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ABSTRACT  

Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited 

treatment options. Technological advances have enabled genetic screens to be employed 

in HCC model systems to characterize genes regulating tumor initiation and growth. 

Relative to traditional methods for studying cancer biology, such as candidate gene 

approaches or expression analysis, genetic screens have several advantages: they are 

unbiased, with no a priori selection, can directly annotate gene function, and can uncover 

gene-gene interactions. In HCC, three main types of screens have been conducted and 

are reviewed here: (1) Transposon-based mutagenesis screens, (2) knock-down screens 

using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression 

screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable 

in future genetic screens to delineate the mechanisms underlying drug resistance and to 

identify new treatments for HCC. 

 

Main Concepts and Learning Points 

 Genetic screens in animal models shed light on functional alterations in HCC 

 Advances in sequencing technology allow for increasingly complex screens  

 Liver genetic screens are revealing the heterogeneity of genetic alterations in HCC 

patients  

 Future work may apply genetic screening to discover new treatments for HCC 

  



HCC is a unique cancer that needs unique approaches to treatment 

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related 

mortality worldwide and is growing in incidence1,2. HCC is unique among cancers: a 

recent analysis of 17 human cancer types revealed substantial overlap in the gene 

expression patterns of all the cancers with the single exception of HCC3. This is consistent 

with the observation that several treatments, though effective against other cancers, have 

largely failed to improve outcomes for patients with HCC4. Therefore, the discovery of 

new treatments will depend on the development of models that accurately recapitulate 

HCC.  

Most cases of HCC arise in cirrhotic livers; hence it is not surprising that several 

major underlying risk factors are characterized by chronic liver injury. Worldwide, the most 

common etiologies are chronic hepatitis B or C infections. Though the prevalence of these 

infections is decreasing in many countries due to the availability of an effective vaccine 

and treatment, the incidence of Hepatitis C-associated HCC in the United States is still 

not falling due to a large number of ‘baby boomers’ who have been chronically infected 

for decades. Non-alcoholic fatty liver disease is also rising in incidence in Western 

countries and is likely to soon overtake Hepatitis C as the major cause of HCC in the 

United States5–7. Additional etiologies of HCC include biliary tract diseases and exposure 

to toxins such as alcohol.  

The advent of high throughput sequencing (HTS) technology has accelerated the 

identification of mutations and gene expression changes in cancers. The genomes of 

thousands of patients’ cancers have been sequenced to date, including hundreds of 

HCCs (a large collection of data is available publicly from the Cancer Genome Atlas at 



http://cancergenome.nih.gov/). These data have helped define the diverse genetic 

landscape of mutations and expression changes that occur in HCCs8–11. Nevertheless, 

additional complementary data are necessary to provide evidence of causation, i.e. that 

genetic changes induce tumor formation rather than occurring secondarily during the 

process of cancer development12.  

HCC is challenging to treat due to several factors including its genetic diversity, 

the underlying liver dysfunction in most patients, the difficulty in detecting early stage 

disease, and the lack of effective treatments. Only 30% of patients with HCC are eligible 

for potentially curative interventions like liver transplantation at the time of diagnosis13. In 

general, classical chemo- and radiotherapies have either low efficacy or undesirable 

toxicity4,13. Only a single drug is approved in the United States to treat HCC as a first-line 

therapy: sorafenib, a multi-specific kinase inhibitor14,15. Sorafenib treatment has a 

marginal median survival benefit of just 2-3 months, and there are no good predictors of 

response16. In patients whose disease progresses during sorafenib treatment, second-

line options were recently approved. One is another multikinase inhibitor, regorafenib, 

which improves survival over placebo by just under three months17. The other second-

line option is Nivolumab, an immune-therapeutic with remarkable efficacy in a fraction of 

patients18–20. However, the search must continue for more broadly-effective therapies.  

The goal of this review is to provide an overview of how innovations in gene 

delivery and in genetic screening technology in mice can significantly expand our 

knowledge of the genes driving or modulating the development of HCC, which can be 

applied to discover new therapeutic targets. The main methods and most notable studies 

are summarized in Table 1. 



 

Genetic screens are a powerful method for annotating gene function 

 A genetic screen is an assay in which the genetic codes are mutated or gene 

expression is systematically perturbed in order to identify which changes result in a 

phenotype of interest21. Whole organism genetic screening has been employed frequently 

in the nematode Caenorhabditis elegans, in the fruit fly Drosophila melanogaster, in the 

zebrafish Danio rerio, and in mice (reviewed in 22). Internet resources for many model 

organisms, including wormbase.org, flybase.org, and ZFIN.org, catalog detailed 

information linking specific genetic changes to precise phenotypic manifestations. 

Screens have used a variety of methods to manipulate gene expression, including 

chemical mutagenesis, transposon insertional mutagenesis, RNA interference (RNAi), 

complementary DNA (cDNA) expression, and the prokaryotic clustered regularly 

interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) 

system. More recent efforts have combined genetic screens with chemical library screens 

to explore therapeutic potential or identify mechanisms responsible for drug efficacy22. 

While useful in identifying phenotypes in a whole organism, these types of studies do not 

easily translate to complex, tissue-specific human diseases such as HCC.  

 Genetic screens in cancer cells can provide mechanistic evidence linking genetic 

changes to the important phenotypes of tumor initiation, morphology, growth, or drug 

sensitivity or resistance. Specific functional insights, as compared to correlative genetic 

associations, better facilitate therapeutic development and selection.  

