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Polynomial Factorisation using Drinfeld Modules

ANAND KUMAR NARAYANAN

The arithmetic of Drinfeld modules has recently yielded novel algorithms for factoring polynomials over finite
fields; a computational problem with applications to digital communication, cryptography and complexity
theory. We offer a gentle invitation to these developments, assuming no prior knowledge of Drinfeld modules.

Factoring polynomials modulo a prime

Let [, denote the finite field of integers modulo an
odd prime number g. Polynomials [, [x] over [, share
striking analogies with integers, yet we begin with
an algorithmic distinction. While factoring integers
remains a notoriously difficult problem, factoring poly-
nomials in F;[x] is long known to be easy, at least
with access to randomness.

Polynomial factorisation over finite fields is not a
mere curiosity, but has many applications. In num-
ber theory, finite fields arise as residue fields of
global fields such as number fields. While deter-
mining the splitting of a prime in a number field,
one factors a polynomial defining the number field
modulo the prime. Several instances of polynomial
factorisation appear while factoring integers using
quadratic/number field sieve algorithms or while per-
forming index calculus to compute discrete loga-
rithms, both foundational problems in analysing the
security of cryptographic systems. In digital com-
munication, polynomial factorisation aids in the con-
struction of certain error correcting codes (BCH and
cyclic redundancy codes), structures vital to reliable
transmission of information in the presence of noise.

Let us recount a simple polynomial factorisation
algorithm. We are given a monic f(x) € F,[x] of
degree n whose factorisation into irreducible poly-
nomials f(x) = [].; pi(x) is sought. Assume f(x)
is square free, that is the p;(x) are distinct. This is
without loss of generality for there are algorithms to
rapidly reduce to this special case. It takes nlog, ¢
bits to write down f(x) and we seek algorithms that
run in time polynomial in # and log ¢. Berlekamp was
the first to show there is a randomized polynomial
time algorithm, but we follow a different two step
process.

Distinct degree factorisation

The first step, known as distinct degree factorisation,
decomposes f(x) into factors each of which is a prod-

uct of irreducible polynomials of the same degree.
By Fermat’s little theorem, x7 — x = [[,c¢ ¥ — a. To
extract the product of linear factors of f(xg, take the
greatest common divisor ged(x? — x, f(x)). To extract
products of degree two factors, degree three factors
and so on iteratively, look to the succinct expression

X0 —x = 1_[ p(x)
p:deg(p)|d

for the product of monic irreducible polynomials p(x)
of degree dividing d. At the d™" iteration, with smaller
degree factors already removed, gcd(qu - x,f(x))
yields the product of degree d irreducible factors.

Care in handling x1"is required for its degree is expo-
nential in zlog ¢. All we need is x7" mod f(x), easily
accomplished by a sequence of ¢™" powers modulo
f(x), each performed by repeated squaring. Better
still, x7° mod f(x) can be rapidly computed with a
fast algorithm to compose two polynomials modulo
f(x) in concert with ¢*" powers. Kaltofen and Shoup
devised an ingenious improvement over this naive
iteration resulting, in a significant speed up. The
Kaltofen-Shoup algorithm implemented using the
modular composition algorithm of Kedlaya-Umans
performs distinct degree factorisation with run time
exponent 3/2 in the degree n and 2 in log ¢.

Equal degree factorisation

Distinct degree factorization leaves us with the prob-
lem of factoring polynomials all of whose irreducible
factors are of the same known degree d. All known
algorithms for this task with polynomial runtime in
log ¢ are randomized. Even for the simplest case
of factoring a quadratic polynomial into two linear
factors, no unconditional deterministic polynomial
time algorithms are known. It is closely related to the
problem of finding a quadratic nonresidue modulo a
given large prime.

