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ABSTRACT
Using the HORIZON-AGN hydrodynamical simulation and self-organizing maps (SOMs), we
show how to compress the complex, high-dimensional data structure of a simulation into a
2D grid, which greatly facilitates the analysis of how galaxy observables are connected to
intrinsic properties. We first verify the tight correlation between the observed 0.3–5μm broad-
band colours of HORIZON-AGN galaxies and their high-resolution spectra. The correlation is
found to extend to physical properties such as redshift, stellar mass, and star formation rate
(SFR). This direct mapping from colour to physical parameter space still works after including
photometric uncertainties that mimic the COSMOS survey. We then label the SOM grid with
a simulated calibration sample to estimate redshift and SFR for COSMOS-like galaxies up to
z ∼ 3. In comparison to state-of-the-art techniques based on synthetic templates, our method
is comparable in performance but less biased at estimating redshifts, and significantly better
at predicting SFRs. In particular, our ‘data-driven’ approach, in contrast to model libraries,
intrinsically allows for the complexity of galaxy formation and can handle sample biases.
We advocate that observations to calibrate this method should be one of the goals of next-
generation galaxy surveys.

Key words: methods: data analysis – methods: statistical – galaxies: evolution – galaxies:
fundamental parameters.

1 IN T RO D U C T I O N

One of the most successful techniques to understand galaxy
formation is measuring galaxy properties in large-area surveys
and comparing the results with cosmological-scale simulations
based on theoretical models of galaxy formation. Typically, the
comparison is done in physical parameter space, so secure estimates
of redshift, luminosity (L), stellar mass (M), star formation rate
(SFR) must be obtained from observational data. These estimates
usually come from the analysis of the spectral energy distribution
(SED) or the high-resolution spectrum of galaxies, relying on the

� E-mail: iary.davidzon@nbi.ku.dk

correlation between specific wavelengths and physical properties:
for example H α emission and star formation (Kennicutt 1998)
or ∼2μm light and stellar mass (Madau, Pozzetti & Dickinson
1998). In the past two decades, the data from multiwavelength
photometry and spectroscopic surveys have become abundant, and
fitting galaxy templates to observed SED and spectra is now the
standard method to perform this analysis (among the pioneering
studies: Sawicki & Yee 1998; Bell & de Jong 2000; Gavazzi et al.
2002; Pérez-González et al. 2003; Fontana et al. 2004; Gallazzi et al.
2005). Galaxy parameters are usually derived from the maximum-
likelihood template (Bolzonella, Miralles & Pelló 2000) or from
the full probability distribution function (PDF) of the template set
(Benı́tez 2000). For quantities like stellar mass or star formation
history (SFH), templates are built from stellar population synthesis
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models (e.g. Bruzual & Charlot 2003; Maraston 2005; Conroy,
Gunn & White 2009).

The modelling process often introduces systematic effects that
have been shown to severely bias M and SFR estimates in some cases
(e.g. Mitchell et al. 2013; Mobasher et al. 2015; Laigle et al. 2019).
For instance, the synthetic templates are not guaranteed to have fully
realistic features: e.g. their SFH is often an analytically function (as
the τ - and inverted-τ models, see Maraston et al. 2010) that does not
include either multiple bursts or chemical enrichment. Discrepancy
between synthetic templates and real galaxies is also due to the
assumptions about their stellar population initial mass function
(IMF) and dust attenuation of their stellar light (e.g. Davidzon et al.
2013). Moreover, templates not always take into account nebular
emission lines, which may contaminate the observed broad-band
photometric colours. Finally, some galaxy types may not even be
included in the library (e.g. the old and dusty galaxies at z ∼ 2–3
discussed in Marchesini et al. 2010).

Beyond modelling problems, there are additional systematics
introduced by the fitting procedure. The relative abundance of a
given SED in the real universe is often not accounted in the synthetic
library: most of the fitting codes assume that all templates are
equally likely. Moreover, the SED-fitting (or spectral) algorithms
may not treat the template set in an optimal way, as they often rely
on computationally expensive brute-force approaches to explore
the entire library (see Speagle et al. 2016) or they may introduce
systematics when convolving templates with instrumental errors
(see Cappellari 2017). These uncertainties all propagate into the
commonly used statistical descriptors of a galaxy census, such
as the galaxy stellar mass function (Ilbert et al. 2013; Grazian
et al. 2015) and the specific SFR evolution of star-forming galaxies
(Santini et al. 2017; Davidzon et al. 2018). Ultimately, all of
these uncertainties combine to result in a biased view of galaxy
demographics, preventing a clear and straightforward comparison
between observations and simulations.

To make such a comparison more robust, significant effort has
been devoted to improving template fitting techniques. To date, sub-
stantial progress has been achieved in each step of the computation,
from the construction of galaxy models with more complex SFHs
(Pacifici et al. 2013) to improved radiative transfer modes including
the interstellar medium (da Cunha, Charlot & Elbaz 2008) and
sophisticated Bayesian fitting techniques (Chevallard & Charlot
2016; Leja et al. 2017).

In parallel to this ongoing effort, other authors have explored
alternate paths, replacing standard template fitting with new tech-
niques based on machine learning (ML). Besides implicitly account-
ing for biases, a key advantage of ML techniques is indeed their
speed, which enables analyses of extremely large data sets. Most of
the existing work aims at estimating redshifts (see Salvato, Ilbert &
Hoyle 2019, and references therein), with the exception of a few
publications where ML has been applied, e.g. to recover SFR (Delli
Veneri et al. 2019) and specific SFR (Stensbo-Smidt et al. 2017) of
z ∼ 0 galaxies from the Sloan Digital Sky Survey (SDSS). A wider
range of galaxy parameters (including stellar mass and metallicity)
is estimated in Simet et al. (2019). That study, complementary to
ours, uses a supervised neural network trained with a semi-analytic
model simulation.

In this work, we describe a novel technique based on unsupervised
ML combined with analytic data modelling, to simultaneously pro-
vide redshift and SFR estimates for galaxies across a large redshift
range (0 < z� 3, spanning about 12 Gyr of universe’s life). The ML
algorithm adopted here is the self-organizing map (SOM; Kohonen
1981), which is an unsupervised manifold learning algorithm

used to analyse high-dimensional data (see also Kohonen 2001).
Initially popular in engineering research, it soon circulated to many
other fields including Astrophysics. Seminal work has used the
SOM mainly to classify astronomical objects and their properties,
including stellar populations (Hernandez-Pajares & Floris 1994),
star versus galaxy separation (Maehoenen & Hakala 1995; Miller &
Coe 1996), and morphological types (Molinari & Smareglia 1998).
Since it does not require the manifold to have physical meaning,
the SOM has also been used to classify astronomical publications
(Poincot, Lesteven & Murtagh 1998). More recently, the SOM has
been applied to calibrating redshifts for weak lensing cosmology
(Masters et al. 2015). Other recent studies using the SOM will be
mentioned throughout this work.

As other ML methods, the SOM starts with a training phase.
However, unlike supervised methods, the goal of the training is
to create a compressed, lower dimensional representation of the
data rather than estimate an output. In this work, we first perform
the training on galaxy colours drawn from the HORIZON-AGN
simulation. We then label the SOM with galaxy properties not
learned during the training phase. These labels can be drawn from
a data model based either on simulations or, as suggested later,
bona fide galaxies observed as reference for calibration. Since
the mapping from the data to the labels is explicit and analytic,
control over selection functions, sample biases, and the effects of
observational noise is retained (unlike supervised ML where these
factors are part of the learning scheme).

In this paper, we focus on galaxy SFR estimates because
they are fundamental to constraining galaxy evolution (Madau &
Dickinson 2014) along with stellar mass measurements. However,
compared to the latter, the SFR estimates from template fitting
are much more uncertain: previous work (e.g. Laigle et al. 2019)
shows that SFR is more sensitive than stellar mass to SED-fitting
assumptions. This sensitivity is inherent to relying on the ultraviolet
(UV) continuum as a star formation indicator because it is highly
attenuated by dust, geometry dependent, and also sensitive on
the details of SFH. Other techniques offer better performance
by using either far-infrared (FIR) data (≥24μm, Le Floc’h et al.
2009; da Cunha et al. 2008) or spectroscopic follow-up (Kennicutt
1998; Kewley, Geller & Jansen 2004), which is expensive and
impractical to obtain for every galaxy. Therefore, we focus this
study on estimating SFR from the rest-frame UV to near-IR (NIR)
photometry, leaving the details of other physical properties to future
work.

To test and develop our ML method, we use a mock galaxy
catalogue of ∼8 × 105 objects extracted from the cosmological
hydrodynamical simulation HORIZON-AGN (Dubois et al. 2014); the
mock catalogue was presented in Laigle et al. (2019, hereafter Paper
I) as the first milestone of the HORIZON-AGN virtual observatory
project. One of the main goals of the project is to bridge the divide
between empirical and theoretical studies by adding observational-
like features to simulated galaxy samples. To this purpose, we pro-
duced mock catalogues with characteristics similar to the COSMOS
survey (Scoville et al. 2007) and Euclid (as predicted in Laureijs
et al. 2011). By applying our SOM estimator to the COSMOS-like
version of the HORIZON-AGN galaxies, we aim to demonstrate its
feasibility for real data sets. Both the simulated data set and the
SOM are described in Section 2.

Building on this result, in Section 4 we introduce the SOM-based
estimator of redshift and SFR, and apply it to the COSMOS-like
mock catalogue. In Section 5, we show that redshift and SFR must
be known for only a subset of galaxies in order to ‘calibrate’ the
SOM estimator and provide estimates without a synthetic template
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library. We then discuss possible ways to build such a calibration
sample, inspired by previous work proposing a highly complete
spectroscopic follow-up in large cosmological surveys (Masters
et al. 2015; Hemmati et al. 2019b). To show the improvement
of template-free ML with respect to standard fitting techniques,
Section 5 ends with a comparison between SOM estimates versus
the SFR derived in Paper I for the same galaxies by means of the
code LEPHARE (Arnouts et al. 1999; Ilbert et al. 2006). We discuss
the results and draw our conclusion in Section 6.

