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Abstract This work addresses two main contributions for shape measure-
ment. First, a new circularity measure for planar shapes is introduced based on
their geometrical properties in the projection space of Radon transform. Sec-
ond, a general-purpose evaluation criterion, Power Of Discrimination (POD),
for assessing the efficiency of a shape measure is proposed. The new mea-
sure ranges over the interval [0,1], and produces the value 1 if and only if the
measured shape is a perfect circle. The proposed measure is invariant with
respect to translation, rotation and scaling transformations. Moreover, it is
also robust against border distortion of shapes. It is theoretically well founded
and can be extended to other problems of shape measurement. Our approach
can deal with complex shapes composed of connected components that cannot
be handled by classical contour-based methods. Several experiments show its
good behavior and demonstrate the efficiency and applicability of our pro-
posed measure. Finally, we also consider our proposed evaluation criterion for
assessing different circularity measures.

Keywords circularity - shape measurement - evaluation criterion

1 Introduction

Object recognition is an important area of computer vision. Object compar-
ison is often carried out by mapping objects of interest onto feature spaces
to reduce the calculation complexity and to enhance the discriminant power.
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This process generally relies on object’s appearance properties. Among differ-
ent appearance properties, shape is widely utilized for object description and
classification thanks to its high discriminant power. However, conception of a
good shape descriptor remains a difficult problem even though numerous of
methods have been introduced to address this problem. According to Rosin [I],
there are three main challenges in defining a shape descriptor: 1) the robust-
ness of the descriptor against variations among shapes of the same class; 2) the
insensitivity of the descriptor to similarity transformations such as translation,
rotation, and scaling; 3) the invariance of the descriptor to other transforma-
tions such as affine transformation on triangles or aspect ratio adjustment on
rectangles.

Generally, there are two main approaches to design shape descriptors: gen-
eral purpose shape descriptors and specific shape estimators. The first one is
based on different transforms such as Fourier transform [2], Hough transform
[B], Radon transform [4], dominant points [5], similarity map [6], graph-based
representation [7], and image moments [8] to describe shapes. More differ-
ent methods have been addressed in this survey [9]. This approach producing
high-dimensional feature vectors is suitable for generic applications such as
shape retrieval [T0JTTL12], shape and curve matching [I3[14}[I5]. The second
one measures or estimates geometrical properties of shapes and thus the de-
scriptors in this approach often have clear geometric interpretations such as
measurements of ellipticity [I6LI7LI], circularity [I8L19L20,2112223124.25.20,
27.2829,30] , polygonality [31], triangularity [I], rectangularity [IL32], linear-
ity [32], orientability [33L34].

We address in this paper two main following contributions. First, a novel
approach for circularity measurement of a shape is introduced. Second, we
propose a general-purpose evaluation criterion for assessing shape measures.
Our approach exploits some beneficial geometric properties of circles in the
projection space. In the literature, the projection-based approach has been
used for different problems of shape measurement such as polygonality [31],
geometrical feature extraction [35], extraction of geometrical properties and
spatial relations [36], triangularity measurement [I], orientation [37], convex-
set perimeter estimation [38] and reflectional symmetry detection [39]. It
should be remarked that we exploit the projection data in a totally differ-
ent way compared to these works. The main idea is to introduce an invariant
property of a perfect circle and then to estimate how far it is degraded for
a given shape. The obtained measures take value in [0,1] and are robust to
additive noise, boundary distortion, and similarity transformation. Using this
projection-based approach, our method can deal with complex shapes com-
posed of several closed contours or shapes having very noisy boundaries. Be-
cause the classical methods using contour-based approach consider a shape as
a closed contour, they cannot be used for these cases.

The rest of this paper is organized as follows. Section [2] reviews some
recents advances in shape measurement and also in evaluation of shape mea-
sures. Section [3| firstly recalls Radon transform, its properties and introduces
several useful notations in Sections [3.1] 3:1.2] and then develops a theoreti-
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cal foundation for the proposed approach in Section that is the base for
our circularity measure presented in Section [i] Section [f] introduces a novel
evaluation criterion for assessing shape measures. The next section shows ex-
perimental results of the proposed methods. Several conclusions are given in
the last section.

2 Related work
2.1 Shape measures

The measurement approach, which often deals with a single characteristic of
shapes, estimates geometrical properties of shapes. It can be classified in two
main groups. The first one estimates the similarity between a shape and a ge-
ometrically pre-defined shape to obtain a similarity measure such as circular-
ity, ellipticity, polygonality [31], rectangularity or triangularity [I]. Ellipticity
measurement has been considered in [I}[I6l[17] using different methods such as
Fourier transform [I6], elliptic variance [I7], moment invariants [I]. Rectangu-
larity, which measures the similarity between a shape and a rectangle, has been
studied using minimum-area encasing rectangle (MAER) of a shape [I] or rect-
angular templates [32]. The second one measures some geometrical properties
of shape such as orientation, symmetry or linearity. Measuring shape’s orienta-
tion has been considered in many works using curvature weighted gradient [33],
boundary information [34] or dominant orientation [40]. Symmetry detection
that determines whether a shape possesses reflectional and rotational sym-
metries is also an important topic in shape analysis. Different methods have
been introduced using Fourier transform [41], phase congruency calculated
from Gabor wavelets [42] or image moments [43]. Linearity, which measures
the similarity between an open curve and a straight segment, has also been
studied in different works [44.[45].

