) |= 0 Section 3.2.2 | ω ctr |← a ctr-1 , b ctr-1 , c ctr-1 , d ctr x act,ctr COM ← (a ctr-1 , b ctr-1 , c ctr-1 , d ctr , F ref )
Equation ( 13)

g ctr (Φ ctr-1 , Θ ctr-1 , d ctr ) = x ref COM -x act,ctr COM J ctr (g) = ∂g ctr ∂Φ ∂g ctr ∂Θ Jacobian matrix Q = J ctr T • g 2 if ((Q ≤ tolJ) .or. ( g ctr 2 < tolg)) then exit else if (ctr == 20) then exit else (Φ {ctr+1} , Θ {ctr+1} ) = (Φ ctr , Θ ctr ) + J ctr g T J ctr g -1 J ctr g T g ctr ctr = ctr + 1 end if end loop x ref COM ← x act,ctr COM return (Φ, Θ) end function
with the = π/10 000. It is to be mentioned that this minimization algorithm nds local minima and not the global minima. Nevertheless, it is the best approximation we can obtain with relatively less computational cost. Finally, the pseudocode of the overall procedure of our MOF interface reconstruction method implemented in our solver is summarized in Algorithm 2. In this algorithm, the value of ξ has been chosen to be 1 × 10 -12 .

Phase moments transport

In order to perform high delity numerical simulation of multiphase ows, it is imperative that the phase-based quantities are transported accurately.

Within the context of MOF method, reference liquid volume fraction F ref and 

for i = imin-1, imax+1 do if ((F ref ≤ ξ) .or. (F ref ≥ 1 -ξ)) then Empty/full cell a, b, c = 0 d = 4 × (F ref -0.5) × ∆x x ref COM,liq = 0.5 × F ref x ref COM,gas = 0.5 × (1 -F ref ) cycle else Mixed cell l ccl = x ref,liq COM -x C Ω 2 l ccg = x ref,gas COM -x C Ω 2 n it-1 ← φ [a it-1 , b it-1 , c it-1 ] T ← n it-1
Equation ( 17) dropped for the remainder of this section, since the quantities pertain only to the reference interface. It is important that this advection is performed consistently with that of the liquid volume fraction.

if (l ccl > l ccg ) then Ref phase = liquid (Φ it-1 , Θ it-1 ) ← [a it-1 , b it-1 , c it-1 ] T (Φ, Θ) = GaussNewton_MOF(a 0 , b 0 , c 0 , d 0 , Φ 0 , Θ 0 , F ref , x ref,liq COM ) (a, b, c) ← (Φ, Θ) else Ref phase = gas (Φ it-1 , Θ it-1 ) ← [-a it-1 , -b it-1 , -c it-1 ] T F ref,gas = 1 -F ref (Φ, Θ) = GaussNewton_MOF(a 0 , b 0 , c 0 , d 0 , Φ 0 , Θ 0 , F ref,gas , x ref,gas COM ) (-a, -b, -c) ← (Φ, Θ) end if n = [a, b, c] T | ω |← a, b, c

Phase centroid transport

The numerical method behind advection of reference phase centroids is now presented. In our work, we have used phase centroid as an approximated Lagrangian particle that is associated to its phase packet [START_REF] Dyadechko | Reconstruction of multi-material interfaces from moment data[END_REF]. Accordingly, a simple approximated Lagrangian equation (see [20, Appendix A] for derivation) is used for the advection of reference phase centroid x ref COM which is given as

∂x COM ∂t = u(x COM ). (23) 
In Equation ( 23), the face-centered velocity components in each computational cell are linearly interpolated to the location of the centroid to obtain u(x COM ). It is to be remarked that phase centroids for liquid and gas phase are stored for a mapped unit computational cell, hence, their value is always in the range [0, 1]. During the advection step, each phase centroid coordinate is remapped back to the physical computational cell. Such a mappingremapping procedure is carried out to ease out the interface reconstruction procedure. A directionally split advection algorithm with Eulerian ImplicitLagrangian Explicit (EILE) scheme is used for the advection. A simple rst-order time integration of this equation keeping constant velocity over the time step size ∆t yields,

x n+1 COM = x n COM + u(x * COM )∆t. ( 24 
)
The mode of the scheme is Eulerian Implicit if

x * COM = x n+1 COM and La- grangian Explicit if x * COM = x n COM .
Consider a 2D computational cell

C Ω i,j = [x i-1/2 , x i+1/2 ] × [y j-1/2 , y j+1/2
] with the face-centered velocity components given as u i+1/2,j , u i-1/2,j , v i,j+1/2 , and v i,j-1/2 . Let the liquid phase centroid be located at (x COM , y COM ). Without loss of generality, the interpolation along x-direction is presented as follows. The implementation of the interpolation along y-direction (and z-direction in 3D) are alike.

u(x * COM ) = u i-1/2,j (x i+1/2 -x * COM ) + u i+1/2,j (x * COM -x i-1/2 ) (25) 
In the case of Eulerian Implicit (EI) scheme where x * COM = x n+1 COM , Equa- tion (24) transforms to

x n+1 COM = E(x n COM -(u i+1/2,j x i-1/2 -u i-1/2,j x i+1/2 )) (26) 
with E = 1/(1 -(u i+1/2,ju i-1/2,j )) whereas in the case of Lagrangian Explicit scheme with x * COM = x n COM , the Equation ( 24) becomes

x n+1 COM = Lx n COM -(u i+1/2,j x i-1/2 -u i-1/2,j x i+1/2 ) (27) 
with L = 1 + u i+1/2,ju i-1/2,j . By changing the order of this scheme for the advection directions between adjacent time steps ensures a consistent advection of the phase centroids with their phase packet volume in the domain. A more clear picture of this switching of the schemes is given in Equation [START_REF] Freiss | A Multi-Material CCALE-MOF Approach in Cylindrical Geometry[END_REF].

t n → t n+1 : x(EI) -y(LE) -z(EI), t n+1 → t n+2 : y(EI) -z(LE) -x(LE), t n+2 → t n+3 : z(EI) -x(EI) -y(LE), repeat. (28) 

Advection procedure

To give a better visualization of the advection steps, let us consider a simple 3-stencil computational cell layout with liquid (dark region) as shown in Figure 3. For the sake of simplicity, let us consider the direction of velocity (with the other components of velocity equal to zero) as shown in this gure. The new liquid that will be entering the cell i from i -1 and with the displacement of the existing liquid within cell i would change the the coordinates of the phase centroids in cell i. Let the domain of the cell i be given as

C Ω i = [x i-1/2 , x i+1/2 ] × [y j-1/2 , y j+1/2
]. The objective is to nd the new phase centroids of the cell i after advection.