To efficiently identify cancer-driving genes, transposon mutagenesis, cDNA, RNAi, 

and CRISPR screens all heavily rely on high-throughput sequencing (HTS). For 



transposon mutagenesis, the molecular readout is the flanking genomic sequence, which 

precisely identifies the insertion site of the transposon. cDNA screens may use barcoding 

of plasmids to enable precise quantification of the proportion of plasmids before and after 

the screen23. RNAi and CRISPR screens depend on identifying and quantifying the RNA 

coding sequences. 

Data generated by genetic screens in mice can be integrated with the large 

collection of available human cancer databases to provide insights into the multiple 

alterations found in HCC. Such studies can significantly contribute to the identification of 

potential new drug targets and to the ability to predict which signals should be targeted in 

patients.  

 

Mouse models of HCC 

 While most strains of mice do not spontaneously develop HCC, liver cancer in mice 

can be induced through chemical stimulus, transplantation of tumor cells, or genetic 

alteration. Administration of the chemical diethylnitrosamine (DEN) causes DNA damage, 

which leads to the formation of tumors by proliferating hepatocytes harboring mutations. 

DEN does not induce tumorigenesis in adult mice unless it is combined with an additional 

toxin, such as carbon tetrachloride (CCl4), a hepatotoxin that triggers inflammation and 

fibrosis. Chemical stimulus is also frequently used in combination with genetically 

engineered mouse models (GEMMs) of HCC. 

A number of GEMMs have been generated to study tumorigenesis in the liver. Due 

to the numerous etiologies contributing to hepatocellular carcinogenesis, no single GEMM 

is capable of completely recapitulating the disease. However, by reproducing genetic 



alterations that are common in HCC (Figure 1A), such as by inactivating tumor 

suppressors, including transformation related protein 53 (Trp53) and adenomatous 

polyposis coli (Apc), or ectopically expressing oncogenes, including Myc and catenin beta 

1 (Ctnnb1), in hepatocytes, transgenic mice develop tumors that mimic features of the 

disease (reviewed in 24–27). 

The use of GEMMs for combinatorial studies has led to the discovery of important 

genetic synergisms, such as concomitant MYC and transforming growth factor  (TGF) 

overexpression, which accelerates liver carcinogenesis28. A GEMM with temporally 

controlled oncogene expression was used to demonstrate that activated MYC drives the 

development of HCC and that MYC-driven tumors involute when MYC expression is 

removed29. Several mouse models carrying alterations of receptor tyrosine kinase (RTK) 

signaling components recapitulate alterations frequently observed in HCC patient 

subgroups, including transcriptional, epigenetic, and signaling modifications. Recently, a 

unique genetic system found that mice with slightly enhanced wild-type MET expression 

(Alb-R26Met mice) spontaneously develop HCC, illustrating a striking vulnerability of the 

liver to subtly increased RTK levels30.  

The downside of the GEMM approach is that models can take months to develop 

and often require complicated breeding schemes in order to examine gene-gene 

interactions in cancer development. Furthermore, the expression of oncogenes may not 

be restricted to the adult stage of development, as the promoters – most commonly alpha-

fetoprotein (AFP) or albumin (Alb) – may be active during early liver development, unless 

expression is controlled with inducible systems such as tTA/TRE or Cre-LoxP (Figure 



1A). Thus, while transgenic mouse models are useful in studying liver cancer, several 

technical challenges must be taken into consideration prior to implementation.  

A powerful method for transgene delivery to the mouse liver is the hydrodynamic 

tail vein injection (HTVI) technique (Figure 1B)31–34. HTVI introduces DNA sequences 

into the nuclei of up to 40% of hepatocytes upon the injection of a large volume of the 

DNA in saline or lactated ringer’s solution (a 1:10 ratio of volume to mouse mass) into the 

tail vein of mice. The solution is delivered rapidly, in fewer than 10 seconds, which is 

believed to cause a transient right-sided venous congestion that engorges and floods the 

liver with fluid and mechanically disrupts cell membranes35–39. The technique is highly 

specific to hepatocytes, with little expression in other cell types of the liver or in other 

organs. When the HTVI technique is used to inject plasmids encoding transposon 

systems such as Sleeping Beauty (SB)37,40,41, piggyBac (PB)42, or Tol243, the transposon 

sequences and the “cargo” – i.e. the genes of interest – are integrated into the hepatocyte 

genome, which enables stable expression for the life of the cell. This achieves stable 

integration in 0.1% to 2% of all hepatocytes with SB37,44. In an adult mouse there are 

roughly 108 hepatocytes; therefore, HTVI of transposons could in theory examine more 

than 106 independent clonal events in a single mouse45. 

 In previous studies of liver cancer, HTVI was used to transfect hepatocytes in vivo 

in order to assess the effects of specific changes in gene expression on tumorigenesis. 

For example, in one study, wild type mice underwent HTVI with an SB-overexpression 

plasmid encoding activated thymoma viral proto-oncogene 1 (Akt), which was stably 

integrated into the hepatocyte genomic DNA46. The upregulation of AKT induced 

increased lipogenesis and hepatocarcinogenesis. A subsequent study in which an SB-



overexpression plasmid encoding the intracellular domain of the NOTCH1 receptor was 

coinjected with the AKT overexpression plasmid showed that intrahepatic 

cholangiocarcinomas arise from mature hepatocytes that have undergone malignant 

transformation and not from biliary epithelial or liver progenitor cells47. These studies 

discovered mechanisms of HCC tumorigenesis and pointed toward new target genes for 

the development of new therapies. Thus, HTVI is a powerful alternative to generating 

genetically modified animals in order to study the role of hepatocytes in liver cancer. 