Among different shape measurement methods, measuring circularity or
compactness of a shape is a prominent approach because circle is a basic
shape that appears in a vast range of image processing tasks. The methods
in this research direction response to the problem: How much a given shape
differs from a perfect circle. Several methods [I8[19120121122123| 242526127
28.29,30] have been proposed in the literature to deal with this problem. The
classic measure based on non-compactness measure [I8] using perimeter and
area of the shape (4mA/P?) is not satisfactory in reality because it is not re-
ally scale invariant and it can reach the perfect value for non circular shapes.
Most of the works define circularity based on different geometric properties
of circles. In general, there are two main following approaches for circularity
measurement: contour-based and region-based approaches. The first direction
contains the methods exploiting desirable properties of circular shapes [19,
2212728/[29] by taking into account their boundary properties: distances from
centroid to boundary [19], Fourier transform (DFT) on boundary contour [22],
separating circle problem [27,28], polygon similarity [29], linearity of boundary
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points in polar coordinate system [25], integer interval from boundary repre-
sentation [46], etc. These methods can only deal with simple shapes and are
generally sensible against non-linear deformations. The second one consists of
methods [201211[23,[24,[47] that define circularity measurement by studying the
region of shape. Different geometric properties have been addressed to char-
acterize the region of a disk such as distance map [20,21], moment [471[241[48]
or area [49]. In this direction, moment is popular feature to describe region of
shape due to its robustness to noise and deformation. Different moments have
been taken into account: affine moment invariance [23], invariant Hu moment
[24], 3D polar-radius-moment invariance [47], or Kullback-Leibler divergence
of uniform probability density on shape region [48]. The methods in the sec-
ond direction have generally their performance superiority in the case of shape
boundary defects compared to those of the first one.

2.2 Evaluation of shape measures

There is not many works related to this topic in the literature. For assess-
ing rectangularity measures, Rosin [50] applied them to some parametrized
synthetic shapes to track the rectangularity values when the shapes are con-
tinuously modified. A similar idea was used in [I] for evaluating triangularity
and ellipticity. In [51], the classification rate of the descriptor based on a shape
measure on a dataset was used for assessing this measure. However, to the best
of our knowledge, there is not an evaluation criterion for comparing different
shape measures like assessing of polygonalization methods. Sarkar [52] intro-
duced Figure of Merit (FOM) to balance between the error approximation and
the compression ratio. Rosin [53] proposed Merit criterion by comparing with
optimal results.

3 Projection-based circularity measurement
3.1 Radon transform for shape representation

We recall in this section the Radon transform and then present a common way
to use this transform as an effective tool for shape representation which has
been exploited in different works [4[54] on shape analysis.

3.1.1 Radon transform

Let f(z,y) € R? be a 2D function and L(f, p) be a straight line in R? repre-
sented by

L={(z,y) €R?:zcosd +ysind = p} (1)

where 6 is the angle L makes with the y axis and p is the distance from the
origin to L. The Radon transform [55] of f, denoted by Ry, is a function
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Fig. 1: : (a)- Graphical illustration of the Radon transform of a function
f(z,y); (b)- A dog shape D and its representation in the projection space.

defined on the space of lines L(6, p) by the line integral along each line:

Rs(0,p) = / f(z,y) dedy

L(0,p)

:/00 /oo f(z,y)d(p — xcosb — ysinf) dzdy. (2)

In the field of shape analysis and recognition, the function f(z,y) is con-
strained to the following particular definition:

f(m’y):{1 ifzeD )

0 otherwise,

where D is the domain of the binary shape represented by f(z,y). In the
illustration of the Radon transform in Figure[I]a, the shaded region represents
the region D. The value of the line integral in Equation is equal to the
length of the intersection between the line L and the shaded region. Figure
b shows also the Radon transform R¢(6,p) on a binary domain of a dog
shape.

3.1.2 Notations and significances

For each projection direction 6, the radial distances p¢ and p§ are respectively
defined as p§ = inf {p | Rp(6,p) > 0} and p§ = sup{p | Rp(#,p) > 0}. The
“profile” of D in the direction @, denoted as C%, is defined as Rp(6, p§:p%).
More precisely, C%(p — p{) = Rp(0,p), Vp € [p{,05] (see Figure [2). The
“axis distance” of D in the direction 6§, denoted as p$, is defined as p§(D) =
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Fig. 2: A dog shape D and its projections in different dlrectlons 0, %, 5, 71

The corresponding profiles, C%, C’l‘;, C’ﬁ and C’D4 are in red.

Fig. 3: A dog shape D and its related notations (p§, p{, p3, A°(D), AY(D),
A$(D), EY(D), E§(D)) in direction 7. C?(D) and the integral line
corresponding to A?(D) are in red.

argmax Rp (0, p), Vp € [p{,p§]. The two extremities in the boundary of D
p

corresponding to pf(D) are denoted as EY and EY, respectively. In addi-
tion, the “length” of D in the direction 6, denoted as A%(D), is defined as
A% (D) = Rp(0, p§). The left and right “projected bands” of D in the direction
0, denoted as A{(D) and A§(D), are then determined as A{(D) = |pf§ — pl|
and AY(D) = |p4 — p§|. For the simplicity of presentation, from now on, we
denote R(6,p) by Rp(0,p), where function f is defined on domain D by
Equation . Figure |3|illustrates the above notations considering a dog shape
in direction 7.

These notations allow to deal with a column 6 of D’s Radon image. First,
C¥, indicates the non-zero part of this column. Second, A?(D) and pf indicate
the maximal value and its position while A and AY determine the non-zero
bands corresponding to a decomposition of C% at pf.