Throughout this work, we use a flat lambda cold dark matter
cosmology with H0 = 70.4 km s−1 Mpc−1, �m = 0.272, �� =
0.728, and ns = 0.967 (Komatsu et al. 2011, WMAP-7). All
magnitudes are in the AB (Oke 1974) system. The IMF is as in
Chabrier (2003).

2 DATA A N D M E T H O D S

2.1 The HORIZON-AGN virtual observatory

This study relies on a mock galaxy catalogue built from the
HORIZON-AGN hydrodynamical simulation1 (Dubois et al. 2014).
This catalogue, presented in Paper I, includes 789 354 galaxies
extracted from a 1 × 1 deg2 light-cone by running the ADAPTAHOP

halo finder (Aubert, Pichon & Colombi 2004) on the stellar particle
distribution. Each stellar particle (of mass ∼ 2 × 106 M�) is linked
to a synthetic simple stellar population (Bruzual & Charlot 2003,
hereafter BC03) assuming Chabrier’s IMF (Chabrier 2003) and
interpolating between the metallicity values available in BC03. The
galaxy catalogue is selected in stellar mass (Msim > 109 M�) and
redshift2 (0 < zsim < 4). The upper limit in redshift is imposed
to work with galaxy colours consistently defined across the whole
redshift range, i.e. avoiding non-detection in the u band due to the
Lyman limit shifting into the band.

Our virtual observatory mimics the optical and NIR photometry
of COSMOS2015 galaxies (Laigle et al. 2016) in 10 broad-bands
(u, B, V, r, i++, z+, Y, J, H, Ks) and 14 medium-band filters
(from Subaru/SuprimeCam, see Taniguchi et al. 2007). It also
includes the Spitzer/IRAC channels centred at 3.6 and 4.5μm
(hereafter [3.6] and [4.5]). In each filter, we reproduce the signal-
to-noise ratio (S/N) distribution as in the ‘ultra-deep’ stripes of
COSMOS2015. Reference 3σ limits (in 3 arcsec apertures) used
in previous work are Ks < 24.7 and i+ < 26.2 (for a list of
sensitivity depths in every filter, see table 1 in Laigle et al.
2016). After introducing such uncertainties, we perturb the original
galaxy fluxes accordingly. Attenuation by dust and inter-galactic
medium is also taken into account, whereas flux contamination by
nebular emission is not implemented. In the following, we refer
to the attenuated fluxes without photometric errors as intrinsic,
while perturbed photometry is the one that takes into account
galaxy S/N.

Further details about the realization of the HORIZON-AGN mock
galaxy catalogue can be found in Paper I and Appendix A1
(see Online Supplementary Materials). We also use a simpler
(‘phenomenological’) simulation to show that neither the Horizon-
AGN limit in stellar mass nor the absence of nebular emission lines
affect our main results (Appendix A2).

1http://www.horizon-simulation.org/
2Cosmological redshifts (zsim) in our light-cone include galaxies’ peculiar
velocity.

2.2 The SOMs

In brief, an SOM represents a high-dimensional data distribution
into fewer dimensions (e.g. a 2D space) through an unsupervised
neural network that preserves topology. In other words, objects that
are multidimensional neighbours remain close to each other also in
the 2D space.

Assume that the original (compact) space M, with dimensions
equal to M, has to be reduced into a space N , which we choose to
be bi-dimensional (N = 2).3 To build the SOM, we create a neural
network where each neuron is associated with a weight vector
ŵ. Each element in these vectors comes from the corresponding
dimension of M (i.e. ŵ has length M). Neurons (and the vectors
attached to them) are ordered in the N-dimensional configuration
defined by the user, for instance a rectangular lattice (see a
pedagogical example in Fig. 1).

The SOM relies on a training sample of objects drawn from M.
The neural network explores M by adapting neurons’ weights to
the training sample. Such a learning phase proceeds by iteration
until the value of each weight gets as close as possible (according
to a convergence criterion) to the input data. The first task in the
procedure is to find the best-matching unit for any given data point
(x̂) of the training sample. The best-matching unit is the neuron
whose weight ŵb is the closest from x̂. Then, the weight of each
neuron (including the best-matching unit) is updated during an
iterative process:

ŵi(t + 1) = ŵi(t) + α(t) φ(ŵi , ŵb, t) [x̂ − ŵi(t)] . (1)

Equation (1) is written for the i-th neuron, updated from step t
to t + 1. The learning coefficient α is a monotonically decreasing
function to ensure convergence, while φ is a neighbourhood function
that modulates the update depending on the distance between the
i-th neuron and the best-matching unit: φ ∝ exp(−|ŵi − ŵb|). The
procedure is repeated by scanning the other elements of the training
sample. It is critical to use a training sample that is representative of
the whole space, otherwise the grid of neurons/weights is adjusted
to probe only a subset of M.

The learning process is unsupervised because it does not require
the training sample to be labelled a priori. Neurons autonomously
organize their weights: hence the name ‘self-organizing’ map. The
resulting SOM is a mapping function that connects a point from N
to M and vice versa. We stress out that the topology is preserved
so that in the low-dimensional configuration (the 2D lattice in
our example) two adjacent weights are linked to nearby regions
of M.

In our case, the high-dimensional space is the typical baseline of
an extragalactic survey, i.e. each dimension is a colour measured
from broad-band filters (for example u − g, g − r, etc.). The
training sample is a set of galaxies large enough to span the colour
distributions observed in the universe. We specifically explore the
panchromatic space because there is a straightforward connection
to the physics of galaxy evolution we aim at studying.4 We choose a
rectangular lattice to order the neurons. Because of its appearance,
and to maintain the same lexicon of previous work, hereafter we

3Choosing N = 3 or higher is possible but it would not offer the same
advantage in terms of visualization.
4A colour is more informative about galaxies’ SFH than single broad-band
magnitudes. The SOM can also analyse more complex high-dimensional
spaces defined by a combination of miscellaneous parameters (galaxy
colours, fluxes, morphology, etc.).
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4820 I. Davidzon et al.

Figure 1. Pedagogical representation of the SOM using an artificial distribution of 2000 objects in an unspecified 3D space. Upper panel: After setting a
10 × 10 grid of ‘cells’, the algorithm adapts the grid (black lines) to the manifold of the training objects (magenta points). Here, as well as in the next figures,
SOM axes are labelled with conventional names D1 and D2. The grid becomes finer where the density of the training sample is higher, while sparse objects in
the outskirts will be linked to the border of the grid. Features C1,C2,C3 can be regarded as three galaxy colours, but in principle they can be to any feature.
Lower panels: The SOM as it appears in the 2D space, with a different layout in the three panels. The 2000 training objects (small dots) have been allocated
into the 10 × 10 grid (their position within a cell has been scattered for illustrative purposes). In each panel, objects are colour coded according to one of their
features (C1,C2,C3 from left to right). Similar objects are clustered in the same (or nearby) cell and a smooth transition is observed across the grid. Outliers
with extreme characteristics (e.g. C3 > 4) are pushed to the grid corners. In this example, we use a simple distribution of data points for illustrative purposes.
As a consequence, the SOM grid is a ‘simple’ 3D surface. In general, the grid can assume more complex high-dimensional configurations. Thanks to this
property, the SOM and similar non-linear dimensionality reduction algorithms can accurately map the parameter space of real galaxies (which are a non-linear
manifold). This is also a key difference from PCA, which can only assume a hyper-surface.

will refer to the neurons as ‘cells’ in a 2D ‘grid’ (Fig. 1).5 Each cell
is defined by its weight vector, for example ŵij for the cell with
coordinate i, j in the grid. The weight connects its cell to a point in
the panchromatic space, i.e. the vector components (wij, 1···wij, M)
now represent a set of colours. The terminology used to describe
the SOM is summarized in Table 1.

To follow Kohonen’s prescriptions – i.e. to find the best-matching
units and implement equation (1) – the distance between weights
and galaxies is computed assuming Euclidean metrics:

dij =
√√√√ M∑

m=1

(
Cm − wij,m

)2
, (2)

5It should be noticed that in our SOM implementation input data will be
normalized in each dimension, rescaling the distribution to unit variance and
centring the mean at zero.

where the given galaxy is defined by the colour vector Ĉ =
(C1, C2, ..., CM ). The total i × j number of cells/weights is chosen
by the user (see Section 3). As a result, each SOM cell ‘contains’
one or more galaxies from the training sample, whose colours
are similar to the weight vector of that cell. The galaxy–cell
association determined during the training phase is performed by
the python software SOMPY.6 Before the iterative process, to
start with weights that are already close to the galaxy distribution,
each weight vector is initialized by setting its colours via principal
component analysis (PCA; Chatfield & Collins 1980) of the training
sample. A parallelism between these weights and PCA eigenvectors
can help understanding the SOM: its weights can be thought as a
set of characteristic SEDs that describe the panchromatic space.
However, the SOM has important differences from a PCA (see

6https://github.com/sevamoo/SOMPY
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Table 1. Terminology used throughout this work (see also Section 2.2).

Parameter space M-dimensional space where each dimension is a
galaxy feature (a colour in our case).

Colour (C) Observer’s frame colour (e.g. u − g).
SOM Self-organizing map connecting the M-d space to a

lower dimensional space (N-d).
Grid Low-dimensional space with a rectangular shape

(N = 2) used here to display the SOM.
Cell Minimum element of the grid, which can contain one

or more galaxies.
Weight (ŵ) M-d vector for a given cell, connecting it to a point in

the parameter space.
Training Iterative process to define the weights and distribute

galaxies into cells.
Mapping Projecting a new galaxy on the grid, linking it to its

best-matching weight/cell.
Calibration Assign a value (label) to each cell, according to any

galaxy property.
〈 . . . 〉cell Median of a generic quantity computed for galaxies

in the same cell.

Section 3.3). In particular, PCA is a linear hyper-surface defined
by principle components, so it cannot fully describe a non-linear
manifold, which is what we expect the galaxy colour space to be.