In combination with HTVI, a useful tool for performing high throughput genetic 

screens in the mouse liver is the murine genetic model of hereditary tyrosinemia type 1 

(HT-1)48. Humans with HT-1 have mutations in the gene encoding fumarylacetoacetate 

hydrolase (FAH), an enzyme required for proper tyrosine metabolism. Lack of FAH 

activity results in severe liver injury from the accumulation of the toxic metabolite 

fumarylacetoacetate (FAA) in hepatocytes. The drug nitisinone (chemical name 2-(2-

nitro-4-(trifluoromethyl)benzoyl)cyclohexane-1,3-dione, or NTBC) restores healthy liver 

function in HT-1 patients by inhibiting an upstream enzyme in tyrosine catabolism and 

preventing the formation of FAA49. 

In the Fah-/- mouse, liver toxicity can be alleviated by the stable genomic integration 

of a transgene encoding the functional FAH enzyme32,44. Transposons expressing Fah 

are delivered by HTVI to Fah-/- mice that have been continuously administered nitisinone, 

which is then withdrawn to induce liver injury and create a selective environment for any 

Fah-corrected hepatocytes to repopulate the liver. Although the initial integration of the 

Fah transgene by SB transposase is estimated to occur in approximately 0.1-2% of 

hepatocytes, these FAH-positive cells are able to expand and restore liver function 



without tumor formation44. The rescue of Fah-null hepatocytes by functional FAH 

expression has been leveraged to perform genetic screens by linking a functional copy of 

Fah to libraries of cDNAs, short hairpin RNAs (shRNAs), or guide RNAs (gRNAs) in order 

to study their effects on liver repopulation and cancer41,50,51.  

 

Transposon-based mutagenesis 

Several forward genetic screens aimed at identifying HCC drivers have been 

performed via the mobilization of mutagenic transposons by the SB transposase (Figure 

2). SB excises transposon DNA that is flanked by inverted repeat/direct repeat sequences 

and reintegrates the transposon at random TA target dinucleotides52. The system is well-

suited for insertional mutagenesis screens in mice using engineered transposon DNA 

cassettes, as the transposase is highly active in mammalian cells.  

Three different iterations of the SB mutagenic transposon have been engineered, 

T2/Onc, T2/Onc2, and T2/Onc3, all of which are capable of inducing both gain- and loss-

of-function mutations depending on the orientation of their insertion relative to coding 

sequence. These transposons all comprise the following elements: (a) a strong promoter 

and enhancer followed by a splice donor site, (b) a splice acceptor site joined to a 

polyadenylation signal positioned upstream of the promoter/enhancer in the sense 

orientation, and (c) a second splice acceptor site joined to a polyadenylation signal, which 

is positioned downstream of the promoter/enhancer in the antisense orientation (Figure 

2). Integration of a transposon cassette in the sense orientation can drive overexpression 

of downstream coding sequence, while its insertion in either orientation downstream of 

coding sequence truncates the transcript. By altering the gene sequence, the transposon 



mutagenesis system can uncover genomic mutations that lead to oncogenic 

transformation, a unique advantage over RNAi or cDNA screens, which instead aim to 

modulate expression levels of endogenous genes. 

Thousands of disruptive transposition events can occur in a tissue expressing the 

SB transposase as a consequence of multiple transposon mobilizations from the parent 

transposon concatemer53–55. Sites where transposons integrate more often than would 

be expected by chance in independent tumors are termed common insertion sites (CISs). 

Potential drivers of tumorigenesis are identified based on increased frequency of CISs in 

tumors, which is indicative of selection for a tumorigenic event. 

The first version of the SB mutagenesis screen used the SB/T2Onc transposon in 

a p19Arf-deficient (Arf-/-) mouse strain that ubiquitously expresses the SB transposase 

(SB10). The majority of mice formed tumors, mostly sarcomas, by 6 months of age. The 

most common CIS identified was in the ninth intron of Braf, an alteration predicted to 

produce a constitutively activated form of this known oncogene. This result demonstrated 

that SB insertional mutagenesis can identify disease-causing mutations that synergize 

with common mutations in cancer models53. 

Subsequent refinements made to the SB-T2/Onc system have improved its ability 

to promote tumorigenesis. The second-generation mutagenic transposon (T2/Onc2) 

included a larger splice acceptor and optimized SB transposase binding sites, along with 

an improved SB allele (SB11). T2/Onc2;SB11 mice showed insertional mutations at the 

embryonic stage, exhibited high prenatal lethality, and spontaneously developed up to 

three separate, metachronous tumors by 17 weeks of age, the most common of which 

were T-cell lymphomas54. However, when investigating epithelial-derived tumors, this 



high frequency of lymphomas is undesirable. To increase the frequency of carcinomas, 

the chicken β-actin (CAG) promoter, which is highly active in epithelial cells, was 

introduced in the T2/Onc3 system55. This change increased the frequency of tissue-

specific carcinomas, including HCC. More recently, the Rosa26-lsl-SB11 mouse was 

developed to enable spatial and temporal activation of SB11 allele using Cre recombinase 

enzyme56. 

To identify mutations that synergize with loss of function of tumor protein 53 (TP53; 

ortholog of mouse Trp53), which is often mutated in human HCCs, insertions of T2/Onc 

were screened in mice expressing a dominant negative Trp53 specifically in the liver56. 