3.2 Representation of a circle and its invariant properties in Radon space

Using the notations and definitions in Section this section presents some
theoretical results on the appearance of circular shapes in Radon space. These
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results can be used to distinguish circles from non-circular shapes and are the
basis for the proposal of circularity measure in Section [4

Let us consider the Radon transform R¢(6,p) = Rc¢(8,p), where ¢ is a
circle of radius r. Without loss of generality, we suppose that ( is centered at
the origin of coordinate system. We then introduce the following properties of

C.
Property 1 Re¢(0,p) = 2+/12 — p2.

Proof The transform is given by the length of a chord at a distance p from
the center and it is independent of the angle 6. In addition, it is well-known
that the chord length of ¢ at a distance p from the center is 24/12 — p2.

We have then the following invariant properties of (.
Property 2 A°(¢) = 2r

Proof Because ( is centered at the origin of coordinate system and ( is sym-
metric for every direction 6, it is evident that py = 0. Thanks to Property

A (C) = Ry(0, p) = 24/12 — p?. Because of pg = 0, we have A?(¢) = 2r.

We remark that only the result of Property[2]is not sufficient by considering
Remark [

Remark 1 An arbitrary shape D satisfying the following condition %AQ(D) =
r,V6 € [0, 7) is not necessarily a circle.

Proof Let us consider a counter-example with a Reuleaux triangle, formed
from the intersection of three circular disks of radius r, where each circle has
its center on the boundary of the other two (see Figure . It is evident that
the separation of every two parallel supporting lines is r, independent of their
orientation.

An another counter-example is an annulus that also satisfies Propperty

In order to address the necessary conditions for a shape to become a circle,
we present hereafter following propositions defining geometric properties of
circular shapes and also necessary conditions of an arbitrary shape in projec-
tion space to become a circular disk.

Proposition 1 A{(¢) = A§(¢) =r

Proof Tt is evident that p! = —r and p} = 7,V0 € [0,27) because ( is a
centered circle at the origin of coordinate system. Therefore, AY = A§ = r
due to p§ = 0.

So, A%(¢), AY and A§ are invariant with respect to 6.

We consider now the necessary conditions for an arbitrary shape D to
become a circle. Let us consider an arbitrary shape D satisfying the following
condition 14%(D) = A{(D) = AY(D) = r,v0 € [0,7). In the following, we
will show that this condition is sufficient for D to become a circular disk. This
inverse problem is addressed hereafter in Proposition [2] Please also refer to
necessary materials (Lemmas in Appendix section@ for more details
in its proof.
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Proposition 2 An arbitrary shape D satisfying the following condition %AH(D) =
AY(D) = AY(D) =r,v0 € [0,7) is a circle of radius r.

Proof Suppose that O (resp. 0%) is the intersection between EY EJ and Elg EQ%

(resp. E{ES and Ef +%Eg+%) (please see Section for the definitions of
EY and EY). Let us show that 00? = 0,V6 € [0, 7).

There are two following possible cases. First, D is a convex shape. It could
be deduced from Lemma [2| that O = 0%+%, and moreover due to the sym-
metry (the arguments applied for direction 6,6 < 7 can be also used for
direction Z — 6), it is sufficient to show OO’ = 0,vf € [0,%). We consider
now a sequence, defined as follows: {0};",0; = i * £-,V0 < i < n. Sup-
pose that k = L%J, k < n. Thanks to Lemma we have |0%0%+1| <

V2r(y/5 —4cos(£) — 1) and |0 0| < V2r(/5 — 4cos(Z) — 1). Therefore,

k—1
00| < Z |0% 0%+1| + 0% 0% < nv2r(,/5 — 4COS(41) —1). Thanks to
n
i=0

Lemma , we deduce that lim |00?| = 0. Because |00Y| is independent of
n—-+0oo

n, so we have the following conclusion [OO?| = 0. This result means that D is
a circle.

In the second case, D is not a convex shape. Therefore, this shape must
contain some concave parts and/or it contains some holes. Figure [4 illustrates
shape D consisting of a hole in its interior. Thanks to Lemma [l} its convex
hull D; = CV/(D) satisfies the same condition as D: $4%(D;) = AY(D,) =
AY(Dy) = r,V0 € [0,7). By applying the same argument as in the first case,
we deduce that D; is a circle of radius r. Indeed, because the convex hull of
D (i.e. Dy) is a circle, we can deduce that a possible concave part of D can
be considered as a hole inside of D; that touches its border at only one point
(if not, Dy cannot be a circle). Now, considering the direction ¢ passing a hole
and the center of D; (see Figure ). Because D; is a circle, it is evident that in
the direction ¢, all projected value is smaller than the diameter of this circle.
It means that, %At(C ) < r. This contradiction implies that the second case is
not possible and therefore the proposition is proved.

4 Circularity measuring

The theoretical foundation, developped in Section |3 allows us to determine
how a shape D is similar to a circle. Based on Propositions [I} 2} we will
estimate the circularity measure for D by relying on the assumption that the
more D is similar to a circle, the more its profiles 14%(D), A{(D), A}(D)
take a constant value r. The circularity measure will be defined based on the
deviation of these profiles. It should be noted that thanks to the first two
properties of Radon transform (see Section , we only need to perform the
projection at 6 € [0, ).
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Fig. 4: D is not a convex shape.

4.1 Circularity measure

Let p be a profile, u(p) and o(p) be respectively the mean value and standard
deviation of p. Based on Propositions a new definition of circularity
measure is introduced in Definition [1| by determining the deviation of the
union of three profiles 1 4%(D), A{(D), AY(D), noted as U (D). The value r
can be simply estimated as the mean value of this profile. By determining the
deviation of the profile Uy(D), we can measure how far D is similar to a circle.
Moreover, with a same deviation, the more r is greater, the more D is closer
to a real circle. Our circularity measure is then proposed as follows.

