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ABSTRACT

Cosmic rays (CRs) are thought to play a dynamically important role in several key aspects of galaxy evolution, including the structure
of the interstellar medium, the formation of galactic winds, and the non-thermal pressure support of halos. We introduce a numerical
model solving for the CR streaming instability and acceleration of CRs at shocks with a fluid approach in the adaptive mesh refinement
code RAMSES. CR streaming is solved with a diffusion approach and its anisotropic nature is naturally captured. We introduce a shock
finder for the RAMSES code that automatically detects shock discontinuities in the flow. Shocks are the loci for CR injection, and
their efficiency of CR acceleration is made dependent on the upstream magnetic obliquity according to the diffuse shock acceleration
mechanism. We show that the shock finder accurately captures shock locations and estimates the shock Mach number for several
problems. The obliquity-dependent injection of CRs in the Sedov solution leads to situations where the supernova bubble exhibits
large polar caps (homogeneous background magnetic field), or a patchy structure of the CR distribution (inhomogeneous background
magnetic field). Finally, we combine both accelerated CRs with streaming in a simple turbulent interstellar medium box, and show that
the presence of CRs significantly modifies the structure of the gas.

Key words. magnetohydrodynamics – methods: numerical – cosmic rays – shock waves – ISM: supernova remnants –
ISM: structure

1. Introduction

Cosmic rays (CR) are understood to play an important role in
astrophysical plasmas due to their capacity to ionise the inter-
stellar matter (Padovani et al. 2009) and their non-negligible
pressure support to gas dynamics according to evolutionary pro-
cesses that differ substantially from the thermal component since
they diffuse efficiently and have different dissipation timescales.
CRs are likely produced at shocks through the process of dif-
fuse shock acceleration (DSA; see Bell 1978; Drury 1983;
Blandford & Eichler 1987; Jones & Ellison 1991; Berezhko &
Ellison 1999 and Marcowith et al. 2016 for a recent review).
Recent advances in the numerical modelling of DSA through
hybrid particle-in-cell codes (Caprioli & Spitkovsky 2014) have
provided accurate predictions about the amount of CRs injected
at shocks as a function of various properties of the shock includ-
ing the Mach number, the obliquity of the magnetic field, or
the pre-existing amount of CRs (Caprioli et al. 2018). There is
a large body of evidence for CRs accelerated in the shocked-
shell material of supernova (SN) explosions (e.g. Koyama et al.
1995; Decourchelle et al. 2000; Aharonian et al. 2004; Warren
et al. 2005; Helder et al. 2009; Ackermann et al. 2013) and
it has been shown that they have a significant impact on the
shell structure and dynamics (Chevalier 1983; Dorfi 1990; Zank
et al. 1993; Wagner et al. 2009; Ferrand et al. 2010; Castro et al.
2011; Pfrommer et al. 2017; Pais et al. 2018; Diesing & Caprioli
2018). Supernova remnants (SNRs) are expected to be the main
source of CRs permeating the entire interstellar medium (ISM)

of galaxies (Aguilar et al. 2015), though the consistency of the
accelerated CR spectrum in a SNR with that of entire galaxies is
still intensely debated (see Blasi 2013 for a review).

Cosmic rays likely have an important dynamical impact
over the ISM on all galactic scales. On small scales, while
released by a SNR, CRs possess enough pressure to overcome
the background magnetic and gas pressures and trigger differ-
ent types of plasma instabilities which result in the production
of waves and turbulence (Ptuskin et al. 2008; Malkov et al.
2013). This self-generated turbulence can confine CRs over
distances and amounts of time that depend on the conditions
prevailing in the ISM, especially the ionisation degree (Nava
et al. 2016, 2019). The generation of waves contribute to locally
heating the warm ionised medium (Wiener et al. 2013b). On
larger galactic scales, comparable to the disc height, CR gra-
dients can modify the dynamics of Jeans unstable regions in
the atomic phase (Commerçon et al. 2019), and they can propel
cold galactic-wide outflows (Jubelgas et al. 2008; Wadepuhl &
Springel 2011; Uhlig et al. 2012; Hanasz et al. 2013; Salem &
Bryan 2014; Salem et al. 2014; Girichidis et al. 2016, 2018;
Simpson et al. 2016; Recchia et al. 2017; Fujita & Mac Low
2018; Mao & Ostriker 2018) with a preferential impact in low-
mass galaxies (Booth et al. 2013; Jacob et al. 2018, Dashyan &
Dubois 2019). However, the capability of winds to carry mass
and momentum depends on the detailed CR physics such as
streaming (Ruszkowski et al. 2017b; Wiener et al. 2017; Holguin
et al. 2019; Butsky & Quinn 2018), or taking into account the
unresolved multi-phase nature of the gas and its impact on CR
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transport (Farber et al. 2018). CRs also boost the dynamo ampli-
fication of the magnetic field in disc galaxies (Hanasz et al. 2004,
2009a,b; Pakmor et al. 2016).

On very large cosmological scales CRs are released in
shocks (Miniati et al. 2000, 2001; Ryu et al. 2003; Skillman et al.
2008; Pfrommer et al. 2007, 2008, 2017; Vazza et al. 2009, 2012)
with external cosmological infall of gas producing the strongest
shocks, while pre-processed internal shocks in halos drive the
bulk of the shock distribution in the more moderate strength
regime.

Similarly, strong shocks are produced in jets from active
galactic nuclei; they release large amounts of CRs as observed
in radio emission (Fanaroff & Riley 1974; Pierre Auger
Collaboration 2007; Croston et al. 2009) and help to release the
feedback back to the hot gas from galaxy clusters (Croston et al.
2008; Guo & Oh 2008; Sijacki et al. 2008; Guo & Mathews 2011;
Fujita & Ohira 2011; Jacob & Pfrommer 2017; Ruszkowski et al.
2017a; Ehlert et al. 2018). However, again, their impact might
significantly differ depending on which CR dynamical processes
are modelled and which ignored.

In a previous work (Dubois & Commerçon 2016), we intro-
duced a numerical model for anisotropic CR diffusion. Here,
we extend it by including a model of the CR streaming insta-
bility and CR injection at shocks through DSA in the adaptive
mesh refinement code RAMSES (Teyssier 2002). In another work
(Brahimi et al. in prep.) we introduce new diffusive transport
for CRs accounting for the generation of turbulence produced
by the streaming. This ensemble of work aims to provide a con-
sistent description of CR dynamical effect on the interstellar or
intergalactic media. In the same view, a recent model has been
proposed by Thomas & Pfrommer (2019).

In Sect. 2, we introduce the full set of CR magneto-
hydrodynamics including the streaming and acceleration terms,
whose numerical modelling and tests are respectively tackled in
Sects. 3 and 4. We finally test CR acceleration and streaming
combined in turbulent ISM experiments in Sect. 5.

2. Magneto-hydrodynamics with cosmic rays

By taking the energy moment of the Fokker–Planck CR transport
equation (Drury & Voelk 1981), the following set of differential
equations to be solved for cosmic-ray magneto-hydrodynamics
(CRMHD) of a fluid mixture made of thermal particles and CRs
can be obtained:

∂ρ

∂t
+ ∇.(ρu) = 0, (1)

∂ρu
∂t

+ ∇.
(
ρuu + Ptot − BB

4π

)
= 0, (2)

∂e
∂t

+ ∇.
(
(e + Ptot)u − B(B.u)

4π

)
= −PCR∇.u − ∇.FCR,d +Lrad, (3)

∂B
∂t
− ∇ × (u × B) = 0, (4)

∂eCR

∂t
+ ∇. (eCRu + (eCR + PCR)ust)

= −PCR∇.u − ∇.FCR,d +Lst +Hacc +Lrad,CR. (5)

Here ρ is the gas mass density, u is the gas velocity, ust is the
streaming velocity, B is the magnetic field, e = 0.5ρu2 + eth +
eCR + B2/8π is the total energy density, eth is the thermal energy
density, and eCR is the CR energy density; Ptot = Pth + PCR +

Pmag is the sum of thermal Pth = (γ − 1)eth, CR PCR = (γCR −
1)ecr, and magnetic Pmag = 0.5B2/(4π) pressures, where γ and
γCR are the adiabatic indexes of the thermal and CR com-
ponents, respectively. We note that all energy components ei
are energies per unit volume ei = Ei/∆x3, where ∆x is the cell
size. The terms on the right-hand side of the equations are
treated as source terms with PCR∇.u the CR pressure work
term, FCR,d =−D0b(b.∇eCR) the anisotropic diffusion flux term,
D0 the diffusion coefficient (usually taken as a constant value for
simplicity, but it can also be a function of local MHD quantities),
b = B/||B|| the magnetic unity vector, and a total radiative loss
term Lrad =Lrad,th + Lrad,CR−>th composed of the thermal Lrad,th
and CR Lrad,CR−>th radiative loss terms, where the CR loss term
(Lrad,CR−>th =Lrad,CR +Hrad,CR−>th) is the non-conserving sum of
radiative losses from cosmic raysLrad,CR turning as a heating rate
Hrad,CR−>th for the thermal component. Finally, and this is the
core of this paper, we detail how the streaming instability terms
∇. ((eCR + PCR)ust) (advection-diffusion term) and Lst (heating
term), and the CR acceleration at shocksHacc are modelled.