The following randomized algorithm can be traced
backed to ideas of Gauss and Legendre. For a uni-



“feature_may_28-Lucia” — 201946/12 — 10:44 — page 2 — #2

formly random a(x) of degree less than =,
%1
ged [a(x) 7T -1, (%)

gives a random factorisation of degree d irre-
ducible factors. This follows since raising a(x) to the
(g% —1)/2-th power modulo a degree d irreducible
polynomial results in either 1 or —1, depending on
whether a(x) reduces to a quadratic residue or not.
Remarkably, this computation can be performed with
run time exponent 1 in the degree n using an algo-
rithm of von zur Gathen and Shoup implemented
with the aforementioned Kedlaya-Umans modular
composition.

In summary, the best known polynomial factorisa-
tion algorithms have run time exponent 3/2 in the
degree with the bottleneck being distinct degree fac-
torisation. To lower this exponent is an outstanding
problem. In fact, to lower this exponent, it suffices
for there to be an algorithm that merely estimates
the degree of some irreducible factor.

Drinfeld modules and polynomial factorisation

The use of Drinfeld modules to factor polynomials
over finite fields originated with Panchishkin and
Potemine [3]. Drawing inspiration from Lenstra’s
elliptic curve integer factorization, they recast the
role of the group of rational points on random elliptic
curves modulo primes with random finite Drinfeld
modules.

We describe three Drinfeld module based algorithms
for polynomial factorisation. The first two were
devised in [2] and the third in [1]. The first esti-
mates factor degrees using Euler-Poincaré charac-
teristics in hopes of speeding up distinct degree
factorisation. The second is a Drinfeld analogue of
Lenstra’s algorithm, closely related to the aforemen-
tioned algorithm of Panchishkin and Potemine [3].
Our exposition begins with a short account of finite
Drinfeld modules followed by Euler-Poincaré charac-
teristic and Frobenius distributions, important ingre-
dients in the first two algorithms. The third algorithm
involves Drinfeld modules with complex multiplica-
tion with an analogue of Deligne’s congruence playing
a vital role. It is also the fastest of the three algo-
rithms, with runtime complexity matching the best
known algorithms, in theory and practice. The hope
is, the rich arithmetic of Drinfeld modules will inform
new algorithms to beat the 3/2 exponent barrier.

Finite Drinfeld modules

Drinfeld introduced the modules bearing his name as
an analogue of elliptic curve complex multiplication
theory. He in fact called them elliptic modules. Drin-
feld modules and their generalisations have played a
crucial role in the class field theory of function fields
and in proving global Langlands conjecture over func-
tion fields for GL,. We settle for a concrete simple
notion of Drinfeld modules sufficient for our context.
Throw the ¢*" power Frobenius o into [, [x] resulting
in F;(x)(o), the skew polynomial ring with the com-
mutation rule o u(x) = u(x)?o,, for all u(x) € F;[x].
A rank-2 Drinfeld module over F,(x) is (the F,[x]
module structure on the additive group scheme over
F,(x) given by) a ring homomorphism

¢ : Fylx] — Fy(x){o)
x+— x +a4(x) 0 + Ay(x) o?

for some g4(x) € F;[x] and nonzero Ay(x) € F,[x].

To better understand the map, it is instructive to
compute by hand as to where x%, x> and so on, get
mapped to. By design, b(x) maps to a polynomial in
o with constant term b(x),

2 deg(b)

b(x) k= o = b(x) + Y drilx)o.

i=1

Consider an [, [x] algebra M. In our algorithms to fac-
tor f(x), M will often turn out to be M = [F,[x]/(f(x)).
One way to make an F,;[x] algebra M into an F[x]
module is to retain the addition and scalar multiplica-
tion but simply forget the multiplication. The Drinfeld
module ¢ endows a new [, [x] module structure to M
by twisting the scalar multiplication. For b(x) € F,[x]
and a € M, define the scalar multiplication

2 deg(b)
b(x) * a:= gy(a) = b(x)a+ Y dui(x)al,
i=1
where the arithmetic on the right is performed in
the [, [x] algebra M. Let ¢(M) denote the new F,[x]
module structure thus endowed to M.