Definition 1 Let us denote U4 (D) = {1 4%(D), AY(D), AY(D)}oco. The cir-
cularity measure of D is defined as

a(UL (D))

CM(D)=e "Vo®) (4)

CM (D) measures how far D differs from a perfect circle. The greater the
ratio % is, the more C'M (D) reaches to 0 and the more D is linear. By definition
of CM (D), it is evident that the proposed circularity measure ranges over the
interval [0,1]. It takes 1 if D is a perfect circle; it takes 0 if D is empirically
considered as a linear shape.

Algorithm [1f is then introduced to measure the circularity of a shape D
using Definition [I} Theoretically, Algorithm [If works well and estimates the
circularity of a shape. In practice, however, the calculation of A%(D), AY(D),
AY(D) by determining the maxima of C%, profile can have several issues. First,
the maxima may not be unique. Second, due to the boundary distortion of D,
the maxima of C'% may be obtained at a location that is far away the midpoint
of CY and then it makes a considerable disparity between A{(D) and A4(D).

We conduct the following simple idea to make the circularity measurement
more robust against numerical issues, raised by Definition [I| Instead of es-
timating AY(D), A§(D) which are the origin of those issues, we detect the
borders pf and p§ of the “projected band” in direction 6. It should be noted
that p§ — p! = AY(D) + A§(D). Therefore, the problem is to verify the devia-
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Algorithm 1 Circluarity measurement of a shape D.

Input: D — arbitrary shape, n — number of projection directions
Output: CM(D) — circularity measure

L O={0:}72, 0 =iZ

2: Determine R(D) “Radon i image of D
3: for 0; € © do
4:  From R(D), determine %Aei(’D), A(fi (D), Ag" (D)
5: end for 0. 0.
6: UL(D) = {wi 3"y, where uj = 4% (D), ujyn = Ay (D), ujson = Ay’ (D), VO < j <
n
3n—1

o 6
tion of the profiles p§ — p¢, A?(D) and Rp (6, 2522). It is theoretically verified
by the following proposition.
Proposition 3 An arbitrary shape D satisfying the following condition %AQ(D) =

o 0 6_ 6 . . .
iRp (0, %) =222 = V0 € [0,7) is a circle of radius r.

Proof Because of A’(D) = Rp(8, p§)+pg)7 and thanks to the definition of

A?(D), we have: argmax (Rp(, p)) = p1+p2 . Because p{ and p§ are the borders
p

of the “projected band” of D in direction 6, we have A{(D) = 2122 — p, =
22201 and AY(D) = py — p1+p2 = 22521 Therefore, 1/10( ) = AG( ) =
AY(D) = r,V8 € [0,7). By applylng Proposition ' we deduce that D is a
circular disk of radius 7.

Accordingly, based on Proposition [3] an improved definition of circularity
measure is addressed in Definition ] as follows
] o o 7]
Definition 2 Let us denote U (D) = D) , SRp(0, 22522, p2(D)gp1(D)
The improved circularity measure of D is deﬁned as

}9€@~

_ o (D)
iCM(D) =e V&™) (5)
Algorithm [2]is then introduced to calculate circular measure by using Def-

inition [2| It should be noted that a normalization step is addressed before
the construction of profile Ué(D) by dividing all three above components by

the last one ( w) to make the measure more robust against change
of scales. Although both these algorithms come theorically from Definition [I],
the second one overcomes the numerical issues raised in Algorithm [I} In prac-
tice, we observe that the obtained measure is more stable than that produced
by the first algorithm by avoiding the estimation of A{(D), A§(D) which are

numerical issues. Those do not influence on the alternative measurements:
p(D)—pi(D) 14 1R 0 p‘f+p3)
2 , an 3 /xD\U, 2 .
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Algorithm 2 Improved circularity measurement of a shape D.

Input: D — arbitrary shape, n — number of projection directions
Output: iCM (D) — improved circularity measure
-1 .
1: 0={0:}]"y, 0 = i
: Determine R(D) -Radon image of D
: for 6, € © do

0 0
From R(D), determine A% (D), pgi (D), p?i (D), Rp(6, w)
: end for

TR W

0; 0;
i(D i(D
495 (D) _ Rp (eiyﬂl ( )-;—;)2 ( ))

0, 0, Yj+2n =
pa’ (D)_Pll (D)

o

c U2(D) = {u;}3"~ ! where u; = y 3 ,
@( ) { 1}7,70 J pgl(p)_p?z(p)
’U,j+2n:1,VOSj<TL

3n—1

7 o(D) = ﬁ Z Uug

k2

i—0

3n—1
8 (D) = J & Y (- o(D))
=0

a(D)

9: iCM(D) = e m(D)

4.2 Complexity

Let us consider the input image of M = m x m pixels. The calculation of
Algorithms could be separated into three steps: Radon transform, the
estimation of profile U (D) (resp. U3 (D)), the calculation of circularity mea-
sure from profile U, (D) (resp. U (D)). The Radon transform can be computed
rapidly based on recursively defined digital straight lines [56] that requires only
M x log(M) operations. Please refer to [56] for more implementation details
of fast Radon transform. The second step requires O(nm) = O(nv/M) oper-
ations while the third step needs only O(n) operations. On the other hand,
because n is the number of considered projections, it can be seen as a constant
(in practice, n is set to 180). Therefore, our methods (Algorithms [1| and
have a same complexity of M x log(M).