We use the RAMSES code detailed in Teyssier (2002) to solve
these equations with adaptive mesh refinement (AMR). The full
set of equations is solved with the standard MHD solver of
RAMSES described in Fromang et al. (2006), where the right-
hand side terms of Eq. (3) are treated separately as source terms.
The induction equation (Eq. (4)) is solved using constrained
transport (Teyssier et al. 2006), which by construction guarantees
at all times that ∇.B ' 0 at machine precision. Godunov fluxes
are solved with the approximate Harten–Lax–van Leer Discon-
tinuities (HLLD) Riemann solver (Miyoshi & Kusano 2005)
and the minmod total variation diminishing slope limiter are
modified to account for the extra energy components and total
pressure made of the thermal and CR component. Accordingly,
the effective sound speed used for the Courant–Friedrichs–Lewy
time-step condition accounts for the extra pressure components
(i.e. total pressure of the fluid). The implementation of the
anisotropic CR diffusion in RAMSES, which our new imple-
mentation of CR streaming relies on, is described in Dubois &
Commerçon (2016).

It should be noted that Eq. (5) can be expanded to as many
CR energy bins as required to sample a full spectrum of CRs
in energy-momentum space with source terms communicating
the energy fluxes between the various energy bins (see Miniati
2001; Girichidis et al. 2014; Winner et al. 2019, for such efforts
in those directions). We ignore this extra level of complexity to
represent the entire spectrum of CR energy by a single bin of
energy. For sake of completeness, we introduced the anisotropic
diffusion term as well as the CR radiative loss terms (trivially
modelled as a simple density and CR energy-dependent term;
see e.g. Enßlin et al. 2007; Guo & Oh 2008) in the equations; we
do not make use of them in the various tests of this paper, i.e.
D0 = 0 and Lrad,CR = 0.

3. Cosmic-ray streaming

3.1. Numerical implementation

Cosmic rays propagating faster than the Alfvén velocity
uA = B/

√
4πρ excite Alfvén waves, which in turn drive the scat-

tering of the CR pitch angle with magnetic field lines. This
coupling leads to a reduced CR bulk velocity at the Alfvén
velocity and confines the CR streaming transport along the
field lines and their own gradient of pressure (Wentzel 1968;
Kulsrud & Pearce 1969; Skilling 1975). Several damping mecha-
nisms, such as ion-neutral damping, non-linear Landau damping,
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or turbulence damping (Kulsrud & Pearce 1969; Yan & Lazarian
2002; Farmer & Goldreich 2004; Lazarian & Beresnyak 2006;
Wiener et al. 2013a), can lead to a significant suppression of
these self-excited Aflvén waves and can increase the effective
value at which CRs are allowed to stream down their own
gradient at super-Alfvénic velocities ust =− fSAuAsign(b.∇eCR),
where fSA ≥ 1 is the super-Aflvénic boost factor of the streaming
velocity.

In addition, while CRs scatter onto the Aflvén waves, they
experience a drag force, whose work is transferred to the thermal
pool at the following rate:

Lst =−sign(b.∇eCR)uA.∇PCR. (6)

We note that this heating term has fSA = 1 since only the
Alfvén waves mediate the energy exchange between CRs and the
thermal component (see e.g. Ruszkowski et al. 2017b). This term,
which is by construction always a heating (resp. loss) term for
the thermal (resp. CR) component, is obtained by simply differ-
entiating the values of the CR energy density with neighbouring
cells.

For simplicity, in the rest of this work, whose aim is to test
the implementation of CR streaming, we systematically assume
fSA = 1. The advection or diffusion term of streaming ∇.((eCR +
PCR)ust) can be solved via two distinct approaches. One is to
update the CR energy density using an explicit upwind method;
however, since the streaming velocity can become discontinu-
ous at extrema of eCR, it modifies the condition of stability of
the solution to ∆t ∝ ∆x3 (Sharma et al. 2009). Sharma et al.
(2009) proposed regularising the streaming velocity by replacing
sign(b.∇eCR) by tanh(hb.∇eCR/eCR) in order to obtain a less con-
straining time-step condition of ∆t = h∆x2/(2eCRuA), and where
h should be the size of a few cells. Nonetheless, this time-step
condition is still too constraining due to the quadratic depen-
dency on cell size, and it is necessary to rely on a different
strategy to make such a numerical implementation practicable
in all possible situations. Sharma et al. (2009) suggested using
an implicit solver for the regularised upwind method. Here we
decided to take a different route that relies on the modelling
of the anisotropic diffusion with an implicit solver, as done
in Dubois & Commerçon (2016).

We can rewrite the streaming velocity as

ust = − b.∇eCR

|b.∇eCR|uA, (7)

which, when recast into ∇.((eCR + PCR)ust), can be rewritten as
a diffusion term (see also Uhlig et al. 2012, where the same
diffusion approach for the isotropic version of CR streaming is
used):

∇.FCR,s = ∇.(−Dstb(b.∇eCR))

= ∇.
− (eCR + PCR)|B|
|b.∇eCR|

√
4πρ

b(b.∇eCR)

 . (8)

Therefore, this advection-diffusion part of the streaming insta-
bility can be treated as an addition to the standard FCR,d CR dif-
fusion term (FCR,ds = FCR,d + FCR,s), for clarity hereafter written
as follows:

∇.FCR,ds = ∇. (−Db(b.∇eCR)) , (9)

where D = D0 + Dst. The FCR,ds diffusion flux can be arbitrarily
decomposed into an anisotropic and isotropic part

∇.FCR,ds =∇. (−D‖b(b.∇eCR) − Diso∇eCR
)
, (10)

where D‖ = (1 − fiso)D, Diso = fisoD, and fiso ≤ 1. We
briefly recall the framework of the implicit solver developed
in Dubois & Commerçon (2016). For the 2D case, the time
update of the CR energy by the anisotropic part (the isotropic
part is trivially obtained) of the diffusion flux is

en+1
i, j + ∆t

Fn+1
i+ 1

2 , j
+ Fn+1

i, j+ 1
2
− Fn+1

i− 1
2 , j
− Fn+1

i, j− 1
2

∆x
= en

i, j, (11)

where the cell-centred fluxes are computed with cell-cornered
values using the symmetric scheme from Günter et al. (2005):

Fani
i+ 1

2 , j
=

Fani
i+ 1

2 , j− 1
2

+ Fani
i+ 1

2 , j+
1
2

2
,

Fani
i, j+ 1

2
=

Fani
i− 1

2 , j+
1
2

+ Fani
i+ 1

2 , j+
1
2

2
.

The anisotropic cell corner flux is

Fani
i+ 1

2 , j+
1
2

=−D̄b̄x

(
b̄x
∂̄e
∂x

+ b̄y
∂̄e
∂y

)
, (12)

where barred quantities are arithmetic averages over the cells
connected to the corner, i.e.

b̄x =

bn
x,i+ 1

2 , j
+ bn

x,i+ 1
2 , j+1

2
,

b̄y =

bn
y,i, j+ 1

2
+ bn

y,i+1, j+ 1
2

2
,

∂̄e
∂x

=
en+1

i+1, j+1 + en+1
i+1, j − en+1

i, j+1 − en+1
i, j

2∆x
,

∂̄e
∂y

=
en+1

i+1, j+1 + en+1
i, j+1 − en+1

i+1, j − en+1
i, j

2∆x
,

D̄ =
Dn

i, j + Dn
i+1, j + Dn

i, j+1 + Dn
i+1, j+1

4
.