Without loss of generality, the advection of liquid reference centroid along x-direction is chosen for presentation. The advection along yand z-directions are carried out alike. The advection for the gas phase counterpart is performed identically and its implementation is straightforward.

It is to be remarked that the interface reconstruction is carried out before its advection. Thus, we have the information about the unit normal coecients and the liquid volume fraction in each computation cell apriori. The advection procedure goes as follows and is illustrated in Figure 4: i - (a) Find the domain and volume of the region of liquid that will be entering or moving to cell i called hereon as departure region corresponding to the dashed outlined region in Figure 4a. Thus, 

1 i i + 1 x i-1/2 x i+1/2 u i-1/2 u i+1/2
C Ω i depart = [x i-1/2 -u i-1/2 ∆t, x i+1/2 -u i+1/2 ∆t] × [y j-1/2 , y j+1/2 ]. (29) 
C Ω i ,i = C Ω i+i ∩ C Ω i depart ∀i = -1, 0, 1. (30) 
(c) Compute the liquid phase centroid of each of these interesected departure region (c.f. Figure 4c) using Equation ( 13).

(d) Advect this centroid using EILE scheme according to Equation (23) (c.f. Figure 4d).

(e) Compute the new liquid phase centroid for cell i as weighted average of all the centroids of liquid phase packets entering or displaced within cell i with volume of each liquid packet. This is given as

x n+1 COM i = 1 i =-1 x COM Ω i,i | C Ω i ,i | 1 i =-1 | C Ω i ,i | , (31) 
where | C Ω i ,i | represent the liquid volume of the corresponding intersected departure region.

i -

1 i i + 1 x i-1/2 -u i-1/2 ∆t x i+1/2 -u i+1/2 ∆t u i-1/2 u i+1/2 (a) Step 1: Departure region i -1 i i + 1 u i-1/2 u i+1/2 (b) Step 2: Individual departure regions i -1 i i + 1 u i-1/2 u i+1/2 (c) Step 3: Compute phase centroid i -1 i i + 1 u i-1/2 u i+1/2 (d) Step 4: Advect phase centroids i -1 i i + 1 (e)
Step 5: Weighted averaged centroid be mathematically expressed as

E symm =| ω ref ∪ ω act -ω ref ∩ ω act | (32) 
This expression can be simplied in terms of the Heaviside function as

E symm = i,j,k C Ω i,j,k H(n • (x -x C Ω ) + d) -H(φ exact (x)) dx, ( 33 
)
where φ exact is the level set function of the exact interface determined analytically. It is to be remarked that this error is measured after the interface comes back to its initial position, i.e., t = T . The integral in this expression is evaluated using quadrature method by dividing each computational cell C Ω i,j,k into 128 subcells in each coordinate direction.

Geometric error: this error measures the discrepancy between the reference and reconstructed interfaces in terms of shape of the object.

Similar to the symmetric dierence error, this error estimate is also computed at the nal instant when the interface comes back to its initial position. This error metric is expressed as

E geo = Ω F (x, T ) -F (x, 0) dx. (34) 

Zalesak's disk

First, we present the rigid body rotation of a notched circular disk (Zalesak's disk) of liquid that were performed in many studies, for example [START_REF] Le Chenadec | A 3D Unsplit Forward/Backward Volumeof-Fluid Approach and Coupling to the Level Set Method[END_REF][START_REF] López | A volume of uid method based on multidimensional advection and spline interface reconstruction[END_REF][START_REF] Desjardins | A spectrally rened interface approach for simulating multiphase ows[END_REF]. This test assess the capability of MOF method to accurately transport the sharp corners. To this end, a circular disk of radius 0.15 with a slot width of 0.06 and slot length of 0.2 placed at (0.5, 0.75

) in a [0, 1] × [0, 1]
domain is rotated about the domain center using the following velocity eld u = π 3.14 (0.5y), and

v = π 3.14 (x -0.5).

(

) 36 
The test concludes when the disk completes one full rotation in the domain.

For the considered size of the domain, the time at which the disk completed one full rotation is at t = T = 2π. Multiple mesh resolutions ranging from 32 × 32 to 1024 × 1024 were used for the discretization of the domain. The time integration has been performed using forward Euler scheme with a CFL of 0.5.

The interface shapes after one full rotation are shown in Figure 6 for MOF and CLSVOF methods for three mesh resolutions. The black solid line represents the initial interface and the red dashed line represents the nal interface of the disk after one full rotation. The interface contours are represented as the zero-level isocontour of the level set function in our solver. It can be clearly seen that the MOF method is able to well capture the sharp corners of the disk. These sharp corners are the regions of high curvature concentration in the interface shape. In fact, these corners are better captured when using MOF method than using CLSVOF method. Furthermore, as the mesh resolution increases, the nal shape of the interface tends towards the initial shape.

A quantitative analysis of the error estimates are shown in Figure 7 for both MOF (lled black circles) and CLSVOF (lled red triangles) methods.