Once the SOM is trained, new galaxies can be mapped on to the
grid by finding the nearest weight vector to each of them through
equation (2). Moreover, the grid can be labelled a posteriori by
looking to another galaxy property not included in the parameter
space M. For example, one can consider the redshift distribution
of galaxies within a given cell and take their median 〈z〉cell to label
that cell. Such explicit labelling gives our method a key advantage
over supervised ML because we keep control of the relationship
between features (the broad-band colours) and labels (the redshift
in the example above). This means that if we have a model of the
bias or errors in our data, we can directly account for that. However,
it also means that an additional calibration phase is required to
make the SOM work as an effective galaxy estimator. Indeed, as
we will highlight in the following, galaxies clustered together in the
colour space also share other (physical) properties.

3 SO M O F H O R I Z O N-AGN G A L A X I E S

We apply the procedure summarized in Section 2.2 using HORIZON-
AGN galaxies as a training sample. The considered features are
their broad-band colours u − B, B − V, V − r, r − i+, i+ − z++, z++

− Y, Y − J, J − H, H − Ks, Ks − [3.6], and [3.6] − [4.5]. Except for
the Subaru intermediate-band filters, which are not included here,
this is the same baseline used in Paper I. As the SOM projects that
11-dimensional space into a rectangular grid (likewise Fig. 1), we
can explore galaxy physical parameters as a function of their 2D
position, to see whether training objects located in the same cell
have in common other properties besides their broad-band colours.
It should be noticed that a galaxy not detected in any of the filters
poses a challenge to the SOM as one colour would be ill-defined.
This is a common problem in ML methods that will be addressed
in Section 4.

In the present section, we consider intrinsic colours (i.e. not
affected by photometric noise) unless specified otherwise. The
results discussed here are instrumental to show the fundamental
properties of our method and its full potential in the case of an ‘ideal’
survey. In Section 5, we will address the impact of observational
uncertainties.

3.1 Generating an ideal SOM

Since we decided to adopt a rectangular lattice for the SOM, the first
step is to decide its size and axial ratio.7 We set them by iteration,
looking at changes in galaxy dispersion as a function of those two
quantities (i.e. how tightly clustered are the galaxies associated with
a given cell). We also check that the number of galaxies per cell is
large enough to assure a good sampling in the various regions of
the parameter space.

First, we test the optimal SOM size. Starting from a 20 × 20 grid,
we gradually increase the size by adding 10 cells in both dimensions
(i.e. maintaining a ‘square’ configuration). Each time we train the
SOM with the whole HORIZON-AGN catalogue and measure (i)
the average distance of galaxies from their best-matching weight,
(ii) the number of galaxies associated with each weight. The SOM
converges fast with respect to (i), so that in grids of �6000 cells
most of the galaxies are tightly clustered in their cells, i.e. their
distance from the weight in the colour space is smaller than the
typical photometric errors in deep surveys like COSMOS (0.01–
0.05 mag from optical to IR). On the other hand, the larger the
grid of weights, the fewer the number of galaxies associated with
each of them. With the 90 × 90 configuration, a significant area of
the SOM starts to be undersampled, with about 15 per cent of the
cells defined by less than 20 galaxies each (Fig. 2, upper panel).
Therefore, we identify a slightly smaller size (80 × 80 cells) as
a good compromise between high resolution and sampling, also
considering computational efficiency.

The next step is to define the best geometry for our SOM, namely
the ratio between its axes. In the previous test, we used only square
grids with increasing number of cells, while now we fix the number
of cells to 6400 and modify the aspect of the grid from 1:5 ratio to
1:1 (i.e. the 80 × 80 configuration) in eight steps. We describe again
the quality of each SOM in terms of (i) and (ii), finding that the best
configuration is that with 1:1 axial ratio (Fig. 2, lower panel). In a
rectangular grid, there are more galaxies not well represented (i.e.
far from their best-matching weight) especially when the two sides
have very different lengths.

In conclusion, the SOM we will use throughout is made by
80 × 80 cells. The result is specific for the HORIZON-AGN parameter
space: the optimal configuration for another galaxy sample may be
different. We notice none the less that the total number of cells
is comparable to those used to describe the real COSMOS and
CANDELS data sets, respectively, in Masters et al. (2015, 11 250
cells for galaxies up to z ∼ 6) and Hemmati et al. (2019b, 4800 up to
z ∼ 4). An alternate method, proposed by Hemmati et al., consists
in increasing the grid size until the histogram of each weight vector
component matches the distribution of the corresponding colour
(see their fig. 6). We calculate these histograms and find that indeed
they converge when the grid dimension is ≥80 × 80.

3.2 Redshift calibration

After the training phase, we can label each SOM cell according
to a given property of the galaxies contained in it. We compute the
median redshift 〈zsim〉cell and the relative scatter σ z defined as σ (zsim

− 〈zsim〉cell). The SOM of HORIZON-AGN shows the same cell–z

relationship found by Geach (2012) in COSMOS, with a smooth
redshift evolution as moving across the 2D space (Fig. 3). The

7Other 2D configurations are possible, e.g. a lattice made by hexagonal cells
or a spherical projection divided in HEALPIX (see Carrasco Kind & Brunner
2014, for a comparison).

MNRAS 489, 4817–4835 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/4/4817/5561521 by C
N

R
S user on 27 April 2023



4822 I. Davidzon et al.

Figure 2. Tests to define size and shape of the SOM grid to optimally
describe the galaxy parameter space. Different 2D configurations are
adopted, and each time the SOM algorithm is applied to the same HORIZON-
AGN sample (see Section 3.1). The quality of each configuration is measured
by the number of cells with a good sampling (i.e. including >20 galaxies,
red triangles) and high clustering (cells where the average distance of
galaxies from the weight is comparable with typical photometric errors, blue
circles). Upper panel: Fraction of cells satisfying both quality criteria while
increasing the size of the grid. Only square configurations are considered,
starting from 20 × 20 cells up to 110 × 110 (i.e. 12000 cells in total). The
80 × 80 configuration shows a good performance before the number of
galaxies per cells starts to drop in larger grids. Lower panel: The two quality
criteria this time are applied to rectangular grids with the same number of
cells (6400) but different aspect ratio. As in the upper panel, the red triangles
show the fraction of cells populated with a conspicuous number of galaxies
while blue circles show the fraction of cells in which galaxies are tightly
clustered around the weight. The 80 × 80 grid gives the best SOM.

redshift scatter in every cell (not shown in the figure) is particularly
small, with σ z always between 0.05 and 0.1. The small scatter is
even more remarkable when the σ z values are divided by the 1 + z

factor, shrinking to 0.01–0.03. This is due to the algorithm’s ability
of clustering objects with very similar (observer’s frame) colours,
which correspond to similar redshift. One may expect some redshift
interlopers – i.e. objects with a significantly different zsim from the
rest of the cell – due to SED degeneracies (Papovich, Dickinson &
Ferguson 2001). However, we do not find this in the ideal case
discussed here. On the other hand, we do observe boundary effects
produced by galaxies with extreme colours, which lie at the limits of
the panchromatic manifold (see also the example in Fig. 1). Those
galaxies are pushed to the border of the grid, but with a negligible
impact on the redshift distribution inside a cell (the redshift scatter
remains modest: σ z 	 0.1).

In Fig. 3, we also observe a long horizontal stripe of empty cells.
No galaxy has been associated with their ŵ during the training.
The 〈zsim〉cell labels explain the physical meaning of this empty
region: it is a ‘caustic’ in the parameter space dividing z ∼ 3
galaxies from those at lower redshift with similar colours. Since we

Figure 3. SOM trained with a sample of HORIZON-AGN galaxies using their
intrinsic colours (observer’s frame). The grid is colour coded according to
the median intrinsic redshift of galaxies in the same cell (〈 zsim〉 cell). The
black open circles identify cells whose galaxy spectra are analysed in Fig. 4.
The white region is made by empty cells with no galaxy matching their
weight. Despite redshift evolution is overall smooth across the map, in the
upper-right corner (72 < D1 < 79, D2 = 80) a streak of 〈 zsim〉 cell ∼ 1.5
cells shows the small impact of border effects (see Section 3.2).

are working with intrinsic photometry, their Lyman versus Balmer
break degeneracy (e.g. Stabenau, Connolly & Jain 2008) is fully
disentangled.

3.3 High-resolution spectra in the SOM cells

In the HORIZON-AGN virtual observatory, the broad-band colours
are integrated from high-resolution BC03 spectra, which are built
accounting for complex SFH and chemical enrichment (Sec-
tion 2.1).

In the SOM, we stack galaxy spectra from the same cell, re-
normalizing them to a fixed i+ flux to ease the comparison. Stacking
is performed in the observer’s reference frame: spectra are redshifted
to their zsim before adding them, to be consistent with the analogue
procedure one would implement in a real survey.

The fact that the colour-based SOM can efficiently map redshifts
(Section 3.2) does not necessarily imply that it performs as well
with spectral features. Given the small amount of spectroscopic
information in real data sets, previous work has only proven that
broad-band SEDs are well clustered within the grid, with the
exception of Rahmani, Teimoorinia & Barmby (2018) analysing
142 spectra at 0.5 < z < 1 and Hemmati et al. (2019b) showing
a handful of z ∼ 1 spectra that have similar shape and are also
clustered in nearby cells. We find that this is actually the case for
the whole HORIZON-AGN sample: galaxy spectra are in excellent
agreement in most of the cells (see a few examples in Fig. 4).
Inspecting the regions close to the redshift caustic, we find more
dispersion, mainly because the median stacking is performed in
observer’s frame and therefore it is affected by the difference
between individual redshifts. We check that spectral shapes are even
more similar if the comparison is made in rest frame, removing the
σ z scatter.