We note that all hydrodynamical variables in RAMSES are cell-
centred except for the magnetic field which is face-centred. The
streaming diffusion coefficient is computed as

Dn
i, j =

(en
i, j + Pn

i, j)√
4πρi, j

|B̃|ni, j
˜|b.∇e|ni, j

, (13)

where upper tilde quantities stand for cell-centred quantities
reconstructed from a combination of cell-centred and face-
centred quantities:

|B̃|ni, j =
1
2

√(
Bn

x,i− 1
2 , j

+ Bn
x,i+ 1

2 , j

)2
+

(
Bn
y,i, j− 1

2
+ Bn

y,i, j+ 1
2

)2
,

˜|b.∇e|ni, j =
1

4∆x|B̃|ni, j

∣∣∣∣∣(Bn
x,i− 1

2 , j
+ Bn

x,i+ 1
2 , j

) (
en

x,i+1, j − en
x,i−1, j

)
+

(
Bn
y,i, j− 1

2
+ Bn

y,i, j+ 1
2

) (
en
y,i, j+1 − en

y,i, j−1

)∣∣∣∣∣ . (14)

It should be noted that, in principle, the solver can deal with
any arbitrary large values of the diffusion coefficient; however,
the number of iterative steps of the implicit solver to converge
towards the solution can be large for a large diffusion coefficient,
typically at extrema of |b.∇eCR| where this value can become
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Fig. 1. Evolution of a 1D sinusoid of CR energy density with streaming
advection only as a function of position with 512 cells and imposing a
constant Alfvén velocity of 1. The solution is made of two plateaus as
the maxima are capped over time, due to the infinite streaming diffusion
coefficient, while the two regions between the two plateaus move at a
velocity of ±γCR = ±1.4.

close to zero. In practice, we cap the value of the streaming
diffusion coefficient to 1028 cm2 s−1 in all practical astrophysi-
cal applications to reduce the spectral condition number of the
matrix involved in the implicit solver in order to save compu-
tational iterations. From the 2D case, the method is trivially
expanded into three dimensions.

3.2. Tests of CR streaming

3.2.1. One-dimensional sinusoid

In order to test the implementation of the CR advection-diffusion
streaming term, a 1D sinusoid experiment is set up where the
rest of the physics is deactivated, and with γCR = 1.4 similar to
the test proposed by Sharma et al. (2009). Unfortunately, there
is no known analytical solution to that experiment, but we can
test the numerical convergence of the implementation to test its
self-consistency. The initial condition for CR energy density is
eCR = 1 + 0.5 sin(2πx), and we assume that the Alfvén velocity
equals 1 oriented along the x-axis. In this 1D test we set the maxi-
mum streaming diffusion coefficient to be no larger than 100. As
shown in Fig. 1 for this 1D test problem using 512 cells (level 9),
the evolved solution is a sinusoid where the extrema are cropped
and where the regions of maximum slope are advected at γCRust
(i.e. −1.4 if ∂ECR/∂x > 0 and +1.4 if ∂ECR/∂x < 0). A more
evolved time shows a higher cropped fraction of the high and
low part of the sinusoid. We perform a consistency test by vary-
ing the resolution of the simulation from 16 cells to 1024 cells,
where the highest resolution simulation is used as a reference for
comparison. Figure 2 shows the solution at time t = 0.02 for 16,
32, 64, 128, 256, and 1024 cells, and their relative variation to
the reference run. The solution shows very good numerical con-
vergence towards the high-resolution reference solution, which
never exceeds a few percentage points relative variation even
when using only 16 cells to resolve the wavelength of the sinu-
soid. Finally, the L2 norm (again using the 1024-cell run as a
reference) is computed and has a convergence with a scaling of
∆x1.87±0.08, as shown in Fig. 3.

3.2.2. Two-dimensional sinusoid in a looped magnetic field

In this test case we try to mimic the 1D sinusoid problem embed-
ded in a non-uniform magnetic configuration. We initialise a
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Fig. 2. Solution at t = 0.02 of the sinusoid experiment with different
resolution from uniform level 4 to 8 (from light red to dark red) and
level 10 (in black). The relative errors are compared to the reference
numerical solution of level 10. Even for very low resolution the relative
error is never larger than a few percentage points.

0.01 0.10

∆x

0.001

0.010

0.100

L
2

L2α∆x
1.87

Fig. 3. Convergence of the L2 norm for the sinusoid experiment using
the solution at t = 0.02. The norm is compared to the reference numeri-
cal solution of level 10. The L2 norm scales with ∆x1.87±0.08 as indicated
by the dashed line.

2D looped magnetic field centred on the middle of the box,
hence in the circular coordinate system the magnetic field is
purely tangential. We also initialise the CR energy density in
the same way as the previous 1D test case with a θ angle
dependency eCR = 1 + 0.5 sin(θ) for a radius 0.15< r< 0.35 and
eCR = 10−5 for r≤ 0.15 and r≥ 0.35. In this 2D test we set the
maximum streaming diffusion coefficient to be no larger than 1
and an isotropic component of fiso = 10−2; we discuss the effect
of changing these values on the solution in Appendix A. We
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Fig. 4. Cosmic-ray energy density maps at t = 0 (top left) and t = 0.02
(top right) for an initial angle-dependent sinusoid within a purely cir-
cular magnetic field with an Alfvén velocity of 1 and a resolution of
1282 cells. The energy is evolved with the streaming advection-diffusion
term only. The bottom panel shows the radially averaged energy in the
radius interval r = [0.15, 0.35] as a function of the polar angle θ.

choose an Alfvén velocity of 1, and again we deactivate the rest
of the hydrodynamics. Figure 4 shows the result at times t = 0
and t = 0.02. The solution shows a similar angle-dependent pat-
tern for the evolved solution at t = 0.02 to that of the 1D case
at the same time (i.e. the value of energy density is close to uni-
form around regions of initial extrema). We note that the capping
of extrema is slightly late in this 2D configuration with respect
to the 1D test: compared with Fig. 1, where the maximum and
minimum are respectively 1.2 and 0.7 at time t = 0.02, here in
2D we obtain 1.28 and 0.6, respectively. We also tested the 2D
streaming for a ten times wider range of initial CR energy den-
sity. The result, not shown here, is qualitatively similar to that of
our reference test.

4. Shock-accelerated CRs

4.1. Shock finder algorithm

Our shock finder algorithm relies on several criteria. A shock
cell is identified as such when all of the following conditions
are met: (i) ∇T.∇S > 0 (Ryu et al. 2003, where S = T/n2/3 is
the pseudo-entropy) and ∇T.∇ρ > 0 (which filters out tangen-
tial discontinuities, Schaal & Springel 2015); (ii) ∇.u is negative
(compression region); (iii) ∇.u is a local minimum along the nor-
mal to ns =−∇T/|∇T | (where the local value of ∇.u is compared
to the cloud-in-cell interpolated value of ∇.u at one ∆x local
cell distance in the upstream and downstream of the local cell);
and (iv) the Mach number is largerM>Mmin, withMmin ' 1.5.
Keeping in mind these conditions, the Mach number of eligi-
ble cells is computed according to the criteria using upstream
(pre-shock) and downstream (post-shock) fluid variables. Using
the Rankine-Hugoniot shock jump relations, the Mach number
can be computed from density, temperature, or pressure values.
For instance, the Mach number for a single thermal component

can be obtained from the ratio RP = P2/P1 of the downstream
to upstream pressures (here and in the following we keep the 1
and 2 subscripts for the upstream and downstream quantities),
leading to

M2 =
1

2γ
[
(γ − 1) + (γ + 1)RP

]
. (15)

We note that it is also possible to employ the jump relations for
density or velocity; however, they quickly saturate at high Mach
numbers, while pressure jumps offer better leverage for probing
the values of the Mach number.

Since our aim is to apply this shock finder to a thermal–CR
mixture, the following relation (Pfrommer et al. 2017) should be
used instead:

M2 =
1
γe

RPC
C − [

(γ1 + 1) + (γ1 − 1)RP
]
(γ2 − 1)

. (16)

HereC= [(γ2 +1)RP + (γ2−1)](γ1−1), γi = Pi/εi +1 for i = {1, 2}
(respectively upstream and downstream) and γe = (γPth,2 +
γCRPCR,2)/P2 for the downstream region. In the limit where the
weighted adiabatic indexes are equal γe = γ1 = γ2 this formula
for the Mach number is equal to the classical formulation of
Eq. (15).