4.3 Properties
4.3.1 Robustness to additive noise and distorted boundary

Based on the Radon transform, a degradation to shapes such as salt & pepper
noise addition or boundary distortion only results in a small change in their
CY profiles and therefore it leads to a small change in our measure, defined
in Algorithm [2| As a consequence, the proposed measure is robust against
such degradation. Figure [5| shows that C'Z only changes slightly when the
circle boundary is distorted. Thus, the proposed circularity measure is robust
against degradations of shape boundary.
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300
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0 50 100 150 200 250 300 350
14
(a) Sample circles (b) Their C% profiles

Fig. 5: The C% profile of a circle and its boundary-distorted version.

4.3.2 Robustness to similarity transformation

From the last three properties of Radon transform in Section the C% of a
function f can be shown to have the following properties.

— A translation of f by a distance x¢ does not change C’?.
— A rotation of f by an angle g results in a shift in the index 6 of C? by a

distance 6p: C?(p) — C}Hg‘j)(p).
— A scaling of f by factor a results in the scaling in the variable p and the
amplitude of C?: C’?(p) — éC? (ap).

Our measure is introduced using extracted geometric features of C?. In order
to make the proposed measure invariant to rotation, we consider C? at equidis-
tant samples of 6 € [0, 7). Our measure ensures the scaling invariance thanks
to a simple normalization of deviation by r that is estimated as mean value
of this sequence {ul}fgo_ ! Thus, the proposed circularity measure is invariant
to translation, rotation, and scaling.

5 A novel evaluation criterion for assessing shape measures

To the best of our knowledge, although many circularity measures have been
presented, there is not any evaluation criterion for comparing these measures
like polygonalization [52l[53]. There are many desired properties such as ro-
bustness to distortion, invariant against similarity transforms, etc to take into
account a measure. Consider separately each property does not allow to obtain
a general evaluation of such a measure.

We introduce then in this section such a criterion for this purpose by as-
sessing the discriminant power of a shape measure. Our point of view is the
following. The better a shape measure is, the greater its discrimination power
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is. It means that using a good shape measure as a distance for shape clas-
sification on a dataset, we could observe the two following properties: i) the
distances between inner classes must be small; ii) the distances between outer
classes must be large.

Let us consider now a dataset S containing p groups of different shapes
and each group has ¢ sampled shapes. Suppose that S;; (1 <i<p,1<j<gq)
is the j** sampled shape of the i*" group. Consider now a measure m, the
obtained value using measure m on the shape S;; is noted as CM,, (S;;). The
distribution of measured shapes within the i*" group is characterized by its
mean and standard deviation values:

Z (6)

1
q

7 (8) = ||+ 37 (CMn (i) — 4 (5)) ™

By their definitions, ¢, (S) and o? (S) can be seen respectively as the
representative and dispersion values of the i*" group using measure m. In the
following, we define the inner distance as the mean of dispersion values, the
outer distance as the standard deviation of representative values of all groups
of shapes.

InnerD,,(S) = ZU:”(S) (8)

P

1< ; 13 ; 2
Outer Dn(8) = | D (W) = - 3 in(5)) 9)
j=1
We then propose an evaluation criterion as POD,,(S) to measure the Power
Of Discrimination on dataset .S using shape measure m as follows.

Outer Dy, (S)

PODW(S) = 1D (S)

(10)
This proposed criterion simply comes from our starting point of view: the
better a measure m is; the larger the outer distance OuterD,,(S) is and the
smaller inner distance InnerD,,(S) is.

6 Experiments

6.1 Circularity measurement on synthetic data

We have experimented our measure on synthetic data to consider its behav-

ior in different conditions such as boundary distortion, noise, etc. Thanks
to the projection-based approach, our method can deal with complex shapes
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Fig. 6: Shapes composed of multiple closed contours taken from MPEG

dataset.
) 0.805 (b) 0.514 ) 0.467

Fig. 7: Experiments of ¢C'M measure on compound shapes taken from [24].

composed of several closed contours like moment-based methods [24]. This is
an important advantage compared with contour-based methods [57,27,[28[29]
requiring shapes represented by a unique closed contour that is not always sat-
isfied in real conditions (see Figure @ Figure [7| presents the obtained results
on compound shapes. It also shows that for compound shapes the circularity
value depends clearly on the mutual positions of their components even if
the components are the same. In Figure|7] each shape contains 3 disconnected
components where each component is a circle. It could be seen from this Fig-
ure that even each component is a circle in Figure (7] the measure is high when
the components are concentrated on a center (Figure [fa) while it is low when
the components are on a line (Figures [7}b, [fc) and in addition the lowest
value is obtained when the components are far away from each other (Figure
mc). It seems that this result corresponds well to the intuition of human visual
perception.

We also consider the proposed measure on the shapes suffering different
levels of boundary distortion. Figures[8and [9] present the experiments on both
non-circular and circular shapes. It could be seen that the proposed measure
is robust against various levels of boundary distortion.

From these experiments, we could make the following findings.

— The circularity measures of similar shapes come closer to a value.
— Two shapes having a same circularity measure are not necessarily similar.
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BLd o ife

) 0.766 ) 0.774 ) 0.771 ) 0.777

Fig. 8: Experiments on non-circular shape under different levels of boundary
distortion using our ¢§C'M measure. The shapes are taken from [24]

o0®

) 0.986 (b) 0.989 ) 0.965

Fig. 9: Experiments on circular shape under different level of boundary
distortion using our {C'M measure.