In addition to the examples shown in Fig. 4, we perform the same
stacking analysis in 225 distinct cells evenly distributed across the
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Manifold learning and galaxy properties 4823

Figure 4. Median stacked spectrum (observer’s frame, red line) of galaxies in a given cell with relative inter-quartile dispersion (grey shaded area). The label
at the top of each panel indicates number of galaxies and cell coordinates (see also the open circles in Fig. 3). Individual spectra are assumed to be ‘observed’
at zsim and then stacked, as one would do in a real survey. They have also been re-normalized to the arbitrary i+-band flux of 22 mag.

grid,8 finding that their average inter-quartile dispersion is always
�15 per cent (<8 per cent in half of the cells probed). It is worth
emphasizing the differences between this result and what a PCA
classification would give. First of all, PCA provides a basis of
eigenvector to be linearly combined, whereas the SOM works also
with non-linear transformations. Each weight in the SOM has a
clear physical meaning by itself, i.e. it describes a galaxy phenotype
in the observed frame (Sánchez & Bernstein 2019). On the other
hand, in a PCA classification, the 2–4 eigenspectra that usually have
the most discriminating power are difficult to interpret. They can
be combined to reproduce actual galaxy features, but classes for
those resulting spectra are not inherently provided by the PCA and
human intervention is required (e.g. defining meaningful regions in
a Karhunen–Loève diagram, Marchetti et al. 2013).

The degree of similarity of the simulated spectra within a
given SOM cell also depends on the complexity of their features.
Spectra used in this work are extracted from the HORIZON-AGN
and their realism and complexity are constrained by those of the

8Those cells have coordinates D1 = 5i and D2 = 5j, where i and j are integers
ranging from 1 to 15.

simulation. Modelling galaxy evolution on cosmological scales is
inevitably done at expenses of resolution. Because HORIZON-AGN
maximum spatial resolution is at best 1 pkpc, the impact on the
interstellar medium (ISM) of any process occurring at a smaller
scale is averaged through subgrid recipes. These recipes have been
iteratively improved in order to reproduce as well as possible the
statistical distribution of integrated galaxy properties throughout
cosmic time (in HORIZON-AGN such a progress can be tracked
through Dubois et al. 2012, 2014; Park et al. 2019). However, they
might fail to some extent at reproducing ISM inhomogeneity and
clumpiness. As a result, we expect the SFH of our simulated galaxies
to be smoother (and their spectra less diverse) than the real ones. As
a consequence, the dispersion that we measured within an SOM cell
must be considered as a lower limit. A more extended discussion
about caveats in our modelling is provided in Appendix A1.

3.4 Exploring other physical parameters in the SOM

The remarkable similarity between spectra in the same cell suggests
that those galaxies went through a similar evolutionary path, result-
ing, e.g. in the same mass-to-light ratio at the redshift of observation.
HORIZON-AGN provides us with galaxy physical parameters such
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4824 I. Davidzon et al.

Figure 5. The SOM trained with the intrinsic colours from the HORIZON-AGN catalogue is able to group galaxies with similar physical properties together
in the same cell. Left: The SOM grid (same as Fig. 3) is now labelled according to the median mass-to-light ratio in each cell. The open circles mark three
(randomly extracted) cells used as examples to show the tight correlation between position in the grid and physical properties. Right: Each row corresponds to
one of the example cells marked in the left-hand panel and shows the logarithmic distribution of Msim/LV (grey histogram), Msim (red histogram), and sSFR
(cyan histogram) in that cell. In the case of the Msim distribution, individual values have been normalized to a common i+-band flux (corresponding to 22 mag)
to show that the dispersion in a given cell is mainly due to the fact that the SOM, being trained with colours only, is not informed about the normalization of
the SED.

as luminosity (L), stellar mass (Msim), and star formation rate
(SFRsim). Thus, we can use our simulation to test whether the objects
that are grouped together by the SOM have other properties in
common besides their redshift. Regarding SFRsim, this is defined by
averaging galaxy SFH over the last 100 Myr, an interval comparable
to the time-scale of SFR indicators widely used in the literature
(Kennicutt & Evans 2012).

We calibrate the SOM to show the typical mass-to-light ratio
per cell (Fig. 5, left-hand panel). The procedure is similar to the
redshift calibration in Section 3.2, this time computing the median
〈Msim/LV〉cell with LV being the luminosity in the rest-frame V band.
In this way, we can visualize the variation of this quantity across
the grid, which is also an evolution across redshift: more mature
galaxies with larger M/L occupy cells with lower 〈zsim〉cell (cf.
Fig. 3). We also aim at verifying that the scatter inside a given
cell is small by calculating the difference between the 84th and
16th percentile in the logarithmic Msim/LV distribution. We find that
in most of the cells this is smaller than 0.2 dex. A few examples of
the tight correlation between position in the grid and M/L are shown
in the histograms of Fig. 5.

A similar trend can also be observed regarding stellar mass after
a scaling factor is applied. This factor is required since we do
not train the SOM with information about SED normalization,
as instead other authors do with different ML methods (Bonjean
et al. 2019).9 This is the same procedure used in Fig. 4 to compare
galaxy spectra, which have similar shapes but different magnitudes.
Therefore, to analyse the intrinsic Msim scatter within a given cell,
we first normalize each galaxy to a reference point of i+ = 22 mag.
In principle, this should be done in rest frame, given the fundamental

9We prefer working in a pure colour space because an additional dimension
with a different dynamical range may not be properly weighed with respect
to the others.

Figure 6. Logarithmic dispersion of various physical properties in each
cell of the SOM, defining such a scatter as the difference between 84th and
16th percentile of the logarithmic mass-to-light ratio (thin black histogram),
sSFR (blue), and stellar mass (red). For sSFR and stellar mass, the solid lines
show the results when intrinsic colours are used (see Section 3.4) while the
dashed-line histograms are the case in which galaxy photometry is perturbed
with COSMOS-like errors (Section 4.1). Since the SOM is trained only with
colours, an SED normalization has to be applied for stellar masses; we used
the i+-band fluxes to this purpose, rescaling galaxies to i+ = 22 as in Fig. 4.

M/L correlation, but since spectra in the same cell are at about the
same redshift one can use apparent magnitudes instead. After such
a rescaling, the log (Msim/M�) dispersion is smaller than 0.2 dex in
most of the cells (see the three examples in Fig. 5, and also Fig. 6).

The specific SFR (sSFR ≡ SFRsim/Msim) does not need such
a normalization as it is expected to be directly related to M/L.
However, the scatter is larger than M/L and also stellar mass. In
fact, the latter is an integrated quantity strongly connected to the
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Manifold learning and galaxy properties 4825

global evolutionary path of the galaxy, whereas the sSFR depends
on recent fluctuations in the mass assembly history. The 0.2–0.5 dex
dispersion in the SOM (Figs 5 and 6) reflects such a stochasticity;
sSFR is also more sensitive than stellar mass to different levels of
dust attenuation.

These tight correlations are obtained with an SOM trained with
intrinsic colours: larger scatter is expected when galaxy photometry
is affected by observational uncertainties. The results shown in this
section can be considered as an ‘asymptotic’ limit represented by
an ideal galaxy survey with infinite S/N. This ideal example can
be approximated by the brightest galaxies in an ‘ultradeep’ survey.
In that case, the S/N should be high enough to enable the SOM
to classify galaxies not only with respect to their redshift, but also
stellar mass and SFR. Such a clustering ability is the cornerstone of
our original technique to recover stellar mass and SFR. In principle,
knowing the stellar mass of a ‘calibration’ object (Mcal, which can
be independently obtained via template fitting) one could get a fairly
precise M estimate for other galaxies mapped into the same cell: it
would suffice to rescale Mcal by the flux ratio between the known
galaxy and the target one: M 	 Mcal × (f/fcal). As suggested by
the examples in Fig. 5, in the best-case scenario, the uncertainty of
such an estimate would be comparable to the typical mass errors of
template fitting codes (�0.3 dex, see e.g. Davidzon et al. 2017) with
significant improvement in computational speed (about 106 times
faster according to Hemmati et al. 2019a).

The same argument used for stellar mass applies to SFR, which
is not shown in Fig. 5 as it will be thoroughly discussed in the
following. A flux re-normalization will be necessary as in the case
of stellar mass. In the present analysis, we use the i+ band for the flux
scaling factor since it has one of the deepest sensitivity limits. The
Ks band is a better proxy for stellar mass but in COSMOS2015 (and
therefore in our COSMOS-like sample) its 3σ limit is ∼1.5 mag
shallower than i+ and would result in a larger scatter of the results
(but still preserving the properties of the SOM, see Appendix A2).

4 A N OV E L ES T I M ATO R O F G A L A X Y S F R

We concluded Section 3 by suggesting that the SOM can be used
to empirically recover galaxy physical parameters in the same
framework used in Masters et al. (2015) for photometric redshift
computation. In this section, we discuss how to calibrate the SOM in
order to derive SFRs from broad-band colours in a fast but accurate
way. We focus on SFR since standard SED fitting shows its limit
when deriving this quantity (see Paper I). One can obtain robust SFR
estimates based on IR imaging or spectroscopy, but this is generally
possible for a small fraction of galaxies (which indeed we can use
as a calibration sample for our method). An SOM-based estimator
for stellar masses should also be feasible, but it would likely be
based on template fitting, at least for calibration purposes, given the
current state of the art in estimating stellar mass.10 For template-
based approaches, we refer the reader to Hemmati et al. (2019a) for
an overview of how to effectively use the SOM. Here, our goal is
to empirically calibrate properties based on direct indicators rather
than depending on synthetic SED libraries.

With this goal in mind, we devise a method that can be applied
to real data, requiring some adjustment to the SOM. We replace
the ideal (noiseless) photometry used in the previous section with
a catalogue that mimics the COSMOS survey, including errors

10Other options are available in some case, e.g. dynamical masses from
spectroscopy (Courteau et al. 2014).

and selection functions. In other words, apparent magnitudes
and colours of HORIZON-AGN galaxies are now perturbed with
observational-like errors and selection effects. As a consequence,
we use a different training sample, selecting only galaxies above a
given S/N threshold. Thus, the observational-like training sample
does not include objects that are not detected in some band. In
Section 4.1, we show that, after the S/N selection, photometric
errors do not impair the relationship between SOM cells and galaxy
properties shown above.

In Section 4.2, we explain the details of our methods. In that
context, we modify the way to label SOM cells. In fact, in the
previous sections, we made calibrated versions of the SOM by
labelling its cells with median values of either redshift or other
physical parameters, i.e. under the assumption of knowing them for
the whole sample. Hereafter, we assume to know the SFR of a small
subset of 6400 galaxies (i.e. one object per cell) and use them to label
the grid. At the moment, we do not make particular assumptions
on how such a calibration sample is built; this is discussed later in
Section 5 where we also compare to SFR estimates from template
fitting.