The normal to the shock is provided by the gradient of tem-
perature ns. A first guess of the upstream and downstream values
of pressure are obtained by cloud-in-cell interpolating the values
of the 2D cell pressure (where D is the dimensionality of the sys-
tem to simulate), one cell and two cells away from the shocked
cell candidates along ns and −ns for the upstream and down-
stream quantities, respectively. The upstream and downstream
pressures are respectively the minimum and maximum of pres-
sures obtained from the one cell and two cell distances away
from the shocked cell. This first guess of the Mach number is
kept for cells with moderate Mach numbersM < 5, while cells
with higher Mach numbers require probing regions further than
two cells away from the shocked cell to properly evaluate their
Mach numbers. As we see in the tests, the stronger the shock,
the larger the number of cells to sample the discontinuity, and
we thus need to probe more distant cells to accurately capture
the true upstream and downstream values of the shock. This first
guess is limited to two cells to fully exploit the code structure of
RAMSES that tracks at each time the 3D − 1 neighbouring octs
of each cell (an oct contains 2D cells), including virtual octs that
belong to another domain (hence, going further away requires
communication between CPU domains and can be prohibitive,
which is why we limit this search to the strongest shocked cells).

The second guess of the Mach number, and other related
quantities (see next section), is obtained by moving forward
along the normal to the shock by steps of ∆x up to four cells
distance, thus probing both 3∆x and 4∆x in the upstream and the
downstream regions. For the new value of upstream and down-
stream pressures (and other related quantities) to be accepted for
the calculation of the new Mach number, we check that the slope
of the thermal energy is getting shallower (the profile must flatten
as we are moving outwards) by computing the new gradient of
thermal energy and comparing to its value from the previous dis-
tance step, and that the total pressure and the density both have
a new extremum (either an upstream minimum or a downstream
maximum). Our experiments with Mach numbers as strong as
1000 has lead us to use up to four cells distance to probe the esti-
mated Mach number of strong shocks, hence we always use this
maximum value in the following, but our implementation can
work with arbitrarily larger distances.
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4.2. Cosmic-ray acceleration at shocks

At shocks the kinetic energy flux of the upstream flow
φK,1 = 0.5ρ1u3

1 (where the velocities are measured in the moving
shock frame) is dissipated by the shock interface into a ther-
mal energy flux φth,2 = eth,dissu2, CR energy φCR,2 = eCR,dissu2 and
the remaining into kinetic and magnetic energy. For classical
strong shocks without CR acceleration, the ratio of post-shock
thermal (dissipated) energy to the pre-shock kinetic energy
eth,diss/(0.5ρu2

1) can be obtained from the Rankine–Hugoniot
jump relations, and tends towards 0.56 for γ= 5/3. Once shocked
cells are identified, the amount of accelerated CRs is obtained
with the CR flux following

φCR = η(M, XCR, θB)edissu2, (17)

where ediss = eth,diss + eCR,diss is the dissipated internal energy of
the gas, u2 is the downstream velocity in the frame of the moving
shock, and η(M, XCR, θB) is the acceleration efficiency of CRs at
shocks, which is a function of the Mach number, the upstream
CR-to-thermal ratio XCR = PCR,1/Pth,1, and the magnetic obliq-
uity to the normal of the shock θB. Instead of measuring the
downstream velocity in the shock frame (which requires know-
ing both the upstream and downstream velocities in the lab
frame, as well as the jump density ratio Rρ), we replace u2 by
Mcs,1/Rρ, where cs,1 is the upstream sound speed. The dissi-
pated energy can be directly measured from the upstream and
downstream thermal and CR energy densities

ediss = eth,2 + eCR,2 − eth,1Rγρ − eCR,1RγCR
ρ , (18)

where eth,2 and eth,1 are respectively the downstream and
upstream thermal energy densities, eCR,2 and eCR,1 the down-
stream and upstream CR energy densities, and Rρ the jump
density ratio. The jump density ratio is obtained from the direct
evaluation of the upstream and downstream densities

Rρ =
ρ2

ρ1
. (19)

The Rγρ and RγCR
ρ terms account for the fact that the upstream

thermal and CR energies are also adiabatically compressed
at the shock. Finally, the new CR energy is updated using
∆eCR = φCR∆t/∆x.

According to detailed simulations of accelerated CRs at
shocks (Caprioli & Spitkovsky 2014), their acceleration effi-
ciency depends on both the Mach number of the shock and the
upstream magnetic field orientation with respect to the normal to
the shock θB = arccos(b1.ns). The dependency of the efficiency
of CR acceleration with this so-called “magnetic obliquity”
can be factorised out, η(M, XCR, θB) = η0ξ(M, XCR)ζ(θB), and
approximated by the following functional form (Pais et al. 2018):

ζ(θB) =
1
2

[
tanh

(
θcrit − θB

δθ

)
+ 1

]
, (20)

where θcrit = π/4 and δθ = π/18. Therefore, we probe the angle
θB by evaluating the orientation of the magnetic vector in the
upstream region using the cell that defines the value of the
upstream pressure as defined in the previous section.

The dependency of the acceleration ξ(M, XCR) is obtained
from the results of Kang & Ryu (2013), and is an increasing
function of bothM and XCR. They provide values of the accel-
eration efficiency for two values of XCR, namely 0 and 0.05,
and ten values of the Mach number (from 1.5 to 100). Since,
to the best of our knowledge, no work has explored the cases
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Fig. 5. Acceleration efficiency ξ(M, XCR) as a function of the Mach
numberM for different values of the upstream CR-to-thermal pressure
ratio XCR. The values are obtained from the XCR = 0 and 0.025 values
of Kang & Ryu (2013) and renormalised to a maximum value of 1.

with XCR > 0.05, in order to explore the full range of admis-
sible values of XCR we simply interpolate and extrapolate the
values of ξ(M, XCR) from XCR = 0 and 0.05, sampling values
of XCR = 0.025, 0.1, 0.2, 0.5, and 1. In addition, we fix those
sampling values so that ξ is a monotonic increasing function of
M and XCR. We note that their obtained values of the accelera-
tion efficiency saturates at η0 = 0.225, a factor of ∼2 larger than
the maximum values obtained by Caprioli & Spitkovsky (2014)
for parallel shocks (θB = 0). We thus renormalise ξ(M, XCR)
by 0.225 so that the maximum allowed efficiency is explic-
itly controlled by η0. The values of ξ are shown in Fig. 5
and are available as tabulated values in Appendix B. We note
that obliquity-dependent CR acceleration simulations conducted
by Caprioli et al. (2018) with a pre-existing population of CRs in
the upstream region suggest that the transition of the obliquity-
dependent part of the efficiency ζ(θB) from the efficient to the
inefficient regime is displaced from θcrit = π/4 to θcrit = π/3. We
neglect this effect at the moment.

Finally, we decided to inject the CR energy accelerated at
shocks a few cells away from the shock cell. We were guided
by the fact that numerical shocks are not pure discontinu-
ities and are in fact numerically broadened; therefore, any CR
pressure deposited in the numerically broadened shock layer
experiences a work PCR∇.u of pressure forces. For this rea-
son, the CR energy is deposited in the cell of minimum |∇.u|
in the post-shock direction up to four cells away from the
shock cell. We emphasize that this choice is crucial to obtain-
ing the correct amount of CR energy density in the post-shock
region, and our experiments have taught us that the direct injec-
tion in the shock systematically overestimates the resulting CR
energy density in the post-shock region by a large factor even
in the simplest 1D test case (e.g. by a factor of ∼2 for the
Sod test).

4.3. One-dimensional Sod shock tube

4.3.1. Convergence of the shock Mach number

In this first test for the convergence of the evaluated shock Mach
number, we used the standard Sod shock tube initial conditions
for a Mach of 10; in other words, we started with initial left and
right states separated by a virtual interface at x = 5 in a box of
size of 10 with thermal pressure Pth,L = 63.499 and Pth,R = 0.1,
density ρL = 1 and ρR = 0.125, velocity uL = uR = 0. This test was
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Fig. 6. Statistics of the numerical Sod shock Mach number relative
to its expected value for different shock Mach numbers, 10 (black),
100 (blue), and 1000 (red), using either a maximum of ncellmax = 2 cells
(left panel) or ncellmax = 4 cells (right panel) to probe hydrodynamical
values in the post-shock and pre-shock regions. These shock tube tests
do not model CRs. Pre-shock and post-shock regions need to be probed
up to four cells away from the shock cell location for the strongest Mach
numbers to be captured accurately.

run without any initial or accelerated CR component (i.e. free of
CR pressure), and we adopted an adiabatic index of the gas of
5/3. In addition we also explored more aggressive shock tube
initial conditions to probe Mach of 100 (Pth,L = 6349.9), and
Mach of 1000 (Pth,L = 634 990). We employed a base grid of
level 5 with up to three additional levels of refinements triggered
in regions where the relative cell-to-cell variation of either the
density, velocity, or pressure is larger than 10%.