6.2 Circularity measurement on real data

The proposed circularity measure has also been evaluated on different follow-
ing shape datasets which consist of object shapes segmented from real images.

— Kimia 99 dataset [58]: This consists of 99 shapes, decomposed into 9 classes,
and each class contains 11 different shapes (see Figure .

— Sharvit dataset [59]: This contains 256 shapes, grouped in 18 categories,
and each category consists of 12 shapes (see Figure for several shape
examples).

— Floral dataset: We have also designed Floral dataset [[]in order to evaluate
how the proposed method deal with compound shapes and how robust it
is against noise influence. It consists of 20 basic floral shapes which are all
compound shapes. Based on each basic shape, a series of 10 noise shapes
is generated by addressing different levels of noise (i. e. SNR={1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5, 5.5}). Finally, the dataset contains 20 classes, each
class is structured from a basic floral shape and its 10 corresponding noise
versions. Figure[IT] presents 20 basic floral shapes while Figure[12]illustrates
20 derived shapes at noise level SNR=1.

Figure[10]reports the results on Kimia dataset using our circularity measure
(iCM) while Figure [13| presents the our results on several shapes of Sharvit

1 This can be publicly accessed at address http://tpnguyen.univ-tln.fr/download/
floral_dataset
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http://tpnguyen.univ-tln.fr/download/floral_dataset
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Table 1: Influence of the angular sampling step on our measure iC' M.

Shape T ) 49 (dGcgmc) 16 35 Mean Std

Fig.|7}a | 0.805 | 0.804 | 0.804 | 0.802 | 0.804 | 0.803 | 0.803 | 0.804 | 0.0011
Fig.|7|b | 0.514 | 0.514 | 0.514 | 0.515 | 0.509 | 0.528 | 0.516 | 0.516 | 0.0056
Fig.[7|c | 0.467 | 0.467 | 0.466 | 0.466 | 0.462 | 0.479 | 0.466 | 0.468 | 0.0051
Fig.|8fa | 0.766 | 0.765 | 0.763 | 0.763 | 0.765 | 0.762 | 0.766 | 0.764 | 0.0015
Fig.[8]b | 0.774 | 0.774 | 0.772 | 0.770 | 0.771 | 0.771 | 0.776 | 0.773 | 0.0023
Fig.[8]c | 0.771 | 0.770 | 0.769 | 0.768 | 0.769 | 0.768 | 0.771 | 0.769 | 0.0015
Fig.|8|d | 0.777 | 0.776 | 0.774 | 0.775 | 0.774 | 0.773 | 0.771 0.774 | 0.0020

Table 2: Comparison on robustness to distortion boundary.

Shape Rosenfeld | Haralick | Bribiesca | Danielsson | Ruberto and Dempster | Zunic et al. | Ours (iCM)
Fig.|8]a 0.3232 0.6687 0.9941 0.3077 0.2977 0.7473 0.766
Fig. |8]b 0.2438 0.6665 0.9887 0.2717 0.6052 0.7559 0.774
Fig.[8lc 0.1694 0.6716 0.9887 0.2494 0.4307 0.7583 0.771
Fig. |8]d 0.1097 0.6889 0.9835 0.1950 0.6239 0.7456 0.777

dataset. It could be seen from this experiment that the intra-distance between
shapes of the same class is sufficiently smaller than the inter-distance between
shapes from different classes. Thus, the proposed circularity measure can be
used as features in shape recognition problems. On the other hand, Tables
present the discriminant power of our proposed measures (CM and iC M)
on datasets Sharvit, Kimia 99, and Floral respectively. From these tables, it
could be noted that although two measures are defined from equivalent defi-
nitions but the improved measure (¢C M) is more robust against deformations
because it has not numerical issues in calculation as the previous one (C'M).

6.3 Influence of the angular sampling step

We have investigated the influence of # sampling step in Radon transform to
the proposed measures. For this purpose, we calculated the circularity measure
for different shapes in Figures [7] and [§] at a number of sampling steps: Af =
1,2,4,6,8,16,32 (degree). Table[l|shows the obtained values. It could be seen
from Table |1 the following important remarks.

1. The proposed measure doesn’t change very much while Af increases from
1 to 16; and that considerable changes can only be observed when Af
increases from 16 to 32. This allow us to optimize the number of projected
directions. If Af is set to 16, we only need 11 projections to calculate the
circularity measure instead of using 180 projections as usual.

2. The influence of the angular sampling step is less than that of boundary
distortion.

6.4 Comparison with existing measures

We compare our measure with other existing circularity measures : Rosenfeld
[60], Haralick [I9], Bribiesca [30], Danielsson [20], Ruberto and Dempster[21],
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Fig. 10: Kimia 99 dataset.
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Zunic et al. [24]. We have evaluated our measure in comparison with those
measures on the following different datasets: Kimia [58], Sharvit [59], and
our Floral. The two first datasets are well-known considered for evaluation of
shape descriptors. The last one is introduced to address compound shapes and
noise conditions. Table [3| presents the distribution (mean and std) of different
methods on each group of Kimia dataset. We can make several findings from
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Fig. 13: Some shapes of Sharvit dataset.

this table. First, our measure can distinguish shapes from different groups
since each group can be characterized by its mean value of circularity. Second,
our measure tolerates well the shapes belonging to a same groups since the
inner-class distances, defined by variance value of circularity, are relatively
small. In addition, Tables show the POD criterion of each measure on
three above datasets to address its discrimination power. It could be seen from
them that our improved measure (¢CM) together with Zunic et al.’s measure
are more efficient than others. Moreover, thanks to a similar computational
framework, we can easily integrate the proposed measure and our previous
work on polygonality [31] for shape classification without increasing practically
the computation cost.