Similar to what was seen in the Arf-/- genetic background, mice expressing mutant Trp53 

together with the transposon/transposase displayed a significantly increased tumor 

burden compared to mice expressing mutant Trp53 alone. Importantly, as is observed in 

human HCC, there was a strong sex bias toward male mice, which showed greater tumor 

incidence and decreased latency. Epidermal growth factor receptor (Egfr) had the highest 

number of insertions, most of which truncated the transcript and resulted in increased 

kinase activity of the translated protein56. HCC tumors in males displayed higher rates of 

chromosome 7 polysomy (the locus encoding EGFR) and higher EGFR mRNA levels 

compared to females, suggesting elevated susceptibility to EGFR-driven HCC in male 

patients57. As both p53 and EGFR are linked to human HCC, these results are noteworthy 

and suggest that simultaneous dysregulation of these genes can promote HCC in a sex-

specific manner. 

 Transposon insertional mutagenesis has also been used to examine epithelial-

mesenchymal transition (EMT), which is thought to play a prominent role in HCC 



metastasis and resistance to cancer drugs like sorafenib58. Kodama et al. generated 

immortalized hepatoblast cell lines from fetal liver cells harvested from mice with liver-

specific transposase activation. When injected into the flanks of immunodeficient mice, 

these cells produced tumors that coexpressed epithelial and mesenchymal markers, 

including Epcam and vimentin, respectively, despite their epithelial origin. The authors 

examined CIS-associated genes from the tumors using KEGG pathway analysis and 

identified the involvement of pathways already known to be involved in EMT, supporting 

the accuracy of their model. Unexpectedly, however, the most highly enriched pathway 

was ubiquitin-mediated proteolysis, which was not previously associated with EMT. The 

authors went on to confirm that this pathway is involved in EMT using in vitro assays, and 

showed that inactivation of the HUWE1, KDM6A, and PTPN12 tumor suppressors led to 

the EMT phenotype of sorafenib resistance. Thus, the use of an insertional mutagenesis 

screen led to the identification of candidate genes driving EMT in human HCC58. 

 Although clinically relevant discoveries have been made through SB transposon 

insertional mutagenesis, the system has several drawbacks. One disadvantage is the 

long latency to tumor development, which can take well over 100 days53,57,59. Additionally, 

the system requires that engineered mice express the mutagenic transposon, the 

transposase, and a liver-specific Cre recombinase for the system to be functional. 

Performing these screens on a cancer-predisposed genetic background adds another 

layer of complexity. Furthermore, in order to obtain sufficient statistical power, large 

cohorts of mice must be used. For example, a screen by Collier et al. utilized 64 

T2/Onc;SB10;Arf-/- animals53. Given the complicated mating schemes required for such 



experiments, obtaining sufficient animals of the correct genotype requires significant effort 

and time. 

Another issue to consider while implementing insertional mutagenesis screens is 

the “local hopping” phenomenon in which transposition is more likely to occur near the 

locus of the parent concatemer (the series of multiple plasmids inserted into a genomic 

locus), than would be expected by chance. Insertions that occur on the same 

chromosome as the parent transposon concatemer must be excluded in downstream 

analysis of CIS loci to reduce false-positive CISs, except when supported by another 

transposon line in which the concatemer is located on a different chromosome. The 

exclusion of a chromosome from analysis imposes limits on the ability to fully exploit the 

findings of a screen. For example, in a study using SB and T2/Onc2 to identify drivers of 

liver tumorigenesis in the context of HBV surface antigen (HBsAg) expression, CISs 

identified in chromosome 1 were filtered from the results to account for local hopping60. 

Thus, a large number of genes on chromosome 1, a gene-rich chromosome harboring 

the orthologs of numerous known human cancer genes, could not be assessed. 

Therefore, a follow-up screen was performed in HBsAg mice in which the transposons 

were mobilized from a transposon concatemer located on chromosome 961. As an 

alternative to SB, the PB transposon system has less local hopping and may be an 

improved insertional mutagenesis transposon system, but it has not yet been 

characterized in HCC models62. 

Collectively, these studies using SB to study HCC have shown that the 

identification of candidate cancer genes is dependent on the components and genetic 

background used in the screen. A comprehensive comparison of the genes identified by 



several SB HCC screens found dissimilarities in sample number, genetic background, SB 

transposon version, sequencing, and bioinformatics methodologies63. Despite these 

limitations, eight candidate genes were identified as significantly enriched for transposon 

insertions in at least five of the eight SB-induced HCC models examined63. Human 

homologs of three of the genes, staphylococcal nuclease and tudor domain containing 1 

(Snd1), StAR-related lipid transfer (START) domain containing 13 (Stard13; also known 

as deleted in liver cancer 2), and thyroid hormone receptor interactor 12 (Trip12), have 

already been implicated in HCC64–66. Two other candidate genes, dihydropyrimidine 

dehydrogenase (Dpyd) and glycogen synthase kinase 3 beta (Gsk3b) may mediate tumor 

chemoresistance67,68. While the relevance of these eight genes to HCC is not yet entirely 

clear, the regularity with which they are associated with CISs, as well as previous studies 

linking many to cancer, strongly supports their involvement in the disease. Future studies 

will be needed to identify cooperative interactions, genetic context dependence, and 

strengths of these candidate genes as drivers of HCC. Mapping of cooperative 

interactions has been described in mouse models of lung adenocarcinoma69, in which a 

variety of tumor-predisposing GEMMs were used for CRISPR-based tumor suppressor 

inactivation screens in the lung to interrogate gene-gene interactions.  