Figure 6 shows the quality of the Mach number evaluation
with the statistics of its value relative to the exact analytical value
for various shock tube tests, changing the strength of the shock
by two orders of magnitude. We tested two maximum values
of the extent of the pre-shock and post-shock quantities, either
probing up to ncellmax = 2 cells or ncellmax = 4 away from the
shock cell. We note that we removed the estimates of the Mach
number for the first 15 time steps of the simulations (over the 263
available time steps, reaching final times t = 0.35, t = 0.035, and
t = 0.0035 for Mach numbers of 10, 100, and 1000, respectively),
where the shock, contact, and rarefaction waves are not yet suf-
ficiently separated to correctly capture the Mach number of the
shock. It shows that ncellmax = 2 cells can be sufficient to obtain
Mach numbers accurate to a level of a few percentage points up
to Mach numbers of the order of ∼100, even though it is sys-
tematically underevaluated; however, Mach numbers of 1000 are
almost never correctly captured. On the contrary, going up to
ncellmax = 4 cells distance to measure hydrodynamical quanti-
ties involved in the reconstruction of the Mach number allows
a precision of better than 0.1% in this simple 1D shock tube
test. This behaviour is the natural outcome of the larger numeri-
cal broadening of shock discontinuities for stronger shocks (see
Appendix C): strong shocks require more cells to resolve the
entire shock layer. We note that increasing the level of refinement
does not cure the problem; the shocks are narrower in physical
extent, but the number of cells required to describe the shock
jump remains the sam.

4.3.2. Cosmic-ray acceleration with constant efficiency

In this test we set up the previous 1D Sod shock tube test
with Mach number M= 10, and allowed for CR acceleration
with a constant efficiency of η= 0.5 (the exact Mach number
accounting for CRs added at the shock isM= 9.56 for this par-
ticular efficiency). We used an adiabatic index for the thermal
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Fig. 7. Sod shock tube experiment with CR acceleration efficiency of
η= 0.5, zero initial CR pressure and γCR = 4/3 at t = 0.35. Left panels:
solution over the full box. Right panels: zoomed-in region over the
shock and contact discontinuities for better clarity of the CR shock-
accelerated region. From top to bottom: pressures (black: total, blue:
thermal, red: CR), the density, the velocity, the Mach number, the
effective adiabatic index, and the level of refinement. The symbols stand
for the numerical solution, while the solid lines are for the analytical
solution. The exact Sod solution with accelerated CRs is reproduced
well by our numerical implementation.

and CR components of respectively γ= 5/3 and γCR = 4/3. All
the Sod experiments were run without streaming and without
radiative thermal or CR losses. The analytical solution with
accelerated CRs was provided by Pfrommer et al. 2017 (see their
Appendix B).

Figure 7 shows the result of the numerical calculation where
the analytical solution is nicely reproduced with the correct
Mach number of M ' 9.56 positioned at the shock front in
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Fig. 8. Sod shock tube experiment with zero initial CR pressure and
γCR = 4/3 with obliquity-dependent CR acceleration efficiency (θB is
the so-called obliquity: angle of the pre-shock B field with the nor-
mal to the shock) η0 = 0.5ζ(θB) for θB = 30, 45, 60◦ from top to bottom.
The panels show the pressures (black: total, blue: thermal, red: CR) at
t = 0.35 over a zoomed-in region over the shock and contact discontinu-
ities for better clarity of the CR shock-accelerated region. The symbols
stand for the numerical solution, while the solid lines are for the ana-
lytical solution. As expected, the amount of CRs produced at the shock
decreases with obliquity, and reproduces well the exact solution.

one of the cell sampling the numerically broadened discon-
tinuity. Right after the shock discontinuity, in the post-shock
region, the thermal pressure shows a few cells that overshoot the
expected value. This effect is due to our choice of depositing
the accelerated CR energy density a few cells beyond the exact
shock location (a strategy we employ to avoid the PdV com-
pression). Apart from this expected effect, pressures, velocity,
density, and the effective adiabatic index of the gas are accurately
reproduced.

4.3.3. Cosmic-ray acceleration with magnetic obliquity
dependency

In this Sod test, we let the acceleration efficiency η(θB) vary
with the pre-shock magnetic obliquity angle θB and imposed
η= 0.5ζ(θB) (the previous Sod test was run with θB = 0◦, i.e.
the efficiency was η= η0 = 0.5). We ran three experiments with
θB = 30, 45, and 60◦ (i.e. ζ ' 0.95, 0.5, and 0.05 respec-
tively), starting with an initial magnetic field with components
(Bx, By, Bz) = (10−10, 0, 5.77 × 10−11), (10−10, 0, 10−10), (5.77 ×
10−11, 0, 10−10), respectively. Magnetic field magnitudes were
chosen to be arbitrarily small so that the magnetic field had
no dynamical impact on the gas (i.e. B2 � P). The results are

shown in Fig. 8, where we see that the expected values of the
CR pressure in the shock are reproduced well for any of the
adopted magnetic obliquity. We note that the exact location of
the shock jump is modified, due to the modified shock velocity,
which is governed by the effective adiabatic index in the shock
that depends on the amount of accelerated CRs.

4.4. Three-dimensional Sedov explosion

We set up a 3D Sedov explosion with the following unitless val-
ues: a background at rest with gas density of ρ= 1, Pth = 10−4,
and a point-like explosion of energy Eth = 1 spread over the eight
central cells in a box of size unity1. There are no CRs initially,
and only those accelerated into the shock with a constant accel-
eration efficiency of η= 0.5 will necessarily contribute to the
CR distribution. The adiabatic index of the thermal component
is γ= 5/3, and γCR = 4/3 for CRs. In a box of size unity, we
start with a base grid of level 6 and allow for 2 extra levels of
refinement wherever the cell-to-cell density and pressure varia-
tions are larger than 20 and 50%, respectively. The criterion for
density is used only where the gas density is higher than that of
the background in order to avoid excessive refinement into the
hot interior, and instead we focus on the shocked swept-up shell
material. For this particular test it is customary to employ a more
diffusive solver than HLLD (or Harten–Lax–van Leer–Contact
for a pure hydro run) to avoid the formation of the carbuncle
phenomenon in shocked cells around the x-, y-, or z-axis of the
box, hence, we use, here, the Lax–Friedrich approximate Rie-
mann solver. All Sedov experiments are run without streaming
and without radiative thermal or CR losses.

Figure 9 (left panels) shows the density and CR pressure in
a thin slice through the centre of the explosion at time t = 0.05.
The swept-up material accumulates in a thin shocked layer of
gas where CRs are accelerated and they propagate backward
through a reverse shock in the bubble interior. We can see
finger-like features in the shocked material, which are produced
by the discretised nature of the grid; amongst the post-shock
cells receiving the accelerated CR energy, some of them can
indeed receive energy from several shock cells, while some oth-
ers receive it only once. We note that Pfrommer et al. (2017) also
noticed this effect in their unstructured mesh code, the difference
is that their features are randomly located in angle, while here,
due to the structured Cartesian nature of our grid, these features
follow some π/2 periodic pattern.

As expected, due to the high adopted value of acceleration
efficiency η= 0.5, there is a very significant amount of CRs
produced into the dissipation layer of the shock as seen in the
spherically averaged radial profiles from Fig. 10. The pressure in
the shock layer is a mixture of CRs and thermal particles, while
the CR pressure completely dominates the total pressure in the
diffuse bubble interior.