4.1 The COSMOS-like SOM

The observational uncertainties to perturb the HORIZON-AGN pho-
tometry are statistical errors affecting apparent magnitudes so that
our mock galaxy catalogue resembles the quality of the COSMOS
data (see Paper I). For this reason, in the following we refer to
the (noisy) HORIZON-AGN sample also with the term ‘COSMOS-
like’, in contrast to the previous version with intrinsic photometry
(Section 3). We do not model confusion noise and contamination
by saturated stars; this kind of issues shall be addressed in future
work after providing the HORIZON-AGN virtual observatory with
simulated images.

The training phase of the implemented algorithm does not
account for cases of non-detection (e.g. when the ‘observed’ flux
is smaller than the flux error). Therefore, while working with
perturbed photometry, we limit the analysis to a galaxy subsample
with S/N > 1.5 in each broad-band filter. A statistically correct
treatment of lower and upper limits in the input colours would
require an improved SOM algorithm that is beyond the goal of this
work. We also note that template fitting codes often neglect such a
treatment (as highlighted in Sawicki 2012). The S/N pre-selection
will restrict the analysis to z � 3.5 because galaxies at higher
redshift are u-band drop outs (Steidel et al. 1996) with S/N � 1 in
that filter. Given the sensitivity of our catalogue the S/N threshold
roughly corresponds to a flux-limited survey with a cut at i+ < 25
(see fig. B1 in the Online Supplementary Materials). Besides the
removal of z > 3.5 galaxies from the sample, there are other caveats
in the S/N selection, which are listed in Appendix B1. None of
them affects the analysis between z = 0.2 and z ∼ 3, but there is
a ‘boundary effect’ at the lowest and highest redshifts of the range
(see below).

After this preliminary test, we use the perturbed photometry of
HORIZON-AGN galaxies with S/N > 1.5 to produce a new SOM;
the multidimensional space is the same as in Section 3 (11 broad-
band colours). Fig. 7 shows the resulting redshift map limited to
zsim � 3.5. The redshift evolution across the 80 × 80 grid is similar
to the ideal SOM, although some details are smeared out because of
photometric errors. For example, the gap between low- and high-z
regions is now filled by scattered galaxies (cf. Fig. 3). We quantify
redshift dispersion in each cell through the normalized median
absolute deviation (NMAD; Hoaglin, Mosteller & Tukey 1983) and
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4826 I. Davidzon et al.

Figure 7. SOM algorithm applied to HORIZON-AGN colour space, including
photometric errors. A subsample of galaxies with robust colours (S/N > 2
in all the photometric pass-bands) is used to train and label the SOM.
Upper panel: Cells are colour coded according to their median redshift
(compare to Fig. 3). The redshift range is now 0 < z < 3.2 because of
the S/N limit imposed in the u band (see the text). For the same reason,
13 cells sparsely distributed across the grid are empty (coloured in white).
Other nine empty cells identify the redshift ‘caustic’, the rest of which
is filled by scattered objects. Middle panel: normalized median absolute
deviation (NMAD). Lower panel: the fraction of redshift outliers in each
cell.

the outlier fraction. The former is defined as 1.48 × median(|	z|)/(1
+ 〈z〉cell), where 	z ≡ zsim − 〈z〉cell (Fig. 7, middle panel). The latter
is the fraction of objects in a given cell having |	z|/(1 + 〈z〉cell) >

0.15 (Fig. 7, lower panel). These metrics are similar to those used to
describe the quality of photometric redshifts estimated via template
fitting (zphot, see e.g. Ilbert et al. 2013). The NMAD is on average
<0.047, with only 343 cells above 0.1 (mainly in the formerly empty
region of the z caustic). The outlier fraction is overall small, being
less than 10 per cent in 5228 cells (namely 82 per cent of the grid).
On the other hand, systematics at the borders are more evident than
before.

Besides redshift, HORIZON-AGN galaxies remain well clustered
also with respect to M and sSFR (see Fig. 6). With perturbed
photometry, the sSFRsim is slightly less constrained than in the
ideal SOM: e.g. now there are no cells with a scatter <0.2 dex.
On the other hand, only ∼10 per cent of the cells exceed 0.5 dex
dispersion in sSFR. These are cells hosting low-sSFR galaxies.
The results are comparable to other classification methods (e.g. the
NUV − r versus r − K diagram, Arnouts et al. 2013). The typical
scatter in log (Msim/M�) within one cell is 0.3–0.4 dex, much larger
than before because not only the input colours but also the i+-band
rescaling now is done with perturbed fluxes. However, this is of
the same order of M statistical errors in observed galaxies (e.g.
Davidzon et al. 2017), a further indication that the SOM estimator
can also work in the observed universe.

4.2 Galaxy redshift and SFR measurements

Encouraged by the previous tests, we proceed in the implementation
of the SOM estimator. First of all, we need a reference sample to
label the SOM grid with both redshift and SFR values. Therefore, we
assume to ‘observe’ one galaxy per cell to obtain an estimate of their
redshift and SFR. These galaxies belong to the calibration sample
and their ‘measured’ properties are dubbed zcal and SFRcal. For the
moment, we do not make stringent requirements about how zcal

and SFRcal are measured: they may come, e.g. from a spectroscopic
survey, but not necessarily. We only make the assumptions that these
are bona fide galaxies with reliable z and SFR, and that they cover
the entire 80 × 80 grid. Each calibration galaxy is randomly targeted
among those in the given cell, with a sampling rate of one target
per cell. For the sake of simplicity, we do not model observational
uncertainty so the zcal and SFRcal values correspond to zsim and
SFRsim of the given galaxy. In Section 5.1, we will discuss which
kind of survey might provide such a calibration sample, modifying
zcal and SFRcal accordingly.

The other galaxies in the SOM, not used for the calibration,
will get an estimate of redshift and SFR from the SOM through
the procedure described here. The method takes into account not
only the best-matching cell in which galaxies lie but also the nearby
ones. This choice is motivated by the impact of colour uncertainties:
even though the SOM training phase places any COSMOS-like
galaxy into its best-matching cell, the colours of that galaxy are
still compatible (within error bars) with the weights of other cells.
There is a non-negligible probability that one them, in absence of
observational errors, would be the true best-matching cell for the
given galaxy.

For each entry of the mock catalogue, our algorithm includes the
following steps:

(i) consider Nc cells: the best-matching unit in which the
HORIZON-AGN galaxies reside and the nearest Nc − 1 cells;
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Manifold learning and galaxy properties 4827

(ii) calculate the distance between the galaxy and each of those
cells, with a modified version of equation (2) that takes into account
photometric errors:

di =
√∑

n

(
Cn − wi,n

)2
/	C2

n , (3)

where 	Cn is the 1σ uncertainty for the n-th colour and i is one of
the Nc cells;

(iii) take the zcal and SFRcal labels of the Nc cells;
(iv) compute their distance-weighted mean zSOM and SFRSOM.

In particular, the resulting SFR is re-normalized (as done for
stellar masses in Section 3.4):

SFRSOM =
∑

i∈Nnc

(
SFRcal/d

2
i

) × (f /fcal,i)∑
i∈Nc

1/d2
i

, (4)

where f/fcal,i is the flux ratio in a reference band (we choose i+)
between the given photometric galaxy and the bona fide one that
labels the i-th cell. The square distance from the i-th cell is also
used in the weighted mean to compute zSOM.

We set Nc = 10 as the scatter generated by photometric errors
typically involves the first surrounding cells. We verify that includ-
ing more distant neighbours does not alter the results owing to the
1/d2 factor in equation (4). A more accurate, object-by-object deter-
mination of Nc could be done defining the 11-dimensional ellipsoid
enclosing the 68 per cent confidence limit in all dimensions jointly.
However, the colours’ covariance matrix is necessary for such a
task (Press et al. 1992) and that is not available in HORIZON-AGN,
to be consistent with the real COSMOS catalogue. To tackle this
limitation, Hemmati et al. (2019a) suggest a Monte Carlo method
based on multiple realizations of the SOM mapping, extracting
each time a different SED for the various galaxies (consistently
with their photometric errors). A more rigorous Bayesian approach
can be found in Carrasco Kind & Brunner (2014) and Buchs et al.
(2019, see also Bonnett 2015 for neural network redshifts). We
postpone to future work a thorough analysis of the redshift PDF via
SOM. That kind of analysis shall also improve the zSOM estimates by
smearing out the horizontal stripes visible in Fig. 8 (upper panel).
Those are the caused by a discretization in redshift for galaxies
well segregated in a restricted area of the SOM, even though they
span a large zsim range. Their pseudo-observed flux in one of the
filters is significantly different from the intrinsic one, despite a
rather small error bar associated with it. In those cases, averaging
over Nc neighbours is not sufficient to explore distant cells. A full
Bayesian approach would possibly capture their diversity better
than the present implementation.

We emphasize that the entire procedure takes less than 30 min
of wall clock time, whereas to process the same 371 168 galaxies
LEPHARE needs more than 100 h (without considering the com-
putational time to estimate redshifts in the first run). In Fig. 8,
we provide a comparison between the true redshifts of HORIZON-
AGN galaxies and those derived either through the SOM (upper
panel) or LEPHARE (zphot, lower panel). The figure shows 371 168
COSMOS-like galaxies from z = 0 to ∼3.5, namely the S/N-
selected sample with the exception of the bona fide galaxies used for
calibration. Overall, zSOM are in decent agreement with zsim, despite
the significant scatter. NMAD and outlier fraction are computed
for 	z ≡ zSOM − zsim, being 0.044 and 6.1 per cent, respectively.
Galaxies at zsim < 0.2 and zsim > 3.2 are the most problematic as
they suffer from SOM boundary effects: at those redshifts, i.e. the
extremes of the distribution, there are too few galaxies to train a
distinct cell. For instance, there are only 910 galaxies with zsim <

Figure 8. Upper panel: photometric redshifts derived from the SOM
estimator (zSOM) compared to the intrinsic redshifts (zsim), for the 371 168
COSMOS-like training sample not used for calibration. A solid line shows
the 1:1 bisector while the dashed lines mark the ±0.15(1 + z) threshold used
to compute the outlier fraction. Metrics describing the quality of results are
quoted in the upper-left corner. The bottom of the figure shows the scatter
	z/(1 + zsim) as a function of redshift. Lower panel: for the same galaxy
sample, zsim values are compared to estimates from standard SED fitting
(LEPHARE code). The symbols are the same as in the upper panel.