Euler-Poincaré characterisitic

Cardinality is an integer valued measure of the size of
a finite abelian group (equivalently, a finite Z-module).
A convoluted definition is to assign as the cardinality
of a cyclic group of prime order the corresponding
prime, and for cardinality of finite abelian groups that
sit in an exact sequence to be multiplicative. The
Euler-Poincaré characteristic y is an F;[x]-valued
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cardinality measure of a finite I, [x] module defined
completely analogously. For a finite [F,[x] module 4,
x(4) € Fy[x] is the monic polynomial such that:

* If A = F,[x]/(p(x)) for a monic irreducible p(x),
then y(4) = p(x).

e lIf0 > 41 > A - Ay — 0 is exact, then
x(4) = x(41)x(42).

For the F,;[x] module ¢(F,[x]/(f(x))) featuring in
our algorithms, the Euler-Poincaré characteristic
x (¢(F,;[x]/(7(x)))) has a simple linear algebraic inter-
pretation: the characteristic polynomial of the linear
map ¢, on [F,[x]/(f(x)). In particular, it is a degree n
polynomial that can be computed efficiently.

Frobenius distribution of Drinfeld modules

Let us put our newly defined [F,[x] modules and car-
dinality measure y to use. Take an elliptic curve E
over the rational numbers and reduce it at a prime p.
The [Fp-rational points E([F,) famously form a finite
abelian group with cardinality p + 1 up to an error
determined by the Frobenius trace tg,. The Hasse
bound, considered the Riemann hypothesis for ellip-
tic curves over finite fields, asserts that |tg,| < 2+/p.
Thereby,

HEZ/P) =p+1- gy

N——
-24/p< <24/p

Gekeler established the following Drinfeld module
analogue. Take a Drinfeld module ¢, a monic irre-
ducible polynomial p(x), and consider the resulting
Fy[x] module ¢(F,[x]/(p(x))). Its Euler-Poincaré char-
acteristic equals

X (¢ ([Fq[x] /(p(x)))) = p(x) + tipExJ) :
<deg(»)/2

which is p(x) plus an error determined by the Frobe-
nius trace #4,(x) of degree at most half that of p(x).
The analogy with the Hasse bound is striking. The
error in each case takes roughly at most half the
number of bits as the estimate.

Factor degree by Euler-Poincaré characteristic

Gekeler’s bound concerns Drinfeld modules ¢ at an
irreducible p(x). What happens at f(x) = [], p:(x),

our polynomial to factor? The multiplicativity of the
Euler-Poincaré characteristic implies

b% (¢ ([Fq[x] /(f(x)))) = UX (¢ ([Fq[x] /(p,—(x))))
- l—[ (Pi(x) + tgp, (x)) = T(x) + tg5(x),

for some ty5(x) of degree at most s7/2, where s;
denotes the degree of the smallest degree factor of
f(x). Thus, we have an extension of Gekeler’s bound
to reducible polynomials

X (¢ ([Fq [] / (f(x)))) = (%) + tj(x),

<s7/2

implying (x) and x (¢(F, [x]/(7(x)))) agree at the high
degree coefficients! The number of agreements tells
us information about the smallest factor degree.

For a randomly chosen ¢, tsi(x) likely has degree
exactly [ss/2] (with probability at least 1/4). The
number of agreements not merely bounds but
determines the degree of the smallest factor. To
claim this probability, one needs to prove for a ran-
domly chosen ¢, the Frobenius traces corresponding
to the irreducibles of smallest degree do not conspire
yielding cancellations. To this end, we seek equidistri-
bution formulae for the Frobenius traces. Analogous
to elliptic curves, there is a correspondence between
the number of isomorphism classes of Drinfeld mod-
ules with a given trace and Gauss class numbers in
certain imaginary quadratic orders. The latter can be
computed using analytic class number formulae.

An algorithm to estimate the degree of the smallest
degree factor of a given f(x) is now apparent. Pick
a Drinfeld module ¢ (by choosing g4, Ay at random
of degree less than n). Compute the Euler-Poincaré
characteristic y(¢(F,[x]/(7(x)))) and count the num-
ber of high degree coefficients it agrees in with f(x).