6.5 Application to linearity measuring

Inspired from [24], we also consider a direct application of circularity measure-
ment in linearity measuring. A shape, measured with a very low circularity
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Table 3: Measured values of different methods on each group of shape of
Kimia 99 dataset.

Groupe of shapes Rosenfeld Haralick Bribiesca Danielsson Ruberto and Dempester Zunic et al. Ours (iCM)
Fish 0.171 & 0.029 [ 0.545 £ 0.023 | 0.974 £ 0.007 | 0.197 & 0.023 0.486 &+ 0.317 0.397 £ 0.053 [ 0.511 £ 0.048
Rabbit 0.359 & 0.044 [ 0.784 £ 0.018 | 0.992 £ 0.001 | 0.427 + 0.038 0.704 £ 0.180 0.825 £ 0.028 [ 0.767 £ 0.018
Plane 0.117 4+ 0.026 | 0.659 + 0.032 | 0.973 £ 0.006 | 0.192 + 0.026 0.551 + 0.185 0.639 &+ 0.042 | 0.740 £+ 0.018
Fgen 0.315 4+ 0.043 | 0.779 £ 0.018 | 0.992 £ 0.002 | 0.389 & 0.045 0.515 + 0.172 0.821 £ 0.027 | 0.809 % 0.031
Hand 0.155 & 0.025 | 0.509 & 0.024 | 0.947 £ 0.006 | 0.187 + 0.031 0.520 & 0.244 0.228 £ 0.036 | 0.412 £ 0.027

Tool 0.156 4 0.022 | 0.731 & 0.031 | 0.983 £ 0.002 | 0.232 & 0.031 0.390 & 0.228 0.767 £ 0.029 [ 0.815 + 0.025

Dude 0.106 & 0.009 [ 0.625 £ 0.019 | 0.967 £ 0.001 | 0.136 + 0.012 0.845 & 0.005 0.465 £ 0.025 [ 0.672 £ 0.022
Animal 0.131 & 0.025 | 0.686 & 0.026 | 0.975 £ 0.004 | 0.214 + 0.058 0.444 £ 0.257 0.575 £ 0.052 [ 0.728 £ 0.035
Batoidea 0.292 4+ 0.013 | 0.657 + 0.041 | 0.989 + 0.001 | 0.414 £ 0.016 0.651 + 0.221 0.804 + 0.036 | 0.725 £ 0.040

Table 4: POD criterion of different methods on the Sharvit dataset.

Rosenfeld ‘ Haralick ‘ Bribiesca ‘ Danielsson ‘ Ruberto and Dempster ‘ Zunic et al. ‘ Ours (iCM)
408 | 419 | 473 | 347 | 0.28 | 5.74 | 5.74

Table 5: Experiment on Kamia 99 dataset using POD criterion.

Bribiesca | Danielson | Haralick | Zunic et al. | Rosenfeld | Ours (CM) | Ours (:iCM)

4.21 3.63 3.69 5.88 3.63 4.04 4.67

Table 6: Evaluation on Floral dataset using POD criterion.

Bribiesca | Danielson | Haralick | Zunic et al. | Rosenfeld | Ours (CM) | Ours (sCM)

0.002239 0.041807 | 0.031641 0.045099 0.018785 0.0303 0.0692

value, is intuitively expected to be more linear. Figure presents several
linear shapes together with their circularity measure. It could be seen that
the more a shape is linear the more its circularity measure is small. Therefore,
1—CM (D) is a suggestion to measure the linearity of a shape. Figure|15|shows
the profile of circularity measures obtained from a set of ellipses of which the
minor axis is varied from 1 to 200, the major axis is set to 200. We also
consider the profile of circularity measures in Figure obtained from a set
of rectangles of which the width is set to 300, the height varies from 1 to 300.
Figure [I6]b presents one rectangle of this set; its height is 30 and its measure
is 0.207. From those profiles, we could make the following observations. The
ellipses of which the minor axis is less than or equal to 20 have small circu-
larity measure (less than 0.2). Similarly, the rectangle of which the height is
less than or equal to 30 have circularity measure less than 0.2 too. In other
word, using our proposed circularity measure, a shape can be seen as a linear
shape having a ratio width/length less than 10% if its circularity measure is
relatively small. Thus, a threshold from 0.2 to 0.25 can be considered to detect
linear shapes by addressing our iC'M circularity measure.

7 Conclusions

We have presented a new circularity measure that is invariant against similarity
transforms such as translation, rotation and scaling. In addition, it is robust
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Fig. 14: Circularity measurement on linear shapes using iC'M measure. The
shapes a), b) are taken from [24].
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Fig. 15: Profile of circularity measures obtained from a set of ellipses of
which the major axis is set to 200, the minor axis is varied from 1 to 200.
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Fig. 16: (a): Profile of circularity measures obtained from a set of rectangle of
which the width is set to 300, the height is varied from 1 to 300; (b): A
rectangle of height 30, width 300
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Fig. 17: Reuleaux triangle. Fig. 18: Lemma

with respect to distortion on boundary shape. The proposed measure is shown
to be a good feature for shape description. We have also introduced a new
evaluation criterion for evaluating and comparing different shape measures
by assessing their power of discrimination. In the future, we are interested
in extending this approach for other problems in shape measurement such as
rectangularity, ellipticity, etc.

Acknowledgements

We are grateful to two reviewers for kindly providing us their valuable and
insightful comments to improve the manuscript.