0.2, spread across 23 cells; in each cell, they represent 5–12 per cent
of the objects because they are classified together with a much larger
number of 0.2 < zsim < 0.5 galaxies.

The NMAD and outlier fraction we find are both larger than those
computed in Masters et al. (2019) for the COSMOS zSOM, but their
method slightly differs from ours as they use a deeper sample for
calibration and then map (typically brighter) spectroscopic galaxies
on the SOM. Here we compute the NMAD and outlier fractions
with a sample that goes fainter, which can explain the slightly
worse results. In Paper I, we discussed the caveats of using a
spectroscopically selected subset of galaxies to assess SED-fitting
quality of the parent photometric sample, as it is a limited (and
sometimes biased) representation of the entire population. The
comparison of Fig. 8 does not have this caveat because the same
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4828 I. Davidzon et al.

Figure 9. Comparison between intrinsic star formation rates (SFRsim) and
estimates obtained through the SOM (SFRSOM) for the same HORIZON-AGN
galaxy sample shown in Fig. 8 (using also the same colour map for object
density). Each panel shows a different redshift interval: galaxies are binned
according to their zSOM, which is provided by our method at the same time
(see Section 4.2). The open circles are median values in running bins of
SFR, with error bars computed as the difference between 84th and 16th
percentile. A solid line indicates the 1:1 bisector and the dotted lines the
±0.15 dex offset from it.

HORIZON-AGN galaxies are used in both the cases. We find that
LEPHARE NMAD (0.024) and outlier fraction (1.5 per cent) are
significantly smaller. It is worth noticing that those estimates take
advantage of a more advanced Bayesian framework during the SED
fitting: a galaxy zphot is defined as the median of the PDF(z) resulting
from LEPHARE template library. More complex applications of the
SOM (Masters et al. 2019; Sánchez & Bernstein 2019) yield redshift
estimates comparable in precision to LEPHARE. What is none the
less surprising is the significantly better performance of our SOM
in terms of redshift bias (as pointed out also in Masters et al. 2019)
defined as the mean of (zSOM − zsim)/(1 + zsim). This can be deduced
from Fig. 8 by observing the scatter in the two panels: the one of
zSOM versus zsim is larger but more symmetric. After removing
outliers, the zSOM bias is −0.001, a factor 10 smaller than the bias
resulting from LEPHARE.

Along with zSOM, this method provides at the same time the
SFR estimates. Fig. 9 shows how they compare to the intrinsic
SFRsim in different redshift bins.11 The correlation between the
two is very tight for SFRsim > 1 M� yr−1. Measuring its scatter as
log (SFRSOM/SFRsim), the NMAD is always <0.2 dex (i.e. smaller
than the typical scatter for stellar mass estimates). Namely, in the
four redshift bins of Fig. 9, the logarithmic SFR scatter ranges from
0.16 to 0.18 dex. On the other hand, the method overestimates
low levels of star formation (SFRsim < 1 M� yr−1) at z > 0.8.
There is also a systematic underestimation for the most star-forming
galaxies, but that offset is always smaller than 0.15 dex. The two
systematics have different explanations. The trend in the low-SFRsim

regime is due to zSOM outliers: because of SED degeneracy, a few

11See Fig. A4 in the Online Supplementary Materials, for an alternate version
of the calculation using Ks fluxes for the rescaling in equation (4).

Figure 10. Fractional error of SOM-derived SFR estimates (σ SFR/SFRsim)
due to the SFRcal stochasticity, i.e. the random selection of the bona fide
galaxies. To compute σ SFR, we repeat our SOM calibration procedure
(Section 4.2) 100 times with a different SFRcal basis (i.e. randomly re-
extracting the 6400 bona fide galaxies) and derive SFRSOM every time. The
shaded areas (from dark red to orange) show the fractional error embedding
50, 75, and 90 per cent of the COSMOS-like sample as a function of redshift.
The solid lines show the same quantities computed for star-forming galaxies
only (sSFRsim > 10−10 yr−1).

galaxies12 already in the red sequence are misclassified in cells
mostly occupied by dusty star-forming galaxies at higher z. This
bias should diminish in deeper surveys, as they better disentangle
redshift degeneracies. On the opposite hand, the bending of the
SFRSOM versus SFRsim relation for the most star-forming objects is
a consequence of the intrinsic SFR distribution inside those cells.
Galaxies with the highest activity are in the tail of such a distribution,
so it is unlikely that one of them is selected for calibration. The
reference SFRcal extracted in those cells is usually 0.1–0.2 dex lower
than the maximum, explaining the underestimation shown in Fig. 9.

We also investigate the statistical error due to the random
selection of bona fide galaxies. The SFRcal label of a given cell
might significantly change depending on which galaxy is actually
targeted. A Monte Carlo simulation can quantify this uncertainty.
We produce 100 calibration samples of the COSMOS-like SOM,
each time randomly extracting a different set of bona fide galaxies.
The standard deviation of the SFRSOM estimates (σ SFR) within the
100 realizations is calculated as a function of redshift. Remarkably,
most of the galaxies at zsim > 2 have σ SFR/SFRsim < 30 per cent
(Fig. 10). At lower redshift, ∼70 per cent of the sample still shows
such a small uncertainty, confirming the tight SFRSOM–SFRsim

correlation discussed above. Fig. 10 also reveals a subsample of
low-z galaxies with a larger dispersion (although their fractional
errors do not exceed a factor of ∼2). These objects are mainly
quiescent or post-starburst galaxies in cells with a large spread in
SFR, so they are more sensitive to the random SFRcal selection.
With the same Monte Carlo, we also quantify the zSOM error, which
is always below 4 per cent.

5 A PPLI CATI ON O F THE SOM ESTI MATO R
TO PRESENT AND FUTURE SURV EYS

So far, we have applied the new method without discussing the
details about how to build its calibration sample in practice. To

12Note that the spatial density map used in Fig. 9 is in logarithmic scale.
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collect robust measurements of their redshift and SFR, the bona
fide galaxies can be observed with present or future facilities. We
are particularly interested in the applications that our method will
have in the next decade, as foreseen surveys will offer an ideal test
bed for it. This is motivated by the clear advantage of ML methods
in terms of computational speed, which will be a key factor, e.g. for
future cosmology-driven missions probing large cosmic volumes.
Moreover, the next generation of telescopes will allow us to exploit
the full potentiality of the SOM by assembling unprecedented
calibration samples (see Bundy et al. 2019). In Section 5.1, we
envision two of these opportunities, assuming that the SOM will be
calibrated either by a large-scale spectroscopic survey in optical–
NIR or from FIR observations. In Section 5.2, we compare the
results from both the calibrations to standard template fitting. The
SOM method applied here is more realistic than Section 4.2 but is
also affected by the selection function of those ‘pseudo-surveys’.
More details about their design and the bias they may introduce can
be found in Appendix B (see the Online Supplementary Materials).

5.1 How to build the SFR calibration sample?

We discuss the realization of a calibration sample within the
HORIZON-AGN framework, to be consistent with the rest of our
analysis. Thanks to the wealth of observations in the COSMOS
field, a similar attempt can also be made using real data, although
with some limitations; we postpone this test to future work. We
propose two alternate calibrations for the SOM, namely

C1: a spectroscopic follow-up targeting one galaxy per cell, to
derive SFRcal from their H α flux.

C2: a combination of UV and IR imaging covering a portion of
the field, providing SFRcal for several galaxies per cell via energy
balance equation.

We anticipate that the analyses resulting from the two calibrations
will differ, because of the specific priors of each scenario. The
calibration effort also provides spectroscopic redshifts (to be used
as zcal) but we will focus on SFRcal measurements since they
introduce the major uncertainties in our SOM estimator.13 Although
we imagine data to be taken from next-generation facilities, galaxy
parameters are assumed to be derived with the usual prescriptions.
For instance, the SFR indicator adopted in C1 follows Kennicutt
(1998):

SFR(H α) = 5.4 × 10−42 LH α

erg s−1
M� yr−1, (5)

in which the original coefficient (7.9 × 10−42) has been converted
to Chabrier’s IMF. LH α , namely the luminosity of the H α line, must
be corrected for dust absorption. This correction can be done, e.g.
by using the Balmer decrement:

E(B − V ) = E(H β − H α)

k(H β) − k(H α)
. (6)

The numerator on the right-hand side of equation (6) is the
colour excess due to dust reddening (see equation 2 in Moustakas,
Kennicutt & Tremonti 2006), while the denominator comes from
an attenuation function k(λ), as e.g. in Cardelli, Clayton & Mathis
(1989).

13Typical spectroscopic redshift errors are subdominant in the present
analysis, therefore we assume zcal ≡ zsim.

With respect to the C2 case, there are different approaches in the
literature to derive SFRs from UV+IR luminosity. The one used in
Arnouts et al. (2013) is based on the formula

SFR(NUV, IR) = 8.6 × 10−11 LIR + 2.3LNUV

erg s−1
M� yr−1, (7)

where LIR is the total IR luminosity (8–1000μm) and LNUV is the
monochromatic luminosity in the near-UV rest-frame filter. The IR
luminosity accounts for the new-born stars enshrouded by dust that
do not contribute to the NUV term. Different dust corrections have
been proposed for equation (7), also depending on the observations
used as a proxy for LIR (see Hao et al. 2011). Further details about
these SFR indicators can be found in Kennicutt & Evans (2012) and
references therein.