The rst and second-order error convergence lines are also shown in these plots as dashed and dash dotted lines respectively. From these plots, we nd that both the symmetric dierence area error and geometric error estimates displays second-order convergence. Furthermore, we nd that MOF method is displaying less error estimate than CLSVOF method for all the mesh resolutions under consideration. Finally, error convergence order given within the parantheses for each column of the error estimate. 

Circle in a deformation eld

The test for the deformation of a circular uid body by a single vortex under solenoidal velocity eld is considered as a benchmark test to assess the ability of the numerical method of interface reconstruction to capture thin laments [START_REF] Desjardins | An accurate conservative level set/ghost uid method for simulating turbulent atomization[END_REF][START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF]. In this test, the a circle of radius 0.15 with its center located at (0.5, 0.75) in a [0, 1]×[0, 1] domain is made to undergo deformation under the given solenoidal eld u = -2 sin 2 (πx) sin(πy) cos(πy) cos(πt/T )

v = 2 sin 2 (πy) sin(πx) cos(πx) cos(πt/T ) [START_REF] López | A volume of uid method based on multidimensional advection and spline interface reconstruction[END_REF] where the time period of the test T = 8. ).

The error estimates for this test are shown in Figure 10 for all the ve mesh resolutions considered for this test. The CFL number was maintained constant to a value of 0.5 throughout the simulation for all the mesh resolutions. It can be seen clearly that the symmetric dierence area is demonstrating a rst-order convergence with the CLSVOF method showing the same order of error as that of MOF for higher mesh resolutions. This is in striking contrast to the result observed for Zalesak's disk test in which MOF method consistently showed lower error estimate than CLSVOF method. This is be- ).

cause the sharp corners of the Zalesak's disk can cause inaccurate orientation of interface unit normal resulting in higher symmetric dierence area for the CLSVOF. Therefore, increasing the mesh resolution better captures the corners resulting in faster decrease in error and higher error convergence order.

On the other hand, this test deals with smooth circle deformation leading to under-resolved lament at its ends under maximum deformation. Increasing the mesh resolution will still be capturing the same overall interface shape but with better capture of these laments. Hence, the symmetric dierence area error estimate decreases slowly with increasing mesh resolution leading to rst-order convergence. Although the geometric error shows second-order convergence, it is also experiencing the same trend as that of the symmetric dierence area error with respect to the order of magnitude of error for MOF and CLSVOF methods. It is observed that the CLSVOF methods are demonstrating a comparable error estimate as that of the MOF method but the latter method is able to well capture the tail of the deformed circle without articial breakup as shown in Figure 8c. Finally, the error estimate values are summarized in Table 2 along with their order of convergence with increasing spatial mesh resolution. The symmetric dierence area error reported in this table are consistently of lower order and value in comparison to those reported by Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF]. Their value of errors are reported by using a one-level adaptive mesh renement (AMR). 

Sphere in a deformation eld

In the previous test, a non-linear velocity eld is applied to a two dimensional circular liquid body. Often in multiphase ows, the complex topological structures are in three dimensions. Thus, to test the accuracy of the numerical method, we now apply a non-linear time reversing solenoidal velocity eld on a spherical liquid droplet. This test was rst proposed by Enright et al. [START_REF] Enright | A Hybrid Particle Level Set Method for Improved Interface Capturing[END_REF] using a velocity eld presented in the work of LeVeque [START_REF] Leveque | High-Resolution Conservative Algorithms for Advection in Incompressible Flow[END_REF]. The velocity eld is given by u(x, y, z, t) = 2 sin 2 (πx) sin(2πy) sin(2πz) cos(πt/3)

(39)
v(x, y, z, t) =sin(2πx) sin 2 (πy) sin(2πz) cos(πt/3)

(40)
w(x, y, z, t) =sin(2πx) sin(2πy) sin 2 (πz) cos(πt/3)

(41)
where x, y, z are spatial coordinates and t is the simulation time. In this test, a spherical liquid droplet of radius 0.15 placed with its center located at (0.35, 0.35, 0.35

) inside a [0, 1]×[0, 1]×[0, 1] domain.
With this time reversing velocity eld, an initial spherical interface is stretched to form a thin sheet at t = 1.5 and reverses back to its original spherical shape at t = T = 3.

Figure 11 shows the phase interface represented using zero level of the level set function for the 192 3 mesh resolution using MOF and CLSVOF methods. It can be seen that although CLSVOF method is able to capture the thin sheet membrane of the stretched sphere, the nal interface shape has relatively more deformation than that of the MOF method. This deciency of the CLSVOF method is reduced by the proposed MOF method.

The mesh convergence of the symmetric dierence error and geometric error are shown in Figure 12 for ve mesh resolutions ranging from 32 3 to 512 3 . A constant CFL of 0.5 was maintained throughout the simulation for all the mesh resolutions considered for this test. From these plots, we can observe at least rst-order convergence in spatial resolution for symmetric dierence and geometric error estimates. Moreover, we nd that the error estimates using CLSVOF method converges to those using MOF method. This is due to the fact that higher the mesh resolution lesser are the underresolved interfacial regions in the domain thereby the CLSVOF method is able to capture the phase interface with as high accuracy as MOF method.

Finally, Table 3 summarizes the error estimate values for MOF and CLSVOF method for various mesh resolutions with the error convergence order given within the parantheses for each column of the error estimate. The symmetric 

Solution to the Navier-Stokes equations

Flow solver

This subsection explains the coupling of the MOF method with our ow solver ARCHER [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF][START_REF] Tanguy | Application of a level set method for simulation of droplet collisions[END_REF][START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF] whose capabilities have been described extensively in multiple works [START_REF] Duret | DNS analysis of turbulent mixing in two-phase ows[END_REF][START_REF] Canu | Where does the droplet size distribution come from?[END_REF]. This solver is structured, parallel and developed for direct numerical simulations (DNS) of complex and turbulent multiphase ows with the application to study primary breakup of liquid fuel jet. This solver has been validated for various cases of complex turbulent ow congurations [START_REF] Cousin | Primary breakup simulation of a liquid jet discharged by a low-pressure compound nozzle[END_REF][START_REF] Duret | Improving primary atomization modeling through DNS of two-phase ows[END_REF] thus, the numerical methods employed in this solver are tailored for treating turbulence in the system.