 

RNAi screening 

 Rather than disrupting gene expression at the DNA level, RNA interference (RNAi) 

knocks down expression of specific genes by targeting degradation of their transcripts 

(Figures 1B and 3A). In an RNAi screen, mRNAs are targeted for degradation by RISC 

by base pairing with the processed products of shRNAs expressed from a vector library 



or small interfering RNAs (siRNAs) transfected as a pool into cells70. This method has 

been used in numerous large genetic screens in cancer cell lines to identify tumor 

suppressor genes and genes that confer resistance to drug treatment (reviewed in 71). 

RNAi screens have been performed in vivo to study liver cancer as well. Zender et 

al. tested the hypothesis that tumor suppressor genes are likely to reside in chromosomal 

regions that are deleted in HCC72. They first analyzed DNA copy number variations in 

100 human HCCs that resulted from different etiologies, then identified the mouse 

orthologs of the genes of interest in deleted regions. Candidate genes were targeted 

using mir30-based shRNA sequences. Pools of Retroviruses expressing shRNAs were 

used to infect Trp53-/- embryonic hepatocytes overexpressing MYC, which were then 

injected intrasplenically into mice to generate a “mosaic” liver. The tumor lesions resulting 

in these animals were collected in order to identify the shRNAs through sequencing. The 

most highly enriched shRNA targeted was exportin 4 (Xpo4), which follow-up studies in 

human HCC cell lines and tissues have confirmed functions as a tumor suppressor73,74. 

Xpo4 encodes exportin 4, which is required for the nuclear export of the signal 

transduction molecule SMAD3, a mediator of TGF- signaling75. Thus, this report 

demonstrated the utility of RNAi screens in identifying bona fide tumor suppressor genes. 

A separate investigation used the same shRNA library to identify gene targets that 

could increase the regenerative capacity of hepatocytes in the Fah-/- mouse model50. The 

shRNAs were subcloned into Fah-SB transposon plasmids. To further model chronic liver 

damage beyond the induction of tyrosinemia, following repopulation, the Fah-/- mice were 

treated for six weeks with CCl4. Hairpins targeting mitogen-activated protein kinase 

kinase 4 (Mkk4; also called Map2k4) became enriched several thousand-fold during both 



repopulation and CCl4 treatment. Furthermore, the hepatocytes of mice that were injected 

with an Mkk4-shRNA transposon and then underwent partial hepatectomy (PH) re-

entered the cell cycle more quickly than those that were injected with a noncoding shRNA 

transposon. Hepatocytes that expressed Mkk4-shRNA were also more resistant to 

induced apoptosis, had an increased proliferation rate, and an increased survival rate in 

vitro, after which they could repopulate the mouse liver. Notably, Mkk4-shRNA-

expressing mice did not develop Mkk4-shRNA-expressing tumors, even after a year50, 

illustrating how, in some genetic contexts, knockdown of a tumor suppressor can improve 

liver regeneration without causing cancer. 

In contrast to these studies examining genes that are deleted in HCC, Rudalska et 

al. targeted genes that undergo amplifications76. In an in vivo RNAi screen, HCC-

susceptible Arf-/- mice underwent HTVI with a plasmid expressing SB transposase and a 

transposon vector expressing oncogenic neuroblastoma ras oncogene (NrasG12V) plus a 

library of shRNAs against the genes of interest in order to uncover a possible mechanism 

leading to sorafenib resistance. Half of the mice receiving shRNA libraries were treated 

with sorafenib, while the other half were treated with vehicle. Notably, two mitogen-

activated protein kinase 14 (Mapk14) shRNAs were depleted over 100-fold in sorafenib-

treated livers, suggesting that Mapk14 expression promotes tumor growth and sorafenib 

resistance. Encouragingly, Arf-/- mice with tumor growth triggered by NrasG12V that were 

treated with a combination of sorafenib and the MAPK14 inhibitor BIRB796 had a lower 

tumor burden and longer survival than mice treated by sorafenib alone. Together, this 

suggests that sorafenib does not completely inhibit kinase signaling in rodent models and 

that the addition of a second kinase inhibitor is a potential strategy to treat HCC76. 



 RNAi screening has led to a better understanding of HCC mechanisms and 

possible treatments, but like insertional mutagenesis, it has limitations that must be 

considered. In particular, RNAi activation in vivo has the potential to overwhelm the 

endogenous RNAi machinery, leading to interference with normal microRNA processing 

that may be critical for hepatocyte function, causing severe hepatotoxicity77–79. 

Furthermore, there may be off-target effects from binding of shRNAs to similar target 

sequences. Therefore, all of the most promising hits from these screens must undergo 

extensive validation, such as with additional specific shRNAs80. A potential advantage of 

RNAi is that it could potentially translate to a direct therapeutic in the form of siRNAs that 

are targeted to genes in the liver (reviewed in 81). 

 

CRISPR-based screening 

Due to its ease of use, specificity, and scalability, the CRISPR/Cas9 system is now 

widely used for gene editing and to modulate endogenous gene expression in cancer 

studies, including studies on tumor initiation and progression in mice (Figure 3B).  

The CRISPR/Cas9 system was adapted from bacteria for genome and epigenome 

editing in eukaryotes (reviewed in depth in 82 and 83) and in genome-wide screens, 

particularly in cancer (reviewed in 84 and 85). Briefly, wild type Cas9 is an RNA-guided 

DNA endonuclease that forms a complex with a gRNA molecule, which then targets the 

complex to a complementary DNA sequence where it cleaves both strands of DNA. This 

system been adapted to target the induction of double strand breaks (DSBs) in order to 

precisely edit the genome by homology-directed repair, or to mutate the genome by 

insertion or deletions of local nucleotides (indels) introduced by non-homologous end 



joining82. A catalytically dead Cas9 (dCas9), which cannot cleave DNA, can be used to 

target genomic loci for activation (known as CRISPR activation, or CRISPRa) or for 

inhibition (known as CRISPR inhibition or CRISPRi). 