As mentioned above, we aim at designing both calibration
samples as they would be assembled by means of next-generation
facilities. For instance, the spectroscopic survey required for C1
could be carried out in the optical with the 4-m Multi-Object
Spectroscopic Telescope (4MOST; de Jong et al. 2019) and in
NIR with the Multi-Object Optical and Near-infrared Spectrograph
(MOONS; Cirasuolo et al. 2014; Taylor et al. 2018) or the Prime
Focus Spectrograph (PFS; Takada et al. 2014). In principle, the
James Webb Space Telescope (JWST) could also be considered,
expanding up to the mid-IR, but it is not optimized for surveying
across 1 deg2 (see the discussion in Davidzon et al. 2018). We con-
sider the case in which 4MOST and MOONS are used to measure
zcal and SFRcal at z < 1.7. For the sake of simplicity, we exclude
higher redshifts not to rely on another nebular emission line, since
this would make the calibration sample less homogeneous. 4MOST
and MOONS specifications are further discussed in Appendix B2
(Online Supplementary Materials).

To realize the C2 sample, one could carry out FIR observations
with the proposed SPICA observatory14 or the Origins15 mission,
both expected to launch in the 2030s. We can imagine using these
telescopes to scan ∼0.1 deg2 of our field in the wavelength range
between 20 and 230μm. This would result in robust LIR estimates
up to z ∼ 3 (Gruppioni et al. 2017; Kaneda et al. 2017). To complete
equation (7) with rest-frame NUV luminosity, one can assume to
rely on the GALEX data at z < 0.5 (Arnouts et al. 2013) and
deep u and B photometry at higher redshift. Those data should
be superseded by higher resolution photometry from CASTOR16

and from the Large Synoptic Survey Telescope (LSST Science
Collaboration 2009). All these future facilities are expected to
observe COSMOS as one of their calibration deep fields (Capak,
Scolnic & Davidzon 2019), so in our simulated universe it is fair to
assume that a COSMOS-like light-cone can benefit from them as
well.

A difference between C1 and C2 is that the former provides
also zcal by construction, whereas the C2 photometric data must be
complemented by reliable redshifts to estimate galaxy rest-frame
luminosity. In the assumption of using SPICA, this shall result from
its FIR high-sensitivity grating spectrometer. We can also suppose
that the simulated light-cone, like the real COSMOS field, will be

14SPace Infrared telescope for Cosmology and Astrophysics, https://spica-
mission.org/.
15https://asd.gsfc.nasa.gov/firs/
16CASTOR is the Cosmological Advanced Survey Telescope for Optical
and ultraviolet Research proposed by the Canadian Space Agency (Côte
et al. 2012). This satellite could launch as early as 2027, surveying the UV
with a ×30 better resolution than GALEX and a ×100 larger field of view
than HST.
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Figure 11. HORIZON-AGN SOM trained with COSMOS-like colours and calibrated to work as a redshift and SFR estimator. Upper panels: the SOM is
labelled according to the redshift (zcal, left-hand panel) and SFR (SFRcal, right) of 4749 ‘spectroscopic’ galaxies coming from a pseudo-survey of calibration
(C1). The white pixels in the colour map are empty cells not covered by the C1 sample. Lower panels: in this case, the SOM is labelled according to the zcal

and SFRcal values (left- and right-hand panels, respectively) coming from an alternate calibration sample (C2). The 37 780 galaxies in this sample come from
an area of 0.1 deg2 within the HORIZON-AGN light-cone. Their SFRcal is assumed to be measured from their UV and IR luminosity, which in principle could
be obtained with a deep pencil-beam imaging survey.

within the Euclid mission footprint, so Euclid grism redshifts will
also be available.17 Other options are proposed in Appendix B3
along with a thorough discussion on sample variance (see Online
Supplementary Materials).

To summarize, the calibration sample C1 is made by 4749
bona fide galaxies in an equivalent number of cells. They are
supposed to be H α emitters (>2 × 10−17 erg s−1 cm−2) at 0 <

z < 1.7. C2 assumes to observe 19 arcmin × 19 arcmin of the
HORIZON-AGN light-cone in UV and FIR; the 40 046 galaxies in
that area are stacked (binned per cell) to obtain median SFRs. In
the former case, the logarithmic SFRcal is obtained by perturbing
the original log (SFRsim/M�/yr−1) of each bona fide galaxy with
random Gaussian noise. The Gaussian standard deviation is set
to σ = 0.18 dex from comparison to state-of-the-art surveys (e.g.
FMOS-COSMOS; Kashino et al. 2019). In C2, we do not attempt to

17Euclid will collect spatially resolved H α fluxes from z = 0.9 to 1.8 (down
to 0.5–3 × 10−16 erg cm−2 s−1, Pozzetti et al. 2016) that can be used, e.g.
for aperture correction calibration of the multislit instruments.

reconstruct LUV and LIR for the sake of simplicity. The SFRcal of a
given cell is the median SFRsim of the bona fide galaxies inside it,18

perturbed with Gaussian noise (σ = 0.1 dex, see Ilbert et al. 2015).
Eventually, the SOM is labelled with the zcal and SFRcal values of
either C1 (Fig. 11, upper panels) or C2 (lower panels). Depending
on the used bona fide sample, certain cells do not get a label.

5.2 SFR estimates and comparison with template fitting

After labelling the SOM, we apply the procedure described in
Section 4.2 to assign an SFRSOM estimate (equation 4) to each
photometric galaxy. The outcome can be compared to that obtained
in Paper I by using LEPHARE. We do not show the zSOM versus zsim

comparison as the trend is similar to Fig. 8 (upper panel). Despite

18This is expected to be a good proxy of the UV+IR estimator, whose time-
scale is similar to the 100 Myr interval used to define SFRsim in HORIZON-
AGN (it is also comparable with H α-derived measurements, see Kashino
et al. 2019).
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Figure 12. Comparison between intrinsic SFRsim versus estimates obtained from different methods: standard template fitting using the code LEPHARE (upper
row of panels); using the SOM method with the calibration described as version C2 in the text (middle panels); SOM method with a different calibration
sample, referred as C1 in the text (lower panels). Galaxies are binned in the different redshift bins according to either their zphot from LEPHARE or zSOM in the
case of the new method proposed here. Version C1 is limited to the first two z bins because of the way the calibration sample is constructed. In each panel, the
solid line indicates the 1:1 relationship and the dotted lines a ±0.15 dex offset from it.

the additional uncertainties introduced in Section 5.1, the figure of
merit does not change. For the C2 calibration, which covers the same
redshift range of Fig. 8, NMAD(zSOM) and outlier fraction remain
0.043 and 6 per cent, respectively. In the following, we focus on
the SFRSOM results, which show a remarkable improvement with
respect to template fitting estimates (SFRphot).

We remind that the estimate of physical properties via template
fitting involves a two-step procedure. First, to find their zphot,
LEPHARE fits galaxy SEDs with a composite set of templates
(described in Laigle et al. 2016); then, after fixing the redshift
of each galaxy to zphot, the code calculates the SFR (along with
stellar mass and other physical quantities) by means of another
SED library, this time made from the BC03 models. Since our
mock catalogue reproduces COSMOS2015, LEPHARE is used with
the same configuration as in Laigle et al. (2016). More details about
running LEPHARE to estimate SFRs in HORIZON-AGN can be found
in Paper I.

The upper panels of Fig. 12 show the comparison between
SFRphot and SFRsim in different bins from zphot = 0.2 to 3.
Underestimates and overestimates produced by LEPHARE are clearly
visible, generating two parallel sequences in the distribution. Such
a bimodality is due to SED-fitting degeneracies. By comparing a
dust-free vs dusty Universe, Paper I isolated the major role of dust
attenuation in driving this bimodality. In particular, the choice of the

extinction curves in the template library is pivotal. This remains true
even when the redshift is fixed to its intrinsic value instead of zphot.
Inadequate extinction models or E(B − V) values may cause indeed
an overestimation or an underestimation of the SFR, as shown in
Appendix B of Paper I.

The same photometric galaxies19 are reported in the middle and
lower panels of Fig. 12 comparing intrinsic SFRs with the values
computed through the SOM (C2 and C1 version, respectively).
The performance of the SOM is significantly better than template
fitting. The SFRSOM distribution does not show the same bimodality
observed for the SFRphot estimates because the SOM fitting is based
only on observed SEDs, which naturally include the ‘correct’ dust
attenuation law and E(B − V) range. In LEPHARE, the grid of
templates is built without strong observational priors so the library
is affected by artificial degeneracies.

Also, our method is model dependent because of the SFRcal

labels. These measurements require some theoretical prescription
(e.g. about dust attenuation or IMF). However, we argue that the
required assumptions, for either C1 or C2, introduce a milder bias
than template fitting. For instance, the C1 calibration requires the
choice of a dust extinction curve (equation 6) but the difference

19All the bona fide galaxies used for calibration have been excluded from
the comparison.
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between models is small: e.g. k(H β) − k(H α) = 1.07, 1.27 for
Cardelli et al. (1989) and Calzetti et al. (2000), respectively. On
the contrary, LEPHARE templates are constrained by data at bluer r.f.
wavelengths where the dust extinction curve plays a more important
role (Ilbert et al. 2009); for the same models in the example above:
k(2000 Å) − k(3000 Å) = 3.18 and 1.95.

With respect to the C2 sample, one may notice that the energy
balance equation is also implemented in template fitting codes (e.g.
MAGPHYS; da Cunha et al. 2008) sometimes in very elaborated
ways including also the AGN contribution (e.g. SED3FIT; Berta
et al. 2013). In fact, one may also use one of those codes instead
of equation (7) but not for the other HORIZON-AGN galaxies that
do not belong to C2. Moreover, even if the whole galaxy sample
were observed in UV and FIR, codes like MAGPHYS are extremely
expensive in terms of computational time and run only after fixing
the redshift. This two-step fitting procedure, which is of widespread
use in the literature, raises several issues (e.g. propagation of z

uncertainties, Grazian et al. 2015; Davidzon et al. 2017). On the
other hand, the SOM does not require such a procedure, providing
z and SFR estimates simultaneously.