A staggered grid conguration is used with central nite dierence scheme for least numerical dissipation. The scalar variables such as liquid volume fraction, density, viscosity, level set function, and pressure are stored in the cell center while the vector variables such as components of velocity and vorticity are stored in cell faces. A second-order central dierence scheme is employed for discretization of the spatial derivatives to avoid any dissipation. However, the convection term is discretized using fth-order WENO scheme to ensure a robust behavior of the solution. Ghost Fluid Method (GFM) [START_REF] Fedkiw | A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[END_REF] is employed for the spatial discretization of the Poisson equation (Equation ( 45)) for taking into account the force due to surface tension as a pressure jump. The resulting linear system of symmetric and positive denite matrix with ve diagonals is solved using multigrid algorithm for preconditioning a conjugate gradient (CG) method [START_REF] Tanguy | Application of a level set method for simulation of droplet collisions[END_REF].

Consistent mass and momentum ux computation

As mentioned by Rudman [START_REF] Rudman | A volume-tracking method for incompressible multiuid ows with large density variations[END_REF], it is necessary that the convective term in the Navier-Stokes Equation ( 2) is expressed in conservative form and to have consistency between the computation of mass and momentum ux. The Navier-Stokes equations in conservative form can be written as

∂ρ ∂t + ∇ • (ρu) = 0 (42) ∂ρu ∂t + ∇ • (ρu ⊗ u) = -∇P + ∇ • (2µD) + B. (43) 
In order to have consistent computation of mass and momentum ux, we use the method of Vaudor et al. [START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF] (based on the work of Rudman [START_REF] Rudman | A volume-tracking method for incompressible multiuid ows with large density variations[END_REF])

to eciently compute the mass and momentum uxes with a single-grid approach unlike dual-grid approach. Such a single grid approach reduces the computational cost signicantly and achieves the same accuracy.

Although the mass conservation equation is not solved explicity in our solver, it is enforced by solving the advection equation of liquid volume fraction (c.f. Equation ( 11)). The mass ux is given as ρu (deduced from liquid volume fraction ux) while the momentum ux is given as ρu⊗u. The problem of inconsistency between these uxes arise due to the usage of staggered variable conguration. Such a conguration leads to two dierent control volumes for the density and velocity component. It is imperative that the computation of ρu remains the same in both these equations. The method of Vaudor et al. [START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF] involves computation of pseudo uxes on the faces of the intersected control volumes of density and velocity components thereby deducing the consistent computation of mass and momentum uxes.

Projection Method

In order to solve the Equations ( 1) and ( 2), a projection method as described in Ménard et al. [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF] is employed. The algorithm of implementation of this method in ARCHER is given below in brief:

Algorithm 3 Projection Method 1: Compute u * (Predictor step):

u * = 1 ρ n+1 ρ n u n + ∆t ∇ • (ρ n u n u n ) + ∇ • (2µ n D) + B (44) 
2: Solve for pressure P n+1 (Poisson equation for pressure):

∇ • 1 ρ n+1 ∇P n+1 = ∇ • u * ∆t (45) 
3: Compute u n+1 (Corrector step):

u n+1 = u * + ∆t ρ n+1 (-∇P n+1 ) (46) 

Viscous formulation

Ghost Fluid Method (GFM) has been proved to be advantageous in computing the pressure jump across the interface in the context of multiphase ows. Albeit this advantage, it becomes challenging to implement the formulations proposed in the literature [START_REF] Kang | A Boundary Condition Capturing Method for Multiphase Incompressible Flow[END_REF] for this method in the presence and discretization of viscous terms. Thus, to this end, we have used the semi-implicit formulation proposed by Sussman et al. [START_REF] Sussman | A sharp interface method for incompressible two-phase ows[END_REF] for discretizing the viscous term. With this method, we can be second-order accurate in regions away from the liquid/gas interface and rst-order accurate near the interface.

The viscous terms have profound eect only in the small scales of motion.

And, our interest lies on simulating the complex, turbulent multiphase ow problems. Thus, it is considered that our choice of discretization of viscous term will not have signicant impact on the results of global characteristics of atomization.

Time integration

The Navier-Stokes equations are solved using a one-step forward Euler scheme. The time step size ∆t is determined based on a CFL condition similar to that of Kang et al. [START_REF] Kang | A Boundary Condition Capturing Method for Multiphase Incompressible Flow[END_REF]. For a value of CFL = γ, the time steps size is computed by satisfying the inequality ∆t ≤ γ

(C CFL +V CFL ) √ (C CFL +V CFL ) 2 +4(G CFL ) 2 +4(S CFL ) 2 2 (47) 
where C CFL , V CFL , G CFL , and S CFL represent the CFL conditions based on convective, viscous, gravity, and surface tension (capillary) forces. Each of the terms are computed as

C CFL = max(| u |) ∆x + max(| v |) ∆y + max(| w |) ∆z , (48) 
V CFL = max µ liq ρ liq , µ gas ρ gas 2 (∆x) 2 + 2 (∆x) 2 + 2 (∆z) 2 , (49) 
G CFL = | g x | ∆x + | g y | ∆y + | g z | ∆z , and (50) 
S CFL = σ max (| κ |) ρ gas (∆x) 2 (51) 
where g is the acceleration due to gravity.

Overall solution procedure

Figure 13 gives the owchart of the overall list of dierent routines and the steps in our solver coupled with MOF interface reconstruction and advection subroutines. The transport of phase-based and ow-based quantities are performed with the time step size determined based on the CFL criterion.