CRISPR screens performed in vitro are capable of identifying mediators of cell 

viability and potential drug targets in HCC. For example, a recent screen used the human 

genome-scale CRISPR knockout library version 2 (GeCKO v2), which comprises gRNAs 

targeting 19,050 genes, to perform a loss-of-function screen in human HCC-derived Huh7 

cells being treated with sorafenib86. Among cells that were resistant to sorafenib 

treatment, gRNAs targeting shugoshin 1 (SGOL1) were the most enriched, suggesting 

that expression of this gene is necessary for sorafenib to induce cell death. Intriguingly, 

the authors found that high SGOL1 expression in HCCs predicts worse survival. Future 

studies will need to examine whether patients with high SGOL1 are more likely to respond 

to sorafenib. Another recent screen used the HCC cell lines Hep3B and Huh7 and 

transduced them with a lentiviral gRNA library targeting the full complement of human 

kinases87. gRNAs targeting cyclin-dependent kinase 7 (CDK7) were significantly depleted 

in both cell lines, suggesting that this gene is essential for HCC cell survival. Consistent 

with these results, CDK7 is upregulated in human HCC, and the expression correlates 

with worse survival. Importantly, HCC cell lines and mouse HCC xenografts were 

sensitive to a CDK7 inhibitor as long as MYC was upregulated in these cells, which is 

consistent with previous studies of CDK7 inhibitors and MYC-driven cancer88–90. Thus, 

these studies highlight the power of in vitro screens to identify promising therapeutic 

targets, but the results must be validated by comparison to human data, such as datasets 

from TCGA, in order to determine their clinical relevance. 



A number of very large genetic screens using CRISPR have been performed in ex 

vivo transduced cancer cell lines, derived from leukemia, melanoma, intestine and lung, 

which could be xenografted into recipient mice to examine genes associated with 

phenotypes such as metastasis91–94. In these cases, the cell lines undergo a drug 

selection step to ensure that the gRNAs are linked to the resultant tumors, which can be 

easily sequenced and used as a surrogate for the genetic changes that become enriched 

in resultant tumors. The disadvantage of this approach is that these screens cannot 

examine tumor initiation, as the cells have already been transformed. 

An ex vivo knockout screen was performed by Song et al. using cancer 

predisposed Trp53-/- mouse embryonic liver progenitor cells expressing oncogenic MYC 

and Cas995. The cells were stably transduced with the mGeCKOa lentiviral library 

expressing gRNAs targeting 20,611 mouse genes and transplanted subcutaneously into 

nude mice. The relative enrichment of gRNAs in the resultant tumors was measured by 

high throughput sequencing of pre- and post-implantation cells, revealing significant 

enrichment of all three gRNAs for only one target, neurofibromin 1 (Nf1). Mutations in 

NF1 cause neurofibromatosis and have been reported in cholangiocarcinoma. To validate 

the function of Nf1 as a tumor suppressor in hepatocytes, the authors examined human 

HCC data and identified point mutations in NF1. Accelerated tumorigenesis in mice 

injected with plasmids encoding Myc, Cas9, and Nf1-gRNA in multiple tumor-predisposed 

genetic backgrounds further validated the tumor suppressor function of Nf1. Notably, 

HCC patients with low NF1 mRNA levels also had shorter survival times than those with 

high NF1 mRNA levels. Despite the clinical relevance of this discovery, tumor initiation 



may be influenced by the liver microenvironment. Thus, in vivo screens with the same 

lentiviral library may result in enrichment of gRNAs against a different set of targets95. 

In vivo modeling of oncogenesis using CRISPR systems has developed rapidly 

over the past few years. In a few of the first studies, mice were shown to develop lung 

cancer after intra-tracheal injection of viruses delivering CRISPR/Cas9 components that 

targeted a variety of tumor suppressor genes, caused chromosomal translocation, or 

activated Kirsten rat sarcoma viral oncogene homolog (Kras) via homology directed repair 

to a mutant form96–98. 

In the liver, HTVI of CRISPR plasmids targeting mutations in Trp53 and phosphate 

and tensin homolog (Pten) led to the development of liver tumors by 3 months99. The liver 

tumors had bile duct features that were similar to tumors that develop in mouse models 

of ablation of these two genes. CRISPR/Cas9 was also used to generate activated -

catenin, one of the most common features of HCC, by HTVI of plasmids providing Cas9, 

a gRNA targeting the -catenin gene, Ctnnb1, and a repair cassette to insert four 

activating point mutations into the gene via homology-directed repair. After injection, 

nuclear -catenin, a marker of activation, was detected in a number of hepatocytes, 

demonstrating the ability of CRISPR systems to model HCC99. 