Drinfeld module analogue of Lenstra’s algorithm

It is instructive to begin with Lenstra’s elliptic curve
integer factorisation algorithm before seeing its Drin-
feld module incarnation. Pollard designed his p-1
algorithm to factor an integer that has a prime factor
modulo which the multiplicative group has smooth
order. But this smoothness condition is rarely met.
Lenstra recast the role of the multiplicative group
with the additive group associated with a random
elliptic curve. If the integer has a prime factor mod-
ulo which the randomly chosen elliptic curve has



“feature_may_28-Lucia” — 201946/12 — 10:44 — page 4 — #4

smooth order, the algorithm succeeds in extracting
that factor. For a random elliptic curve, this smooth-
ness condition is met with a probability depending
sub-exponentially on the size of the smallest prime
factor. Consequently, it is among the most popular
algorithms for integer factorisation, particularly as
an initial step to extract small factors.

Pollard’s p — 1 algorithm

Fix a positive integer B as the smoothness bound
and denote by m, the product of all prime powers
at most B. Given an N to factor, choose a positive
integer a < N at random. Assume a is prime to N
for otherwise gcd(a, N) is a nontrivial factor of N.
If N has a prime factor p with every prime power
factor of p —1 at most B,

a"-1=(a?)y"* V120 modp = p|a"-1

and gcd(a™ — 1, N) is likely a nontrivial factor of N.
The running time is exponential in the size of B.
For typical N, B needs to be as big as the smallest
factor of N and thus the running time is typically
exponential in the size of the smallest factor of N.

Lenstra’s algorithm

Lenstra’s elliptic curve factorization algorithm factors
every N in (heuristic) expected time sub-exponential
in the size of the smallest factor p of N. A key
insight of Lenstra was to substitute the multiplica-
tive group (Z/pZ)* in Pollard’s p — 1 algorithm with
the group E(F,) of F, rational points of a random
elliptic curve E over [F,. The running time depends
on the smoothness of the group order |E(F)| for
a randomly chosen E. The Hasse bound guaran-
tees that [|E(F,)| — (p + 1)] < 24/p and Lenstra
proved that his algorithm runs in expected time sub-
exponential in the size of p assuming a heuristic on
the probability that a random integer in the interval

[p+1-2+/p.p+1+24/p] is smooth.

Drinfeld module analogue

In the ensuing Drinfeld module version, random ellip-
tic curves will be recast with random Drinfeld mod-
ules to factor polynomials. As before, let f(x) € F,;[x]
denote the polynomial to factor. Pick a Drinfeld mod-
ule ¢ at random and a random element « in the
F,;[x] module ¢(F,[x]/(f(x))). The order, Ord(«a), of
@ is the smallest degree polynomial b(x) € [, (x) that
annihilates «, that is ¢p(a) = 0. Extract and divide
away the linear factors of Ord(a),

t(x) := Ord(@)/gcd(Ord(@), x7 — x)

and apply the Drinfeld action ¢.(e) on «. It is likely
that ¢,(a) is a zero at some but not all factors p;(x)
of f(x) and gecd(¢:(a), ) gives a random factorisation.

A brief outline of why this is the case follows. As with
groups, the order of an element divides the cardinal-
ity of an [F,[x] module. That is, Ord(«) divides the
Euler-Poincaré characteristic of ¢(F,[x]/(f(x))). In
fact, with high probability, Ord(a) equals the Euler-
Poincaré characteristic

Ord(a) = n (pi(x) + tep, (%)) .

1

If the factors on the right have/don’t have a linear
factor independently and roughly uniformly at ran-
dom, then the algorithm indeed yields a random
factorisation. This is indeed the case!

The factors on the right lie in the short intervals
I; centred at p;(x) with interval degree bounded
by deg(p;)/2. The Frobenius trace distribution as-
sures a certain semi-circular equidistribution of
pi(x) + tgp,(x) in the short interval /;. Remarkably,
unlike over integers, factorisation patterns in the
short intervals I; are unconditionally proven to be
random enough. In summary, for random ¢, the fac-
torisation patterns of each p;(x) + ty,, (%) is like that
of a random degree deg(p;) polynomial. Further, they
are independent.