Validation tests

In this section, we assess the capability of the MOF method for simple two-phase ows. To that end, we present in this section two tests: a double shear layer dominated by convection and Rayleigh-Taylor instability test.
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Double shear layer

Numerical simulations of atomization process involves complex topological structures that need to be well captured in the domain. Moreover, there can arise a situation when liquid structures dominated by convective forces need to be reconstructed. Quite often in such convection dominated ow conditions, a non-negligible inaccuracy in the computation of liquid/gas interface normal during reconstruction can have this error propagating to the incorrect computation of density and subsequently to the incorrect computation of velocity. Vaudor [START_REF] Vaudor | Atomisation assistée par un cisaillement de l' écoulement gazeux[END_REF] demonstrated that such inaccuracies in velocity computation often led to burst or sudden increase in velocity between adjacent time steps. Such bursts or intermittent shoot-ups (as it will be referred hereon) have an adverse eect on the results obtained from numerical simulation thereby leading to poor understanding of the physical process of atomization. This can be directly linked to the stability of the solution to the Navier-Stokes equations and by extension to that of the interface reconstruction numerical method.

As remarked in Section 2.2.2, inaccurate capture of under-resolved liquid structures in atomization process can lead to inaccuracies and instability in the solution to velocity and pressure eld in the Navier-Stokes equations. It is important to test whether MOF method is stable and able to well capture these under-resolved liquid structures under convective conditions. To that end, we consider a L × L double shear layer conguration as shown in Figure 14 with L = 0.003 and δ = L/10. The density ratio between liquid and gas is taken to be 1000. The viscous and surface tension forces are assumed to be many orders of magnitude smaller than the convective term, therefore, are neglected. Thus, the ow Reynolds number Re = ∞ and liquid based Weber number We = ∞. A divergence free initial velocity eld is prescribed in the domain given as follows

u = A -0.04 cos 2πx L L x -2 δ exp - 2y δ , (52) 
v = 0.04 sin 2πx L exp - 2y δ (53)
in which δ is the thickness of the liquid shear layer and the value for A is taken as A = 30 , in gas phase 2 , in liquid phase. Five mesh resolutions are considered in this test case ranging from 32 × 32 to 512 × 512 and periodic boundary conditions are used along xand y-directions. The simulation is run until the physical time t = 2 × 10 -3 . The results shown for this test pertains to 128×128 mesh resolution for MOF and CLSVOF methods.

We present here results from three cases, rst is MOF without VOF restriction (c.f. Section 2.2.2), second is CLSVOF without VOF restriction, and nally, CLSVOF with VOF restriction. To give more explanation, without VOF restriction means the presence of under-resolved liquid structures in the simulation domain while with VOF restriction means that these structures are deleted by the level set function using the criteria discussed in Section 2.2.2. Thus, the only dierence between the second and third case is the presence of under-resolved liquid structures in the simulation domain.

When such structures are not well captured, we should observe intermittent bursts/shoot-ups in the velocity eld [START_REF] Vaudor | Atomisation assistée par un cisaillement de l' écoulement gazeux[END_REF].

Due to the periodic boundary conditions, the total kinetic energy E kin (sum of the kinetic energy of liquid and gas phase) must remain constant over time. Figure 15a shows the plot of the time evolution of the total kinetic energy for MOF method (black solid line) and CLSVOF method without VOF restriction (red dashed line) and with VOF restriction (blue dashdotted line). For all the three cases, the total kinetic energy is observed to remains nearly constant. Howoever, there is a decrease observed towards the later simulation time. It is expected to have arisen from the numerical dissipation induced by the discretization schemes employed in our in-house Navier-Stokes solver ARCHER. An accurate capture of the under-resolved liquid structures can be observed from the non-presence of intermittent velocity bursts. Such velocity bursts often lead to uctuations in the total kinetic energy. From Figure 15a, we can observe that the only case with such bursts is the CLSVOF method without VOF restriction (see also the inset plot in this gure) due to the inaccurate capture of these structures. In order to further investigate based on this this inference, we show the evolution of the maximum cell centered velocity eld as a function of time in Figure 15b. This velocity is computed as

( u c 2 ) max = (u c ) 2 + (v c ) 2 . ( 55 
)
As expected, once again the CLSVOF method without VOF restriction is experiencing large number of intermittent velocity bursts. Such bursts are not observed when using CLSVOF method with VOF restriction since the under-resolved structures are deleted. Furthermore, the MOF method without VOF restriction is also not having such shoot-ups. Thus, from these inferences, we can conclude that the sole reason for the presence of intermit-tent velocity burst for the CLSVOF method without VOF restriction is due to inaccurate capture of under-resolved liquid structures.

Based on this conclusion, MOF method is able to well accurately capture the under-resolved liquid structures in multiphase ow simulations. Moreover, it is observed that MOF method is stable and able to handle the extreme convective ow conditions.

Finally, the phase interface and the contour of the magnitude of the cell centered velocity for two instantaneous time steps using MOF method and CLSVOF method without VOF restriction are shown respectively in Fig-

ures 16 and 17. In these gures, the solid line represents the liquid/gas interface. Although the surface tension force is neglected in our simulation, we still see a small number of detached liquid structures in the domain (c.f. Figure 17b). Such breakup is expected to have occurred due to the coarse mesh resolution employed for the simulation. As the mesh resolution increases, the number of such liquid structure detachments decreases. Furthermore, with the increasing mesh resolution, liquid laments formed due to shear between liquid and gas phases, grow longer without articial/numerical and premature breakup.

It is to be remarked that there is 0% mass loss in the domain when VOF restriction is deactivated while there is a mass loss of 3.19% when it is activated. Thus, MOF method is able to conserve mass and capture the under-resolved liquid structures without any bursts in the velocity.