The first true in vivo multiplexed CRISPR/Cas9 screen was performed by HTVI of 

plasmids into cancer predisposed KrasG12D mice100. The plasmids consisted of SB 

transposase and transposons containing a Cas9 expression cassette plus gRNAs 

targeting up to 18 different putative liver cancer genes. The mice developed multiple 

tumors by 20-30 weeks of age. Similarly, wild type mice injected with the Cas9-gRNA 

library and treated with CCl4 developed multiple tumors. Interestingly, the transposon 



sequences were found to be integrated in the genomic DNA of only 5% of tumors, 

indicating that transient gRNA expression could lead to tumor formation. Therefore, rather 

than determining the enrichment of the gRNA sequences in each tumor, the target sites 

were instead examined for indels. Numerous indels were found in each tumor, with 

significant enrichment of mutations at Pten and tet methylcytosine dioxygenase 2 (Tet2) 

loci, which was correlated with a cholangiocarcinoma-type tumor phenotype. Sequencing 

also showed that Cas9-induced large intrachromosomal deletions between gRNA target 

sites. Thus, this was the first demonstration that CRISPR/Cas9 could be used for a 

multiplexed screen in vivo to induce specific genetic mutations, and to correlate the 

genetic changes with the tumor phenotype. Importantly, however, the study highlighted 

the challenges to scaling up, as even transient gRNA expression could lead to dramatic 

changes to the genome. Use of larger gRNA libraries with wild type Cas9 would potentially 

require whole exome sequencing of tumors to characterize all of the target site changes, 

which is costly and labor-intensive.  

A large, fully in vivo loss-of-function CRISPR screen in HCC was performed by Xu 

et al. more recently101. They built a PB transposon library using the GeCKOv2 genome-

scale mouse CRISPR/Cas9 knockout library containing over 130,000 gRNAs targeting all 

mouse protein coding genes and miRNAs, which was delivered by HTVI to recipient mice 

together with vectors expressing cyclin dependent kinase inhibitor 2A (Cdkn2a)-gRNA 

and NrasG12V to accelerate tumorigenesis. This resulted in the development of tumors in 

9 out of 27 mice at 45 weeks. The gRNAs linked to tumors were identified by sequencing, 

revealing that 271 gRNAs were present in tumor genomic DNA, including 26 gRNAs 

targeting 21 known tumor suppressor genes. In support of the efficacy of this technique, 



two gRNAs targeted the well characterized tumor suppressor Trp53. Unexpectedly, 

Cdkn2b, which was not previously recognized as having a role in liver cancer, was 

targeted by three gRNAs. Mutations in the target region of Cdkn2b, as well as the 

development of tumors in mice injected with Cdkn2b-gRNA in the absence of a sensitizing 

background, confirmed that Cdkn2b functions as a tumor suppressor gene in the mouse 

liver. The identification of a new tumor suppressor gene supports the potential for 

CRISPR/Cas9 to be used for large-scale screens in vivo to identify drivers of liver 

cancer102. What was not clear in this manuscript was whether, similar to what was seen 

in the first in vivo multiplexed CRISPR/Cas9 screen103, substantial genetic changes from 

gRNA-mediated chromosomal cleavages were missed because of transient gRNA 

expression102.  

With a similar aim of targeting multiple tumor suppressors throughout the liver to 

study HCC, Wang et al. developed a CRISPR system that used pools of adeno-

associated viruses (AAVs)104. AAV virus is highly effective at infecting hepatocytes, 

approaching expression in 100% hepatocytes for certain serotypes105,106. As it only rarely 

integrates sequences into the genome, expression with AAV is transient. In the Wang 

study, each AAV was designed to express Cre, a gRNA targeting Trp53, and a gRNA 

targeting one of 49 putative tumor suppressor genes or 7 housekeeping control genes, 

with 4-5 gRNAs for each target104.  The authors injected the AAV library into lox-stop-lox-

Cas9 mice, which developed multiple large liver tumor nodules within four months. 

Because gRNA sequences likely had dissipated, the target genomic sites were examined 

to discover which mutations were linked to the tumors. The authors used an approach 

called molecular inversion probe (MIP) capture sequencing107 to assess for mutations in 



the ±70–base pair regions surrounding the predicted cut site for each of the gRNAs in 

their library. Analysis of co-occurring mutations revealed that beta-2 microglobulin 

(B2m) and KAT8 regulatory NSL complex subunit 1 (Kansl1) mutations were often found 

together. Notably, individually targeting B2m or Kansl1 using AAV-CRISPR did not 

induce tumorigenesis, while targeting both together accelerated tumorigenesis, validating 

their approach for the identification of gene-gene interactions that drive HCC. The 

drawbacks of this approach are that many mutations – such as those secondary to Trp53 

knockout or due to large chromosomal deletions or off target effects – may be missed by 

this technique. Indeed, the causative mutations were undetectable by MIP capture 

sequencing in a number of the tumors analyzed in this study. Furthermore, scale up to 

include hundreds or thousands of genes may not be feasible with this methodology.   

Instead of inducing permanent alterations in the genome with CRISPR/Cas9 to 

induce loss of function, or overexpressing cDNAs to assess gain of function, expression 

of specific genes can either be repressed (CRISPRi) or activated (CRISPRa) through 

systems employing dCas982,84 (Figure 3B). CRISPRi, which comprises dCas9 and 

gRNAs complementary to the target gene promoters, represses transcription either by 

steric inhibition of the transcriptional machinery by dCas9 alone or through fusion of 

dCas9 to the Kruppel-associated box (KRAB) transcriptional repressor82. Conversely, in 

the CRISPRa system, a transcriptional activator (TA) is either tethered to the dCas9 or 

recruited to minimal hairpin aptamers appended to the to the stem loop regions of the 

gRNA. CRISPRa induces the expression of the endogenous gene, which circumvents 

limitations of cDNA overexpression screens such as difficulty in building comprehensive 

libraries due to the variability in length of the cDNA sequences, and in capturing all of the 



gene isoforms82,108–110.  