The computation of Ord(a) dominates the runtime
and can be performed efficiently through linear
algebra. This is in stark contrast to integers, where
finding the order of an element in the multiplicative
group modulo a composite appears hard.

Drinfeld Modules with Complex Multiplication:

Our last algorithm is distinguished in that it samples
from Drinfeld modules with complex multiplication.
A Drinfeld module ¢ has complex multiplication if its
endomorphism ring

Endg, (x)(4) ®F, [+ (Fy(x))

is isomorphic to a quadratic extension of [, (x). A typ-
ical Drinfeld module has an endomorphism ring only
isomorphic to F,(x). Complex multiplication is the
rare case where the Drinfeld module is more symmet-
ric than typical. As with reducing elliptic curves over
rational numbers at primes, Drinfeld modules can
be reduced at irreducible polynomials. The reduction
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is deemed supersingular if the endomorphism ring
is noncommutative, and ordinary otherwise. Every
Drinfeld module with complex multiplication has the
remarkable feature that the density of irreducible
polynomials where it is supersingular is roughly half.

To factor a given polynomial f(x), the strategy is
to choose a random Drinfeld module with complex
multiplication. Using explicit formulae, construct a
Drinfeld module ¢ with complex multiplication by
the quadratic extension F,(x)(vx —¢) with ¢ € F,
chosen at random. Then attempt to separate out the
irreducible factors of f(x) where ¢ is supersingular
from the ordinary. This likely results in a random
factorisation of f(x), which is recursively factored to
obtain the complete factorisation.

To separate the supersingular factors, we look to the
Hasse invariant, an indicator of supersingularity. The
Hasse invariant Ay, € Fj[x]/(p(x)) of ¢ at an irre-
ducible p(x) vanishes if and only if ¢ is supersingular
at p(x). For the chosen ¢, we construct a polynomial
that is a simultaneous lift of Hasse invariants at all
irreducible polynomials of degree at most that of f(x).
The efficient construction of this lift relies critically
on a Drinfeld module analogue of Deligne’s congru-
ence due to Gekeler. The common irreducible factors
of this lift and f(x) are precisely the irreducible fac-
tors of f(x) where ¢ is supersingular. The GCD of f(x)
and the lift separates out the supersingular factors
from the ordinary, as desired.

Hasse Invariants and Deligne’s congruence:

For a Drinfeld module ¢ with defining coefficients
(a4, Ay), we now construct the aforementioned lift
of Hasse invariants. Consider the sequence r4(x) €
F,[x] of polynomials indexed by k starting with
rg0(x) =1, 141(x) := gg(x) and for m > 1,

)qm—l

tom(%) = (86(0)"  tpm-1(x)

" -2 (A0) " tamea().
Gekeler showed that 14, () is the value of the nor-
malized Eisenstein series of weight ¢ —1 on ¢ and
established Deligne’s congruence for Drinfeld mod-
ules, which ascertains for any p of degree £ > 1 with
Ay(x) #0 mod p that Asp = 144(x) mod p(x).

Hence vy (x) is a lift to [, [x] of the Hasse invariants
of ¢ at not just one but all irreducible polynomials
of degree k. Further, 1, £(x),14441(x) are both zero
precisely modulo the supersingular p(x) of degree at
most k. Since a factor of f(x) is of degree at most
n, take

ged(rgn (%), tpn+1(x))

as the Hasse invariant lift.

To claim the algorithm indeed works, it remains to
demonstrate that with constant probability, our ran-
dom choice of ¢ with complex multiplication yielding
a random factorization of {(x). By complex multipli-
cation theory and Carlitz reciprocity, this probability
is identified with splitting probabilities in a certain hy-
perelliptic extension of [F,(x), and duly bounded. The
overall runtime is dictated by the time taken to com-
pute the Hasse invariant lift. An intricate algorithm
for this task is devised in [1] using a fast procedure
to compute its defining recurrence. Remarkably, the
runtime exponent matches the best known factori-
sation algorithm and is comparable in practice to
the fastest existing implementations. In light of this,
thorough further investigation of Drinfeld module
inspired polynomial factorisation is warranted!
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