Rayleigh-Taylor instability

Next, the Rayleigh-Taylor instability test is performed for the assessment of the MOF method in capturing the thin laments and high curvature interfacial regions when coupled with Navier-Stokes equations. This test has been extensively studied in the literature, for example see [START_REF] Prosperetti | Viscous eects on small-amplitude surface waves[END_REF][START_REF] Meniko | Initial value problem for Rayleigh-Taylor instability of viscous uids[END_REF][START_REF] Prosperetti | Motion of two superposed viscous uids[END_REF]. However, these works did not consider eect due to surface tension. In recent studies [START_REF] Herrmann | A balanced force rened level set grid method for twophase ows on unstructured ow solver grids[END_REF][START_REF] Le Chenadec | A 3D Unsplit Forward/Backward Volumeof-Fluid Approach and Coupling to the Level Set Method[END_REF][START_REF] Desjardins | A spectrally rened interface approach for simulating multiphase ows[END_REF], surface tension forces are considered. In this paper, we consider the conguration described in [START_REF] Desjardins | A spectrally rened interface approach for simulating multiphase ows[END_REF].

To this end, we consider a 1 × 4 domain containing two uid phases that are separated by an interface. This interface is dened by the zero value of the level set given as φ(x, y) = y + A cos(2πx) the spike penetration within this work. The value of the spike penetration for the mesh resolution 256×1024 is used as reference solution for the purpose of comparisons. From this gure, it can be observed qualitatively that the spike penetration converges relatively faster towards the reference solution from the observation that the lines collapse as the mesh resolution is increased.

In order to quantify and validate this observation, we have computed an error estimate called spike penetration error. This is dened as the distance between the spike penetration for a given mesh resolution and the reference solution. This error estimate is then compared for various mesh resolutions over multiple time instants and is shown in Figure 20. A secondorder convergence of the error can be observed in this gure for all the three time instants which validates the observation made from Figure 19 

Atomization of turbulent liquid diesel jet

Finally, we apply the MOF method to simulate turbulent atomization of round liquid diesel jet. The verication and validation tests presented in Sections 4 and 6 involve non-complex interface topologies, low Reynolds numbers, or ows dominated by convection. The fuel injection in gas turbines is often carried out under extreme conditions creating complex liquid structures and interface topologies. It is to be noted that the results presented in this section are solely for testing the potentialities of the MOF method rather than as reference results.

In order to validate the proposed MOF method for such interface topologies, a spatially evolving liquid jet turbulent atomization computation is performed. To that end, a turbulent liquid diesel jet is injected using a simple circular cross-sectional injector into a quiescent environment of gas. The jet upon penetration into the surroundings is disintegrated into ligaments and droplets upon action of shear and aerodynamic forces. 

Computational details

The computation has been performed in a domain of size 3D j ×3D j ×24D j where D j is the diameter of the injector of the liquid jet that is discretized using 128 × 128 × 1024 structured Cartesian mesh resulting in D j /∆x = 42.74.

The mesh resolution has been chosen under the assumption that no secondary breakup occurs for the smallest droplet. It is to be remarked that although the employed mesh resolution might not capture all scales of motion in this turbulent ow, no sub-grid scale (SGS) models were used. It is however unclear whether these scales of motion will aect the global nature of the atomization analyzed in this case. Nevertheless, the objective of this section to demonstrate the ability of MOF method to simulate a complex turbulent engineering application. The characteristics of the jet and operating conditions are respectively given in Tables 4, 5 and 6. The jet Reynolds [START_REF] Klein | A digital lter based generation of inow data for spatially developing direct numerical or large eddy simulations[END_REF] which consists of generating correlated random velocities with a prescribed length scale. In our study, we considered this length scale to be equal to the turbulent integral length scale l t (c.f. Table 4). With the current mesh resolution, we have l t /∆x ≈ 4. The turbulent Reynolds number at injection Re τ = ρ j u l t /µ j = 58.

The simulation is run upto a non-dimensional time t * = tU j /D j = 20 using our in-house code ARCHER [START_REF] Ménard | Coupling level set/VOF/ghost uid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF][START_REF] Vaudor | A consistent mass and momentum ux computation method for two phase ows. Application to atomization process[END_REF] in CRIANN supercomputing facility on 512 processors.

Atomization results

Figure 21 shows the instantaneous snapshots of the liquid jet at various times. It can be seen that the liquid jet interface experiences a lot of disturbances on its surface due to the turbulence causing the formation of 3D waves. These waves then roll-up thereby pinching the interface leading to detachment of ligaments and droplets from the liquid core. We can also observe that by the end of the computation, signicant deformation of the liquid jet has resulted in numerous ligaments and droplets being detached from the liquid core.

To assess the ability of MOF method for this case, we compute the loss/gain of liquid volume in the domain over time. To this end, we dene the volume lost/gained V lg (depending on negative/positive value respectively) computed for each time step over the whole domain in the simulation as

V lg (t) = V total (t) -V 0 -V inlet (t), (57) 
where V total is the total liquid volume in the domain at a particular time instant t, V 0 is the initialized liquid volume of the cylindrical jet cap of diameter D j and height 4∆x at t = 0, and V inlet is the injected liquid volume computed using the amount of the ux of the volume entering the injector cross-section.

Positive values for V lg indicate gain in liquid mass while negative values indicate loss in liquid mass. The loss of volume in the domain is normalized using the total volume of the domain (V domain = 3D j × 3D j × 24D j ). The evolution of V lg /V domain as a function of time is shown in Figure 22. With the volume loss in the order of 1.0 × 10 -16 in the domain, the MOF method is able to conserve the liquid mass very satisfactorily even for this complex turbulent case. 