It leads to a sharp transition of the effective adiabatic index
of the gas from purely thermal outside of the explosion γe = γ to
purely CR-like in the diffuse bubble γe = γCR. What matters for
the shock dynamics is the effective adiabatic index in the swept-
up shock layer that can be inferred from the exact Sedov shock
dynamics given a value of γe. For analytical guidance, with
enthalpy arguments Chevalier (1983) provides the solution for
the effective adiabatic index as a function of the fraction of CR
pressure w= PCR/Ptot in the shocked shell (not to be confused

1 These adopted unitless values can correspond to e.g. a SN explosion
of 1.1×1051 erg in a background medium of density n = 1 H cm−3, sound
speed cs = 0.6 km s−1, and a box length of 45 pc.
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Fig. 9. Sedov explosion with accelerated CRs with η= 0.5 (left panels), and obliquity-dependent acceleration efficiency η= 0.5ζ(θB) with either
a uniform magnetic field (middle panels) or a random magnetic field (right panels). Top and bottom panels: respectively slices of density and
CR pressure at time t = 0.05, with the solid circle line indicating the position of the Sedov shock front for the exact solution with γe = 7/5, which
are reproduced in all panels to guide the eye throughout (the random magnetic field configuration is better fitted with γe = 1.55), and with magnetic
unit vectors overplotted as black segments (the length scale of the random magnetic field corresponds to the size of two large arrows). In the
simulation without obliquity dependent acceleration, CR production is close to uniform in the shell except for small numerical grid artefacts. With
obliquity dependency, CRs accumulate in polar caps for a uniform magnetic field, and in small patches for the random magnetic field corresponding
to the length scale of the field. The position and shape of the shell are also affected by the presence and the configuration of the magnetic field with
respect to the obliquity-independent case.

with the acceleration efficiency)

γe =
5 + 3w

3(1 + w)
(21)

for γCR = 4/3. In agreement with Pfrommer et al. (2017), we find
that for the same set-up, an effective adiabatic index in the shock
of γe = 7/5 for the exact solution leads to a good recovery of
the numerical solution in both total pressure and density, though
the maximum values are less pronounced at the shock because
of the limited resolution. Increasing the resolution naturally
captures the shock profile more faithfully.

We ran two extra simulations with the acceleration effi-
ciency depending on magnetic obliquity η= 0.5ζ(θB) and chang-
ing from an initial initially uniform magnetic field with
(Bx, By, Bz) = (10−10, 0, 0) or a random magnetic field configura-
tion (see Appendix D for details) with a typical coherence length
of λB = 1/16 and a similar magnitude of 10−10. For the uni-
form magnetic field configuration, CRs are accelerated around
polar caps along the x-axis of the box with maximum efficiency,
and go to zero along the y-axis (or z-axis) as a result of mag-
netic obliquity (see middle panels of Fig. 9). It results in an

ellipsoid shape of the explosion: the position of the shell where
CR acceleration is close to zero (y- and z-axes) is further away
than where CRs are produced (x-axis) as a result of the higher
(resp. lower) effective adiabatic index of the gas mixture in the
shell. We note that the exact shape of the ellipsoid is a function
of the obliquity-independent part of the acceleration efficiency:
the larger ξ is, the more stretched the explosion is (see Pais et al.
2018, for a thorough analysis of this effect). As expected, the den-
sity is also higher along the x-direction than along the y-direction
(z-direction) as a result of the dependency of the density jump
to the adiabatic index of the gas (for strong shocks, Rρ = 4 for
γe = 5/3 and Rρ = 6 for γe = 7/5).

Finally, the random magnetic field set-up shows a shell mass
distribution close to spherical with significant fluctuations with
angle (right panels of Fig. 9). It reflects the underlying patchy
acceleration and distribution of CR pressure in the swept-up
shock layer. On average, the acceleration efficiency is reduced
by a factor 〈ζ〉=

∫ π/2
0 ζ(θB) sin θBdθB ' 0.302 for a purely ran-

dom upstream magnetic field orientation (see Fig. 11) compared
to the simulation without obliquity dependency, and thus to an
effective acceleration parameter of ηe ' 0.15. Therefore, there is
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Fig. 10. Spherically averaged radial profiles for the 3D Sedov explosion
with CR acceleration with constant acceleration efficiency of η= 0.5
of the pressure (blue: thermal pressure, red: CR pressure), density, and
effective adiabatic index of the thermal–CR mixture from top to bottom
at time t = 0.1. Solid lines stand for the result of the numerical simu-
lation, while the dashed lines of the pressure and density plots are the
exact solution of the self-similar profile for an effective adiabatic index
of 7/5 in black (the exact density profile for γ= 5/3 is also shown as a
dashed blue line). The blue and red dashed lines in γe stand for the adi-
abatic index used for the thermal and CR component, respectively. The
thermal–CR mixture produces an explosion similar to a Sedov solution
with effective adiabatic index of γe = 7/5, which delays the position of
the shock due to the lower pressure work exerted by the shocked shell.

a smaller amount of CRs produced in the shock, and as expected
from Chevalier (1983) (see also Castro et al. 2011; Bell 2015), the
exact solution is now better reproduced for a lower effective adi-
abatic index of γe = 1.55 (see Fig. 12) and leads to a shock front
in advance compared to the obliquity-independent simulation.

5. Turbulent box of the ISM

We ran turbulent ISM boxes in the same spirit of Commerçon
et al. (2019) except that here we started with negligible CR pres-
sure (10−10 that of the thermal pressure) and let it build through
the turbulence-generated shocks. The simulations have a uni-
form 1283 Cartesian resolution in a box of 50 pc, leading to a
spatial resolution of 0.4 pc. The initial gas density and tempera-
ture are 2 cm−3 and 4460 K, respectively, with a mean molecular
weight of µ= 1.4 assumed throughout. We started with an ini-
tial thermal pressure of Pth,0 = 1.2 × 10−12 erg cm−3. The initial
magnetic field was uniform and was set up in the x-direction of
the box with a magnitude of 0.1 µG, leading to a plasma beta
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Fig. 11. Stacked PDF of the magnetic obliquity in the Sedov experi-
ment between t = 0.05− 0.1 for the random magnetic field configuration
(solid histogram), compared to the random distribution (black dashed
line). The distribution of magnetic obliquity is compatible with a purely
random field as expected, thus leading to a reduced efficiency of 〈ζ〉=
0.302.
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Fig. 12. Similar to Fig. 10, but for the random magnetic field configura-
tion and with obliquity dependency of the CR acceleration efficiency
η= 0.5ζ(θB). Here the Sedov profile is better fitted with an effective
adiabatic index of γe = 1.55.

parameter of β= Pth,0/Pmag,0 ' 3 × 103. We did not allow for
self-gravity of the gas or for any refinement. Cooling proceeded
on the thermal component following Audit & Hennebelle (2005),
while we neglected the role of Coulomb and hadronic losses of
CR protons (Enßlin et al. 2007; Guo & Oh 2008).
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The turbulence is forced at all times with an injection scale
of kturb = 2 (i.e. corresponding to half the size of the box) and
with a parabolic shape in the Fourier space f̃ (k) ∝ 1− (k− kturb)2

with k sampled in the range k = [1, 3]. The turbulence is applied
intermittently with an auto-correlation time of 0.5 Myr and with
a compression-to-solenoidal ratio of 1 (see Commerçon et al.
2019, for more details).

5.1.M- and XCR-independent acceleration efficiency

We start with a batch of simulations where the acceleration
efficiency does not depend on M and XCR (i.e. ξ = 1). We set
up three different simulations: (i) without CR acceleration (i.e.
η0 = 0, NoShock); (ii) with CR acceleration and η= η0 = 0.1
(i.e. where CR acceleration does not depend on magnetic,
NoThetaB); (iii) with CR acceleration and η0 = 0.1 (i.e. where
CR acceleration depends on magnetic obliquity, ThetaB); and
with η0 = 0.1 and CR streaming (Streaming). We note that we
use rather large values of CR acceleration efficiencies given the
moderate Mach numbers of only 2–4 (e.g. Kang & Jones 2005;
Kang & Ryu 2013) obtained in that experiment. This somewhat
reflects the more typical SN-generated CR acceleration efficien-
cies corresponding to much larger values of the shock Mach
number than we can capture here with this simplified set-up.
For the sake of a testable set-up for our new implemented algo-
rithm, these values allow us to reach an appreciable amount of
CR energy density in the simulated volume over a few turbu-
lent crossing times tcross = 6.7 Myr, where it is the box length
divided by the rms velocity urms = 7.3 km s−1 (here measured at
t = 20 Myr for the Streaming run).