Fig. 13 proposes the same comparison of Fig. 12 in a different
flavour, i.e. showing the median ratio SFRSOM/SFRsim in three bins
of apparent magnitude from i+ = 22 to 25. At i+ < 23 (Fig. 13,
middle panel), there is an excellent agreement of both C1 and C2
estimates with the intrinsic SFR. Such a trend is still observed
at 23 < i+ < 24 even though the most star-forming galaxies
start to be systematically underestimated by more than a factor
of 2. This is a border effect inherent to the SOM analysis already
discussed in Section 4.2; having a larger sample that allows for a
more representative SOM would mitigate this effect (Buchs et al.
2019). The discrepancy becomes more accentuated at 24 < i+ <

25 (Fig. 13, lower panel), especially for the C1 calibration that
by construction relies on bona fide galaxies systematically brighter
than the average (an effect that could be accounted for by a higher
sampling rate in those cells, see Masters et al. 2019). Concerning
LEPHARE, underestimates and overestimates would compensate
each other resulting in a misleading SFRphot/SFRsim 	 1. Therefore,
Fig. 13 does not show the median of the SFRphot distribution but only
the interval between the 16th and 84th percentile. Such a dispersion
is significantly larger than the ML estimates in all the magnitude
bins.

6 SU M M A RY A N D C O N C L U S I O N

Compared to the large number of studies measuring galaxy redshifts
with ML techniques, little progress has been made concerning
other physical parameters. In spite of that, ML methods will be
pivotal in the near future to derive stellar mass, SFH, and other
galaxy properties in extremely large data sets from surveys such as
Euclid and LSST. In addition to their unprecedented speed, these
algorithms (particularly the unsupervised ML methods) may lead to
a ‘new paradigm’ in which human intervention (i.e. the application
of interpretative models) starts after galaxy classification and
demographics have been decided by the machine. However, results
may be affected by new kinds of systematics introduced, e.g. during
the data reduction process or the training set selection. A thorough
investigation of ML performance and the role of its ‘observational
priors’ is thus imperative before such high expectations may be
deemed justified.

With this in mind, we have explored advantages and limitations
of the SOM as a galaxy parameter estimator independent of model
templates. We chose the SOM because it is an unsupervised

Figure 13. Median offset between intrinsic SFR and SOM-based estimates,
for HORIZON-AGN galaxies with COSMOS-like photometry (each panel
showing a different i+-band magnitude range). The SFRSOM estimates are
derived either using the SOM calibration C1 (red circles) or C2 (blue
triangles); the symbols are horizontally shifted of −0.03 and +0.03 dex,
respectively, for the sake of clarity. The error bars delimit the 16–84th
percentile range of each SFRSOM/SFRsim distribution. The estimates from
LEPHARE are also included, but given the bimodality of SFRphot/SFRsim (see
Fig. 9, upper panels) the figure shows only the interval between 16th and
84th percentile in running bins of SFRsim. In each panel, a dotted line marks
the 1:1 ratio.

dimensionality reduction algorithm able not only to learn the
complex structure of data but also to project it in a lower dimensional
space (2D in our analysis) still preserving its ‘topological’ features.
It should be clarified that our goal is not advocating for the
SOM to replace standard template fitting: the two complementary
approaches should be used in synergy, the same way semi-analytic
and hydrodynamical simulations have contributed to inform each
other and together improve our understanding of galaxy evolution.
For example, ML investigations may help to shed light on the
systematic M∗ underestimation in unresolved SED fitting of star-
forming galaxies (Pozzetti et al. 2007; Sorba & Sawicki 2015,
2018).

We tested the SOM with a mock galaxy catalogue (presented
for the first time in Paper I) derived from the HORIZON-AGN
hydrodynamical simulation. Galaxies cover 1 deg2 area and a
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redshift range 0 < z < 4, with a photometric baseline similar to
state-of-the-art surveys (broad-band filters from u to [4.5μm]).
The SOM has been trained using as input only galaxy colours,
to be an analogue of ‘classical’ SED-fitting codes like LEPHARE

or EAZY (Brammer, van Dokkum & Coppi 2008). In principle,
other (e.g. morphological) features may be trained for, but this is
left to future work. After classifying the mock galaxies in about
6400 different classes (called ‘cells’ in our jargon), we explored
the connections between the class/cell a galaxy belongs to and
its physical properties. Then, we calibrated a posteriori the SOM
by labelling each cell with a value of z and SFR, so that other
galaxies in the same cell may have a proxy of their own redshift and
star formation activity. Eventually, we used the calibrated SOM to
estimate the SFR for a subsample of about 375 000 mock galaxies
between z ∼ 0 and 3. Our findings are summarized in the following.

(i) The SOM is an effective tool to visualize the characteristics
of a complex, non-linear manifold as the HORIZON-AGN light-
cone. Galaxies are organized in a (human-readable) 2D grid without
smearing out the features of their original parameter space. More-
over, this is computational inexpensive, suggesting a convenient
way to describe and inspect the properties of extremely large
simulations (Mitra, Davé & Finlator 2015).

(ii) Since in our case the parameter space is made by observer’s
frame colours, the SOM works like an SED-fitting algorithm
without a precompiled library of templates: the SOM adapts its
cells/weights to the data so that galaxies with similar colours (i.e.
similar SEDs) are enclosed the same cell. We also find that the
high-resolution spectra turn out to be nicely classified, in spite of
using only broad-band photometry for training.

(iii) We confirm that objects in the same cell have similar redshift
[as shown in Masters et al. (2015) in the observed universe] but we
also find that their M/L and sSFR are similar, with a typical scatter
of 0.15 and 0.3 dex, respectively. Also M and SFR, after taking into
account a normalization factor, are well correlated to the cell where
a galaxy lies. After including photometric uncertainties (modelled
after the COSMOS2015 survey) and rejecting objects with S/N
< 1.5 in any band, we trained again the SOM: the correlation
between galaxy properties and cells was still present, although with
larger scatter. This indicates that our analysis can be reproduced
in real optical–NIR surveys (provided a sufficient depth of the
observations).

(iv) We have measured the redshift of COSMOS-like (S/N > 1.5)
galaxies through the SOM, finding a fairly good agreement with
intrinsic zsim but a larger scatter than template fitting: The zSOM

versus zsim comparison results into NMAD = 0.044 and about
6 per cent of catastrophic errors, whereas with LEPHARE they are
0.024 and 1.5 per cent, respectively. On the other hand, the redshift
bias in the SOM case is significantly smaller (−0.001, compared
to −0.011 in LEPHARE). We considered such a result sufficiently
good for our purposes so we did not attempt to improve the redshift
estimator (as done, e.g. in Buchs et al. 2019).

(v) Exploiting these SOM properties, we have developed a new
SFR estimator for photometric galaxies. We have assumed that a
small fraction of them (10 per cent or less) has been followed up
to serve as a calibration subsample, providing labels (zcal, SFRcal)
to the SOM cells. We have discussed possible follow-up strategies
with optical–NIR spectroscopy or with UV+FIR instruments, and
the possible bias introduced by each of them. After accounting for
such uncertainties, we have compared the SFRSOM of COSMOS-like
galaxies with their intrinsic SFRsim. Overall, the dispersion (defined
as the range between 16th and 84th percentile in logarithmic

bins of SFR) is ±0.2 dex, with a small systematic offset [median
log (SFRSOM/SFRsim) 	 0.02–0.04 dex]. The most active galaxies
are an exception, being significantly underestimated because they
are in cells whose majority of objects (including the calibration
ones) are less star forming.

(vi) LEPHARE SFRphot estimates are also available in HORIZON-
AGN and we have compared them to the new indicator. The latter
performs remarkably better: SFRSOM are more precise but also
significantly less biased, as they do not rely on a template library that
introduces artificial degeneracies in the SED fitting (as investigated
in Paper I).

The suboptimal performance of the SOM as a redshift machine
found in this analysis is partly due to the fact that we have not entirely
followed Masters et al. (2015) prescriptions, e.g. we did not use cell
occupation as a prior nor we distinguished a deeper calibration
sample from the rest of the survey (or use a combination of multiple
fields). We note that the comparison is not straightforward since
Masters et al., working with observed galaxies, are forced to use a
spectroscopic subsample that is biased to some extent (see Paper
I). However, as highlighted in Masters et al., on that spectroscopic
sample their zSOM figure of merit is better than LEPHARE.

On the other hand, the better performance of our SOM method to
compute SFR does not imply that it is bias free: some systematics
may be introduced while selecting the calibration galaxies and
measuring their SFRcal. We argue however that model assumptions
in the SFRcal calculation are generally less severe than those
involved in the construction of libraries from stellar population
synthesis models, with a coarse grid of E(B − V) values, simplistic
SFHs, fixed stellar metallicity, and other limitations to which
SFR is sensitive (Papovich et al. 2001, see also discussion in
Paper I). Moreover, if the subsample used for calibration turns
out to be strongly biased it can be replaced by a better one
without reclassifying the target galaxies, while any improvement
in the template library of LEPHARE would require to run again
that (computationally expensive) code over the whole catalogue.
It should also be emphasized that estimates of redshift and physical
parameters are provided simultaneously – a unique advantage of the
SOM method that in future developments shall allow for a better
treatment of z-error propagation.

We aim at transferring our method to the real COSMOS catalogue
in the next paper of this series, even though data available in that
field may be able to calibrate the SFR only in a limited portion of the
SOM. None the less, this effort can result in an original comparison
between different estimators. For example, one could derive SFR
from radio continuum stacking (as in Karim et al. 2011) versus
UV+IR luminosity (as in Ilbert et al. 2015) for galaxies in the same
cells, easily identifying the region of the parameter space where the
indicators disagree.

This work is also intended to provide a new science case
for upcoming large-area surveys. The SOM requires an accurate
calibration sample relatively modest in size (but large enough to
limit sample variance effects, Buchs et al. 2019), and then billions
of galaxies (e.g. from the 15 000 deg2 of Euclid) can be efficiently
mapped to get a proxy for their redshift and physical properties.
This is particularly true for the Euclid Deep Fields, which will have
a photometric baseline similar to the one assumed here, thanks to the
complementary surveys in optical (Hawaii two-O, PI: D. Sanders)
and MIR (Euclid/WFIRST Spitzer Legacy Survey, PI: P. Capak).
We also mentioned the contribution that 4MOST, MOONS, and
PFS may provide to calibrating the galaxy colour space, owing to
their unprecedented multiplexing. Our case study also supports the
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concept of a deep surveying of COSMOS with CASTOR, SPICA,
and Origins, to continue its use as a reference field for the coming
decades.
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