The “first-generation” CRISPRa system consists of the TA VP64, derived from four 

tandem copies of the Herpes Simplex Viral Protein 16 (VP16), fused directly to the C 

terminus of dCas9. Subsequent refined versions are referred to as “second-generation” 

activators111. Two significant “second-generation” activators are the SunTag system and 

synergistic activation mediator (SAM). The SunTag version is composed of dCas9 fused 

to a multimer of short peptide epitopes that binds multiple copies of its cognate single-

chain variable fragment (scFv) domain, which is fused to VP64112. SAM harnesses the 

synergistic effects of multiple activation domains: VP64 is tethered to dCas9, while NF-

kB trans-activating subunit p65 and human heat shock factor 1 (HSF1) are bound to MS2, 

a bacteriophage coat protein that selectively binds the hairpin aptamers that are 

appended to the gRNA scaffold109. Both SAM and SunTag produce robust transcriptional 

activation from a single gRNA, making them practical for multiplexed, genome-wide gain-

of-function screens111.  

In order to streamline the CRISPRa system for use in in vivo screens targeted to 

specific tissues, including hepatocytes, we derived mice encoding a nuclease-deficient 

dCas9 allele fused to the ‘SunTag’ domain at the Rosa26 locus, termed dCas9+, with an 

upstream floxed stop cassette45. We then crossed them to Fah-/- mice and activated 

dCas9 expression specifically in hepatocytes by injecting AAV-Cre. Using SB transposon 

vectors, we generated a library of plasmids containing the TA scFv-VP64, an Fah 

expression cassette, and gRNAs targeting the promoters of Myc, tumor necrosis factor 

superfamily member 1a (Tnfrsf1a), solute carrier family 7 member 11 (Slc7a11), and 

Trp53, which we intravenously injected into the Fah-/-;dCas9+ mice. Nodules of MYC-



expressing, FAH-positive hepatocytes were found in Fah-/-;dCas9+ livers, indicating a 

robust and specific activation of expression of the endogenous gene. Myc gRNA 

sequences were highly significantly enriched in tumors, while Trp53 and Tnfrsf1a gRNAs 

were significantly depleted. Thus, the in vivo dCas9 system activated the Myc locus in 

hepatocytes and accelerated repopulation by these cells. The potent activation of MYC 

expression by CRISPRa strongly supports the potential for this system to be expanded 

to perform large scale screens of sets of genes belonging to a specific pathway 

simultaneously in vivo45. Furthermore, the dCas9+ mouse can be crossed to GEMMs of 

HCC, such as the HBsAg transgenic mouse113, to identify context-specific drivers of 

tumorigenesis associated with the multitude of HCC risk factors, as well as potential drug 

targets and mediators of resistance to chemotherapeutics. 

 

General considerations with genetic screens 

The following are important considerations for genetic screening in general: 

1. Genetic screens must take into account statistical power and the rate of false 

discovery. In the case of transposon insertional mutagenesis, mutation events in 

a particular gene must be observed in independently a number of times114. For 

cDNA, CRISPR, and RNAi experiments, the results also need to be observed 

independently in multiple replicates. There is the additional consideration of the 

“coverage” of the sequencing. In producing a screening library, there is a natural 

distribution of the components of the screen, and the lowly represented 

components may be lost by chance115. The standard for CRISPR screening on a 

genome scale, which often includes 100,000 plasmids or more84,116, is to screen 



and sequence to a depth of greater than 100-fold of the median amount of the 

plasmid117,118.  

2. Off-target or non-specific effects also need to be considered. In the case of 

transposons, “local hopping” is overcome by excluding genes located on the same 

chromosome as the donor transposon from the analyses, or by using independent 

transgenic mice with transposon donors on different chromosomes. In the case of 

RNAi and CRISPR screening, multiple shRNA or gRNA sequences are typically 

designed to target the same gene, which helps ensure that the observed effect is 

specific80,118.  

3. Finally, positive hits from a screen should be further validated in isolation, ideally 

with multiple modalities such as gene deletion, temporal or conditional control, or 

drug targeting117. 

 

Future directions 

Techniques for performing high-throughput genetic screens of cancer candidate 

genes have evolved dramatically over the past decade, with new technology enabling an 

exponential growth in the number and types of genes that can be screened. Liver cancer 

screens will continue to evolve as we develop new strategies to more accurately model 

HCC, classify its subtypes, and determine the responses to specific drug treatments. 

Transposon mutagenesis studies on different cancer-predisposed backgrounds have 

demonstrated the power of a predisposing mutation to influence which specific mutations 

become enriched in tumors. SB transposon and RNAi screens have provided clues to the 

mechanisms of sorafenib resistance, and CRISPR screens will likely be powerful tools in 



future studies to examine drivers and tumor suppressors in the setting of different types 

of liver injury, as well as drug resistance and sensitivity patterns. Re-framing the concept 

of HCC as a group of diseases, based on discoveries from these previous studies, will 

increase the power of screens to identify the clusters of genes cooperatively driving HCC 

in subsets of patients, and the alterations in genes leading to sensitivity or resistance to 

specific treatments, enabling a personalized approach to HCC treatment with 

pharmaceuticals.  

Finally, the technologies that have been applied so far – HTVI of plasmids, 

transposable elements, RNAi, and various types of CRISPR – are likely to evolve and 

improve in the decades to come. For example, future screens may examine cooperation 

between technologies to discover how combinations of gene activators and gene 

inhibitors interact. They may also include screens of libraries of expressed peptides or 

RNA molecules, which could accelerate the development of drugs that significantly 

improve the survival of patients with HCC. 
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