A Materials for the inverse problem

The following lemmas establishes the relation between convex and non-convex shapes as
well as the properties of a convex shape satisfying the conditions in Proposition [2}

Lemma 1 If an arbitrary shape D satisfies this condition: 1 A%(D) = A{(D) = AY(D) =
r, VO € [0, ), its convex hull CV (D) satisfies the above condition too.

Proof First, we will prove that any extremity E‘l’), Eg is not in a concave part of the boundary
of D for any direction 6. Suppose that Ef is in concave part. It means that there exists 2
points A, B on the boundary of D nearby Ef at the left and right sides such that Ef is
inside of triangle E§AB (see Figure . So, max(AES, BES) > E{E§ = 2r. This fact is
contradictory to the above condition of D. On the other hand, it is evident that D and its
convex hull CV (D) have a same projected band in any direction. From the two above facts,
we can deduce the conclusion of this lemma.

Lemma 2 Let us denote the two extremities in the boundary of D corresponding to pg (’D)

0 o
as EY and EY, respectively (see also Section|3 for more detail). E{E§ and E; +3 E, +3

intersect at the midpoint of each segment V0 6 0 Tr)

Proof Let us consider direction 6, we have the following condition: Ef Eg = 2r because of
%AG (D) = r. Therefore, in direction 6 + 7, the length of D is at least 2r, the minimal value
is obtained when EQ and E9 must be on the two supporting lines of D in this direction,
respectively. In Flgure. these supporting lines, namely dy and d2, are perpendicular with
EYES at EY and E9§ respectively. In addition, A 2(D) + A 2 (D) = 2r. Therefore, in
dlrectlon 0+ Z the projected band of D must be sandwiched between two lines di and do

(see Figure .
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Fig. 19: Lemma Fig. 20: Lemma

9+ gy T
Because of AY(D) = AY(D) = r,V8 € [0,n), E1+2 E‘27L2 must be equidistant from
dy and d2. So, we have E'fO = EgO. Similarly, by considering direction 6 + 7, we obtain

0+ % 0+ Z
B 20=E"%0.

Lemma 3 Suppose that O (resp. O?) is the intersection between E?Eg and EF E; (resp.

9L T go T
EYES and E1+ 2 E2+ 2 ) (please see Sectionfor the definitions of EY and EY). We
have following property: 00 < \/2r(y/5 — 4cos(0) — 1)

Proof Lemmaﬁ allows to deduce that the border of D is decomposed into a set of tuples
0+ % 0+ Z
(Ef7 Eg, E‘lJr 2 E‘;L 2) where the intersection O is the midpoints of two segments Eng,

O+ g4 T
E1+ 2 E2+ 2. Suppose that ¢(O,r) is the circle of center O, of radius r. Without loss of
generality, suppose that O? is in the fourth octant (see Figure . In addition, for the
simplicity of presentation, we consider 6 < %, the other cases can be considered similarly.

We then denote O1 (resp. O2) the projection of O on EYE§ (resp. EeriEngj); X% and
Ef (resp. Xt % and E'erE) are the iftersections between OE? (resp. OEeri) and ¢(O,r)
and C(Eg7 2r) (resp. ¢(O,r) and C(Eg, 2r)).

0+
In this condition, it is evident to deduce that Ef and E1+2 are outside or on the
boundary of (O, r). In addition, because of the length of D in any direction is a constant

(2r), we deduce that EJE? < 2r and EZ EerE < 2r. Therefore, EY (resp. Eeri) must
be in the small zone determined by 3 circles: ¢(O,r), ¢(EY,2r), ((EZ,2r) (resp. ¢(O,r),
C(EY,2r), ((BZ,2r)) (see also Figure. So, we have:

™

EOX® < EIX® and BT 2 X053 < VT2 x0+3 (11)

Moreover, because O1 and Og are projections of O, it is evident that E?Ol < EfO

< EY0% + 090, < E9X% + X%0 & r+ 0%0; < EfX% +r & 0%0; < E{XY and

B30, < BP0 & BP0 4+ 090, < BVTEXOE 4 X030 & r 4+ 090, <
Ef+%X0+% +re 0%, < Ef+%X9+%, Briefly, we have:

0°0; < E?X® and 0°0, < EY T2 x0+3 (12)

Consider now the triangle EOE%, we have

— —_ 2 —_ —_ J— J—
E{O = \/|E19Eg\ +|OEY? — 2|E9E9||OEY| cos(£ EY EQO) & EI X047 = \/5r2 — 4r2 cos(LEYEJO)
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& EfXg = r(\/5—4cos(4E7ngO) — 1). Because of ZFngO < 0, we deduce that

_ —95E =«
E{X% < r(\/5 —4cos() — 1). Similarly, by considering the triangle E1+ 20EZ, the fol-
lowing remarks is obtained.

ey o+ Z Py
Eer and E1+2X9+§ <r(v/5—4cos(9) — 1) (13)
Using the results in Inequations , , , we have the conclusion of this lemma:

00% = \/|001]2 + 0022 < v2r(\/5 — 4cos(6) — 1).

: _ Ty _ 1) =
Lemma 4 ngrfoon( 5 4005(4n) 1)=0

2
Proof Due to Taylor’s series, we have 1 — %~ < cos(x) < 1, therefore 1 < 5 — 4cos(z) <
1+ 222 < (1+22)2. So, we have 0 < /5 — 4cos(z) — 1 < 2. Replacing z by 1 » We obtain
the following result 0 < n(,/5 —4cos(&) — 1) < % It is evident that lim

n n——+

i
4n oo 16m

This fact proves our conclusion.
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