Conclusions

A moment of uid (MOF) interface reconstruction approach for simulating complex, turbulent multiphase ows has been developed and coupled with incompressible Navier-Stokes equations. This numerical moment based method uses liquid volume fraction and phase centroid for reconstruction of liquid/gas interface. The additional advantage that this method brings to the table is the accurate capturing of under-resolved interface topology. The core idea of the moment of uid method is to reconstruct the interface in a volume conservative manner and by reducing the centroid defect to the minimum in each computational cell. This method has been subjected to various tests under multiple ow conditions and is shown to be performing with good results and relatively less error than a classical coupled level set volume of uid approach. Finally, this method has been used to simulate atomization of turbulent liquid diesel jet. For such a complex multiphase problem, the method is shown to perform very satisfactorily and the errors in the volume conservation is demonstrated to be small. These small error estimates for the MOF method is due to well capture of the under-resolved regions. The coupled level set volume of uid (CLSVOF) method is able to well capture the resolved liquid structures. New developments are planned to develop a hybrid coupled level set moment of uid method, similar to that of Jemison et al. [START_REF] Jemison | A Coupled Level Set-Moment of Fluid Method for Incompress-ible Two-Phase Flows[END_REF], uses MOF method only for reconstructing under-resolved liquid structures while CLSVOF method for reconstructing resolved structures. The rationale behind this approach is to exploit the accurate interface reconstruction method of MOF with optimal computational resources requirement from CLSVOF method. where NT is the total number of triangulated elements in the computational cell.

The extension of this procedure to 3D is performed in a similar fashion as described above along with the triangulation of the liquid/gas interface plane for creating tetrahedron.
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 1 Figure 1: Computational cell with reference (solid curved line) and reconstructed (dashed straight line) interfaces and liquid centroid.

Figure 2 :

 2 Figure 2: Determining reference uid phase based on phase centroidcell center distance.

Algorithm 2 MOF

 2 Interface Reconstruction algorithm procedure MOF_reconstruction for it = 1, nt do time loop for k = kmin-1, kmax+1 do for j = jmin-1, jmax+1 do
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 33 Figure 3: 3-cell stencil for advection of liquid centroid. Liquid depicted as dark uid.

( b )

 b Find the domain and volume of individual regions of liquid entering or displacing each from cell i -1 (dashed outlined region) and i (dot dashed outlined region) called hereon as intersected departure regions (c.f. Figure 4b). Therefore, we have

Figure 4 :Figure 5 :

 45 Figure 4: Step-by-step procedure of advection of liquid phase centroid.

Figure 6 :

 6 Figure 6: Comparison of results from one rotation of Zalesak's disk using MOF ((a), (b), (c)) and CLSVOF ((d), (e), (f)) methods for multiple mesh resolutions: initial interface ( ), nal interface ( ).

Figure 7 :

 7 Figure 7: Error estimates for Zalesak's disk rotation test: MOF ( ); CLSVOF ( ); rstorder convergence line ( ); second-order convergence line ( ).

Figure 10 :

 10 Figure 10: Error estimates for circle deformation test: MOF ( ); CLSVOF ( ); rst-order convergence line ( ); second-order convergence line ( ).

  (a) MOF: t = 0.0 (b) MOF: t = 1.5 (c) MOF: t = 3.0 (d) CLSVOF: t = 0.0 (e) CLSVOF: t = 1.5 (f) CLSVOF: t = 3.0

Figure 11 :

 11 Figure 11: Phase interface for 3D spherical droplet deformation for 192 3 mesh resolution using MOF and CLSVOF methods.

Figure 12 :

 12 Figure 12: Error estimates for spherical droplet deformation test: MOF ( ); CLSVOF ( ); rst-order convergence line ( ); second-order convergence line ( ).

Figure 13 :

 13 Figure 13: Solution procedure coupled with MOF interface reconstruction method.

Figure 14 :

 14 Figure 14: Conguration of a 2D double shear layer.

Figure 15 :

 15 Figure 15: Time evolution of total kinetic energy and maximum cell centered velocity magnitude for 128 × 128 mesh resolution using MOF method without VOF restriction ( ), CLSVOF method without VOF restriction ( ), and CLSVOF method with VOF restriction ( ).

  A = 0.05 is chosen for this test case. The density of the top uid (denoted as uid 1) is ρ 1 = 1.225 while that of the bottom uid (denoted (a) t = 1.07 × 10 -3 (b) t = 2.00 × 10 -3

Figure 16 :

 16 Figure 16: Phase interface (solid line) and contour of magnitude of velocity for double shear layer test using MOF method for 128 × 128 mesh resolution.

Figure 18

 18 Figure18shows the time evolution of the phase interface shape for the Rayleigh-Taylor instability test using 256×1024 mesh resolution. The results are in good agreement with that from the work of Desjardins and Pitsch[START_REF] Desjardins | A spectrally rened interface approach for simulating multiphase ows[END_REF] Figures 22 and 23] which was performed using a spectrally rened interface method with 512 × 2048 mesh resolution.

Figure 19

 19 Figure19shows the uid phase interfaces for all mesh resolutions for the time steps t = 1.0, 1.1, 1.2. The arrow in these gures indicates the increasing mesh resolutions considered in this work for this test case. The depth (in vertical y-direction) until which the uid 1 goes into the uid 2 is dened as

Figure 17 :

 17 Figure 17: Phase interface (solid line) and contour of magnitude of velocity for double shear layer test using CLSVOF method for 128 × 128 mesh resolution.

  on faster convergence. With the increasing simulation time, more complex interfacial structures such as thin laments and ligaments are formed thereby increasing the error towards the end of the simulation. t = 0.7 (b) t = 0.8 (c) t = 0.9 (d) t = 1.0 (e) t = 1.1 (f) t = 1.2

Figure 18 :

 18 Figure 18: Time evolution of phase interface for Rayleigh-Taylor instability test using MOF method with 256 × 1024 mesh resolution.
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Figure 20 :

 20 Figure 20: Spike penetration error: t = 1.0 ( ); t = 1.1 ( ); t = 1.2 ( ); rst-order convergence line ( ); second-order convergence line ( ).

Figure 21 :

 21 Figure 21: Time evolution of turbulent atomization of liquid diesel jet. ∆t * = 2.5 between each snapshot.

Figure 22 :

 22 Figure 22: Conservation of liquid volume (normalized by total volume of domain) turbulent atomization of liquid diesel jet.