Shocks are driven in sheets with moderate Mach numbers of
M ' 3–4, as can be seen in Fig. 13 for the Streaming run (other
simulations show similar features) at time t = 10 Myr, which dis-
sipates the energy of shocks with a typical range of flux values
of edissu2 ' 1044–1045 erg Myr−1 pc−2. Figure 14 shows maps of
the CR pressure at two different times t = 10 and 20 Myr for the
simulation NoThetaB, ThetaB, and Streaming. At t = 10 Myr the
CR pressure has already built up to appreciable levels thanks to
turbulence-generated shocks in the box, with clustered regions
of pressure at levels similar to or above the initial thermal pres-
sure (Pth,0 ' 10−12 erg cm−3). The NoThetaB simulation has, as
expected, the highest values of CR pressure since CR accelera-
tion efficiency is always equal to η= 0.1, while in the two other
runs it can only reach this value for a perfectly aligned pre-shock
magnetic field with the normal to the shock. At this early stage of
the simulation, the effect of streaming is still very moderate on
the CR pressure distribution. It reduces the range of the lowest
and highest values of pressure mimicking the effect of a diffusion
process; nonetheless, the geometrical features are easily recog-
nizable between the ThetaB and Streaming runs (and NoThetaB
as well).

Figure 15 (top panel) shows the thermal and CR energies in
the simulated volumes as a function of time. The total thermal
energy in the box is quickly reduced in 3 Myr by nearly a factor
of 3 with very negligible differences by the end of the simula-
tion between the four simulations. The total CR energy builds
up almost linearly with time as a result of nearly constant dissi-
pated energy and acceleration efficiency over time, once passed
the first 5 Myr. This CR pressure provides a support to the total
pressure close to the thermal pressure, if not above (NoThetaB
case at t = 20 Myr). The magnetic energy quickly increases early
on and saturates at a plasma beta β ' 10 similar for the four dif-
ferent simulations. We note that this level of magnetic field is
crucial for the CR streaming to have an appreciable effect on the

Fig. 13. Projection of the Mach numberM (top) and dissipated energy
flux edissu2 (bottom) for the Streaming turbulent box, with η0 = 0.1 and
ξ(M, XCR) = 1, at time t = 10 Myr over a box thickness of half the size
of the box centred on the middle of the box. Shocks are driven in sheets
with a bulk of the Mach number of moderate valuesM ' 3–4.

CR pressure distribution as the streaming velocity scales with
the Alfvén velocity.

As we discussed in Sect. 4.4, the average obliquity-
dependent part of the CR acceleration efficiency must be
〈ζ〉 ' 0.302 for a purely random field, which seems supported by
the apparent randomness of magnetic vectors (white arrows in
Fig. 14), but we show that this is not the case. Figure 15 (bottom
panel) shows the dissipated energy per unit time in the form
of thermal or CR energy. Dissipated thermal energies are very
similar for the three simulations, although there is a slight devia-
tion at late times for the Streaming run. However, the dissipated
CR energy shows a larger than a factor 3 difference between the
non-θB and the θB dependencies, closer to a factor 6–8 differ-
ence between the NoThetaB and ThetaB runs. This is indirect
evidence that pre-shock magnetic fields are not randomly ori-
ented, but show preferentially within-shock-plane orientations.
To clarify further, we measure the probability density function
(PDF) of the obliquity for the ThetaB and Streaming runs at
time t = 20 Myr in Fig. 16, which shows that the PDF is skewed
towards larger angles: upstream magnetic fields are more likely
to be perpendicular to the normal of shocks than for a random
field, in agreement with the estimated reduced efficiency of CR
acceleration.

We also note that at time t = 10 Myr, the CR energy density is
a factor 2 lower with streaming, while the CR dissipated energy
before t ≤ 10 Myr is similar to that of the simulation without
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Fig. 14. Cosmic-ray pressure maps of the turbulent box simulation, with η0 = 0.1 and ξ(M, XCR) = 1, in a thin plane within the x-plane of the
middle of the box at time t = 10 Myr (top panels) and t = 20 Myr (bottom panels) for the simulation without CR streaming and without (left panels)
or with (right panels) obliquity dependency for CR acceleration, and with obliquity and CR streaming (right panels). The black segments depict
the orientation of the unitary magnetic vectors. The simulation without obliquity builds the CR pressure faster. The presence of the streaming
instability allows for a more uniform distribution of CRs in the simulated volume.

streaming. Therefore, this difference in CR energy density is
directly due to streaming (as opposed to streaming reducing
shock strengths) putting CRs away from compressed regions
(shocks or not) where the adiabatic compression can further
enhance the overall CR pressure.

At time t = 20 Myr, the distributions of CR pressure (Fig. 14)
in the three simulations differ very significantly. While the
NoThetaB and ThetaB runs look like a renormalised versions of
one another, albeit with different specific locations of voids and
plume-like features, the Streaming run has lost most of its CR
structure with a closer to uniform distribution of CR pressure in
the box.

These distinct CR pressure evolutions and distributions lead
to very important differences in the way the matter is compressed
into overdense regions of the flow. Figure 17 shows the time
evolution of the mass fraction of dense gas, which is arbitrarily
chosen at five times the initial gas density (i.e. for n > 10 cm−3,
but the results are qualitatively independent of this choice). Since
only the thermal pressure is affected by radiative losses, which
are larger at high gas densities, it is the CR pressure that accu-
mulates in regions of high gas densities that can provide the
support against compression. Therefore, it shows that the simu-
lations with the largest total CR energy are the simulations with
the lowest amount of dense gas. However, the streaming intro-
duces a subtle but significant difference to this overall picture.
Since streaming smooths the CR pressure in the ISM, the high
gas density is much less clustered for a given total energy in the

box. At t = 20 Myr in the Streaming run, the total CR energy is
indeed equal to that at t = 18 Myr in the ThetaB run; nonetheless,
the mass fraction of dense gas is respectively 40% higher in the
Streaming run. Recast into an “effective” diffusion framework,
we can deduce that streaming behaves like anisotropic diffusion
with an effective diffusion coefficient to be determined through
comparison with the corresponding simulations, which we defer
to a future work.

5.2.M- and XCR-dependent acceleration efficiency

We show here the results of the turbulent box experiments, where
this time the efficiency dependency ξ(M, XCR) is not assumed to
be equal to 1, but varies according to the scaled values of Kang &
Ryu (2013). We ran two numerical experiments, free of CR
streaming, with and without the magnetic obliquity dependency
ζ(θB), called ThetaB_KR13 and NoThetaB_KR13, respectively.
We recall that we started with an initial CR pressure of almost
zero so that XCR = 10−10 everywhere in the box at time t = 0, and
that a normalisation (maximum) acceleration efficiency η0 = 0.1
was used throughout.

Figure 18 shows the evolution of the CR flux-weighted mean
value of M (top panel) and XCR (middle panel), and the evolu-
tion of the energy flux-weighted mean acceleration efficiencies
(bottom panel) η= η0ξ(M, XCR)ζ(θB), ξ(M, XCR), and ζ(θB) as
a function of time. The bulk of the CR energy is produced
in shocks of M ' 3−4 with a slight decrease over time. As
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Fig. 15. Top panel: time evolution of total thermal (solid lines), CR
energy (dashed lines), and magnetic energy (dot-dashed lines) in the
simulated turbulent ISM boxes for the simulations without shock-
acceleration (black), without CR streaming, and without (red) or with
(green) obliquity dependency for CR acceleration, and with obliquity
and CR streaming (blue) with η0 = 0.1 and ξ(M, XCR) = 1. Bottom panel:
evolution of the dissipated thermal (solid) and CR (dashed) energy rates
at shocks for the same simulations.
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Fig. 16. Probability density function of the magnetic obliquity in the
ISM boxes, and with η0 = 0.1 and ξ(M, XCR) = 1, at time t = 20 Myr
with CR streaming (blue) or without (green), compared to the ran-
dom distribution in black dashed. Those simulations are more likely
to have magnetic field perpendicular to the normal of shocks than for a
random distribution, therefore, lowering the CR acceleration efficiency
compared to the averaged random distribution, i.e. 〈ζ〉= 0.302.

CRs are produced, the upstream CR-to-thermal pressure ratio
rises to values close to XCR ' 0.1−0.2 at time t = 20 Myr. The
corresponding CR acceleration efficiencies also evolve with
time since ξ varies significantly for this range of moderate
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Fig. 17. Time evolution of the mass fraction of dense gas in the
simulated turbulent ISM boxes for the simulations without shock-
acceleration (black), without CR streaming, and without (red) or with
(green) obliquity dependency for CR acceleration, and with obliquity
and CR streaming (blue), and with η0 = 0.1 and ξ(M, XCR) = 1.