Figure A. 23 :

 23 Figure A.23: Conguration of mixed cell for phase centroid computation.
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Table 1

 1 

	summarizes the error estimates

(d) CLSVOF: 64 × 64 (e) CLSVOF: 128 × 128 (f) CLSVOF: 256 × 256

Table 1 :

 1 Summary of error estimates for Zalesak's disk test with spatial order of error convergence given within parantheses.

	N x	MOF	CLSVOF
		E symm	E geo	E symm	E geo
	32	3.95E-04	1.18E-04	1.65E-03	6.15E-04
	64	5.99E-05 (2.72)	1.95E-05 (2.60)	2.96E-04 (2.48)	1.13E-04 (2.44)
	128 1.53E-05 (1.97) 6.19E-06 (1.66) 8.31E-05 (1.83) 2.52E-05 (2.17)
	256 3.21E-06 (2.25) 1.27E-06 (2.29) 2.20E-05 (1.92) 7.32E-06 (1.78)
	512 7.42E-07 (2.11) 2.70E-07 (2.23) 5.22E-06 (2.08) 1.41E-06 (2.38)
	1024 1.58E-07 (2.23) 6.01E-08 (2.17) 1.39E-06 (1.91) 4.61E-07 (1.61)

  This velocity eld stretches and tears the initially circular uid body as it becomes progressively entrained by the vortex reaching maximum deformation at T /2 and comes back to its original shape at time t = T . The entrainment is demonstrated as long thin uid lament spiraling inward towards the vortex center. Five dierent mesh resolutions ranging from 32 × 32 to 1024 × 1024 are considered for this verication test. The CFL was maintained constant to a value of 0.5 throughout the test for all mesh resolutions. Figures8 and 9shows the phase interface at t = T /2 and T for MOF and CLSVOF methods for 64 × 64, 128 × 128, and 256 × 256 mesh resolutions. The solution computed on 512 × 512 grid does not have any visual dierence from that computed on 256 × 256 grid. The reference solution (depicted by black solid line in the subgures) is obtained on a 1024 × 1024 grid using MOF and CLSVOF method respectively for Figure8and Figure9. Clearly, the MOF method is proving to be a better method in capturing the thin laments of the stretched circle for a mesh resolution of 128 × 128.

	(a) 64 × 64	(b) 128 × 128	(c) 256 × 256
	(d) 64 × 64	(e) 128 × 128	(f) 256 × 256

Figure 8: Phase interface shape for circle deformation test using MOF method for 64 × 64, 128 × 128, and 256 × 256 mesh resolutions: reference solution (

), computed interface (

Table 2 :

 2 Summary of error estimates for circle deformation test with spatial order of error convergence given within parantheses.

	N x	MOF	CLSVOF
		E symm	E geo	E symm	E geo
	32	1.20E-03	1.27E-03	2.32E-03	2.02E-03
	64	9.97E-04 (0.27)	2.51E-04 (2.34)	1.10E-03 (1.08)	2.71E-04 (2.90)
	128 5.25E-04 (0.93) 4.39E-05 (2.52) 5.52E-04 (0.99) 2.70E-05 (3.33)
	256 2.76E-04 (0.93) 3.15E-06 (3.80) 2.76E-04 (1.00) 3.85E-06 (2.81)
	512 1.38E-04 (1.00) 5.23E-07 (2.59) 1.38E-04 (1.00) 6.22E-07 (2.63)
	1024 6.90E-05 (1.00) 1.26E-07 (2.05) 6.90E-05 (1.00) 1.38E-07 (2.17)

Table 3 :

 3 Summary of error estimates for sphere deformation test with spatial order of error convergence given within parantheses.

	N x	MOF		CLSVOF
	E symm	E geo	E symm	E geo
	32 6.83E-03	5.62E-03	8.52E-03	7.77E-03
	64 2.99E-03 (1.19) 2.35E-03 (1.26) 3.78E-03 (1.17) 3.50E-03 (1.15)
	128 8.38E-04 (1.84) 5.38E-04 (2.13) 9.47E-04 (1.99) 7.72E-04 (2.18)
	192 3.91E-04 (1.88) 1.87E-04 (2.60) 4.64E-04 (1.83) 3.12E-04 (2.23)
	256 3.14E-04 (1.42) 1.80E-04 (1.48) 3.39E-04 (1.50) 2.35E-04 (1.72)
	512 1.43E-04 (1.14) 7.11E-05 (1.12) 1.56E-04 (1.12) 9.56E-05 (1.30)

Table 4 :

 4 Characteristics of turbulent liquid jet.

	Physical quantity	Value
	Jet diameter (D j )	100 µm
	Mean jet velocity (U j )	100 m/s
	Turbulent intensity (u )	0.10U j
	Turbulent integral length scale (l t )	0.1D j

Table 5 :

 5 Operating conditions summary. Re j = ρ j U j D j /µ j and liquid based Weber number is expressed as W e = ρ j U

	Phase	ρ [kg/m 3 ]	µ [kg/ms]	σ [N/m]
	Liquid Gas	696 25	1.2 × 10 -3 1 × 10 -5	0.06
	number is expressed as 2 j D j /σ. A fully developed turbulent pipe ow velocity

Table 6 :

 6 Non-dimensional numbers for turbulent liquid jet atomization.

	Non-dimensional number	Value
	Jet Reynolds number (Re j )	5800
	Liquid Weber number (We)	11 600
	Turbulent Reynolds number (Re τ ) 58
	D j /∆x	42.74
	l t /∆x	4
	inlet is used for liquid phase inow boundary condition. The turbulent inow
	boundary conditions are generated using the synthetic turbulence method of
	Klein et al.	
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It is to be remarked that the computation of the phase centroids require the coordinates of the points on the computational cell faces at which the 2D interface line (3D interface plane) intersects. There are four steps involved