Mach number as a function of XCR reaching ξ ' 0.03 and 0.1
at t = 20 Myr for the ThetaB_KR13 and NoThetaB_KR13 runs
respectively. In particular, there is an increase between 10 and
20 Myr of the acceleration efficiency by one order of magnitude
in both simulations. The difference between the two simulations
is that the obliquity dependent run has a lower overall accel-
eration efficiency η since nearly random magnetic fields (see
Fig. 16) reduce the ζ component to '0.2. We note that the choice
of starting with XCR = 0 for educative purposes makes these
simulations extremely unrepresentative of the ISM of normal
galaxies (though it might apply for proto-galaxies), and delay
the build-up of the CR pressure. Nonetheless, we show that our
implementation of the M, XCR (and θB) dependency of η leads
to interesting results in the build-up of the CR pressure through
shocks, and might be useful for a broad range of applications.

6. Conclusion

We have introduced a new modelling of anisotropic CR stream-
ing and dynamical CR shock-acceleration for the AMR code
RAMSES (Teyssier 2002). Streaming is solved with a diffusion
approach where the diffusion step is performed with a time
implicit scheme (Dubois & Commerçon 2016), and can handle
complex multi-dimensional problems with non-trivial magnetic
field geometries. CR acceleration at shocks through the DSA
mechanism is obtained by accurately detecting shocks, and mea-
suring their Mach number and magnetic obliquity. We have
shown that our numerically CR accelerated solutions faithfully
reproduces exact 1D Sod shock tube solutions. CR-modified 3D
Sedov solutions with accelerated CRs have been tested with
various background magnetic field configurations (hence, obliq-
uities). They show very good agreement with previous numerical
experiments (Pfrommer et al. 2017) with CRs reducing the effec-
tive adiabatic index and slowing down the motion of the shell.
Obliquity dependency of the acceleration leads to a significant
modification of the CR distribution in the shell of the Sedov
explosion with either a polar or patchy distribution when the
coherence length of the background magnetic field is respec-
tively larger or smaller than the bubble size. This also has
consequences on the final shape of the bubble, with a significant
elongation of the bubble when the magnetic field has a large field
coherence with respect to the bubble size (Pais et al. 2018).
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Fig. 18. Top to bottom: cosmic-ray flux-weighted mean Mach num-
ber M, CR flux-weighted mean CR-to-thermal pressure ratio XCR,
and dissipated energy flux-weighted efficiencies η= η0ξ(M, XCR)ζ(θB),
ξ(M, XCR), and ζ(θB) as a function of time for the simulation with (red)
and without (green) obliquity dependency. We recall that η0 = 0.1 is
used in those simulations and that ξ is a function of M and XCR as
extrapolated from the values of Kang & Ryu (2013).

Finally, the effect of CR streaming and CR acceleration has
been tested in a turbulent box mimicking the motions within the
ISM on scales of tens of pc (Commerçon et al. 2019). CRs are
produced at shock surfaces and are spread throughout the entire
volume by convection and streaming. CRs have important con-
sequences on the reservoir of cold gas available as they provide
a long-term pressure support against compressed material, and
streaming substantially modifies the small-scale distribution of
CRs, and in turn the clustering of gas. The obliquity of the field
produces a strong suppression of the effective acceleration effi-
ciency, a factor of ∼2 beyond the pure random case as a result of
the preferential alignment of magnetic fields with shock surfaces.

These new CR physics modules embedded in the RAMSES
code make it useful for the study of the impact of CRs in a wide
variety of situations, such as the acceleration of CRs by cosmic

shocks, galactic-wide outflows driven by CRs (Dashyan &
Dubois 2019), the release of CRs in galaxy clusters by active
galactic nuclei, studies of supernova remnants, and the release
of CRs in the supernova-driven turbulence of the ISM, which
we defer to future work.
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Appendix A: Effect of perpendicular diffusion on
streaming

Fig. A.1. Energy density maps at t = 0.02 for the same set-up as for
the 2D sinusoid loop described in Sect. 3.2.2 with fiso = 10−1 (left) or
fiso = 10−3 (right).

Here we vary the value of the isotropic component of the stream-
ing diffusion term from fiso = 10−3 to fiso = 10−1 (to be compared
with the value of fiso = 10−2 used by default in Sect. 3.2.2) with
respect to pure anisotropy. Figure A.1 shows that increasing the
value of fiso to 10−1 leads to more diffusion outside of the loop,
which decreases the values of the maximum, while fiso = 10−3

produces numerically driven finger-like features but allows a
more contained CR distribution in the loop.

Appendix B: Tabulated values of ξ(M, XCR)

Table B.1 shows the tabulated values of Kang & Ryu (2013)
renormalised to 1 (see Sect. 4.2 for details).

Table B.1. Acceleration efficiencies interpolated values of ξ(M, XCR) from Kang & Ryu (2013).

XCR = 0 XCR = 0.025 XCR = 0.05 XCR = 0.1 XCR = 0.2 XCR = 0.5 XCR = 1

M= 2 4.44 × 10−4 3.80 × 10−2 7.55 × 10−2 1.51 × 10−1 3.01 × 10−1 7.51 × 10−1 1.00
M= 3 2.66 × 10−2 1.47 × 10−1 2.66 × 10−1 5.06 × 10−1 9.86 × 10−1 1.00 1.00
M= 4 2.00 × 10−1 4.11 × 10−1 6.22 × 10−1 9.08 × 10−1 1.00 1.00 1.00
M= 5 4.44 × 10−1 5.60 × 10−1 6.76 × 10−1 9.08 × 10−1 1.00 1.00 1.00
M= 7 6.66 × 10−1 7.33 × 10−1 8.00 × 10−1 9.33 × 10−1 1.00 1.00 1.00
M= 10 8.66 × 10−1 8.89 × 10−1 9.10 × 10−1 9.55 × 10−1 1.00 1.00 1.00
M= 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M= 30 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M= 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
M= 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Appendix C: Shock numerical broadening
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Fig. C.1. Pressure profiles at time t ' 3.5/M around the shock dis-
continuity for the MachM= 10 (top), 100 (middle), and 1000 (bottom)
experiments. The result of the numerical solution is shown as diamonds;
the red symbol highlights the position of the shock cell given by a shock
finder algorithm. The solid line is the exact numerical solution. We see
that the numerical shock tends to broaden with increasing Mach num-
ber, and given the largest error made on the post- and pre-shock regions,
the error on the evaluated Mach number becomes larger for a small
kernel (ncell,max = 2).

We show in Fig. C.1 a zoomed-in view of the shock discontinuity
for the Sod shock tube experiments described in Sect. 4.3.1 (i.e.
without CRs) and for the three different Mach numbersM= 10,
100, and 1000. Instead of a pure discontinuity (the exact solution
is shown as a solid line) the numerical shock is broadened by
numerical diffusion with typically 4–5 cells; the number of cells
in the discontinuity to match the exact pre- and post-shock pres-
sures increases with the value of the Mach number, and given
the quadratic increase in pressure jump with Mach number, any
error is strongly amplified. In the strongest shock example shown
in the bottom panel, using only two cells away from the shock
would lead to underestimating the Mach number by a factor of
10 (Mach number scales with R1/2

P and the upstream value two
cells away from the shock is '100 times that of the true value).

Appendix D: Random magnetic fields

In order to set a random magnetic field fulfilling the ∇.B = 0 con-
straint, we first set up a random potential vector on the nodes
of a Cartesian grid of arbitrary resolution n3

pot cells (there are
actually (npot + 1)3 values of potential vectors drawn at nodes
of the n3

pot sampling cells), with the right-, top-, and back-most
boundaries being replicates of the left-, bottom-, and front-most
boundaries to ensure the correct periodicity of the (staggered)
magnetic field. In the cases simulated in this paper the AMR
cell size is smaller than or equal to 1/npot, which means that the
vector potential is the trilinear interpolation of the surrounding
node vector potentials projected along the AMR cell edge. Once
these reconstructed vector potentials are obtained along AMR
cell edges, the staggered magnetic field (one B-field perpendicu-
lar to each face of AMR cells) is obtained by taking the rotational
of the potential vector of the face-surrounding edges. This proce-
dure guarantees that the magnetic field is random, ∇.B = 0, and
the consistency of the coarse-to-fine values of the B-field. We
note that we took the initial random potential vector as a white
noise vector, but this can be modified to account for any given
spectrum of the vector potential (or magnetic field), and to obtain
any desired shape of the magnetic power spectrum, as the power
spectrum of B scales as k (i.e. the wave number) times the power
spectrum of A.
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