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Introduction

Recent studies on self-assembled magnetic nanoparticles have led to investigate the interaction of magnetically patterned structures. Among these studies we have those including chain-like structures [START_REF] Alphandery | Assemblies of Aligned Magnetotactic Bacteria and Extracted Magnetosomes: What Is the Main Factor Responsible for the Magnetic Anisotropy?[END_REF] and whose main objective is to shed light about the dynamics of magnetotactic bacteria. Inside these biological identities, magnetite crystals are formed that together mimic the needle of a compass for orienting the entire organism in geomagnetic fields [START_REF] Komeili | Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK[END_REF]. From a technological point of view, magnetic nanoparticles can form three-dimensional (3D) structures with astonishing mechanical properties of interest for the microfabrication of 3D electronic devices [START_REF] Grzybowski | Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface[END_REF][START_REF] Whitesides | Self-Assembly at all scales[END_REF]. Dipolar magnetic interaction effects in 2D hexagonal arrays of nano-sized hollow-spheres of different materials have been determined motivated by their potential applications [START_REF] Guerra | Dipolar magnetic interaction effects in 2D hexagonal array of cobalt hollow-spheres[END_REF]. Nowadays, magnetic colloids can be synthesised in a variety of shapes [START_REF] Nakade | Synthesis and properties of ellipsoidal hematite/silicone core-shell particles[END_REF][START_REF] Rossi | Cubic crystals from cubic colloids[END_REF][START_REF] Pyanzina | Cluster analysis in systems of magnetic spheres and cubes[END_REF], and the possibility of remotely controlling these soft matter entities via external fields makes them ideal for pharmaceutical applications [START_REF] Tierno | Recent advances in anisotropic magnetic colloids: realization, assembly and applications[END_REF]. At a macroscopic scale, the modulation of the magnetic interaction has been used to generate acoustic gaps in sound propagation through chains of millimetric magnetic beads [START_REF] Sierra-Valdez | Acoustic gaps in a chain of magnetic spheres[END_REF].

In all the above examples, the systems behavior is determined by the magnetic interaction, which by its inherent anisotropy becomes a cumbersome problem. Recent studies focused on magnetic chains have given enlightening results [START_REF] Kiani | Elastic properties of magnetosome chains[END_REF][START_REF] Boltz | Buckling of elastic filaments by discrete magnetic moments[END_REF]. Namely, the most stable configuration for one-dimensional arrays with its characteristic persistent length and as well the bending strength. In Ref. [START_REF] Spiteri | Columnar aggregation of dipolar chains[END_REF], it was found that arrays of N small spherical magnets can form dimers, trimers, chains and rings. For a larger number of magnets, N≥14, rings can stack one on the top of the other forming a tubular structure with the dipole vectors adopting a vortex like arrangement. If the stacking rings are incommensurable, configurational defects are created presenting similarities to point defects in crystalline structures [START_REF] Nabarro | Theory of Crystal Dislocations[END_REF]. These studies with magnetic spheres have been focused on the geometry needed for reaching the least magnetic energy, and this question has been solved for 1D and 2D structures [START_REF] Alphandery | Assemblies of Aligned Magnetotactic Bacteria and Extracted Magnetosomes: What Is the Main Factor Responsible for the Magnetic Anisotropy?[END_REF][START_REF] Messina | Self-assembly of magnetic balls: From chains to tubes[END_REF][START_REF] Messina | Assembly of magnetic spheres in strong homogeneous magnetic field[END_REF]. However, several questions remain open for 3D arrays [START_REF] Messina | Self-assembly of magnetic balls: From chains to tubes[END_REF][START_REF] Friedrich | Comment on Self-assembly of magnetic balls: From chains to tubes[END_REF], and in particular their mechanical response to an external applied stress. Very recently, different configurations obtained with arrays of dipolar hard spheres were reported in a theoretical work [START_REF] Spiteri | Dipolar Crystals: The Crucial Role of the Clinohexagonal Prism Phase[END_REF]. Moreover, only few studies have addressed the dynamics of simple configurations using stability analysis [START_REF] Schonke | Stability of vertical magnetic chains[END_REF] or a Lagrangian approach [START_REF] Boisson | Dynamics of a chain of permanent magnets[END_REF][START_REF] Ciambella | A nonlinear theory for fibrereinforced magneto-elastic rods[END_REF].

In the case of atomic crystals, one has in mind 3D structural arrays and, in a perspective of applications, knowing their mechanical properties and response depending on the crystalline structure is a relevant issue. For instance, crystal engineering, a method of designing solids through the manipulation of the crystal structure, has been an effective tool for tailoring the physicochemical and mechanical properties of pharmaceutical solids [START_REF] Almarsson | Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines?[END_REF]. Concerning the response of materials to an external applied stress, several attempts have been made to assess whether a crystal can break in a fully brittle manner or whether some plastic flow must accompany fracture (the fracture is termed ductile or brittle depending on whether the elongation is large or small) [START_REF] Kelly | Ductile and brittle crystals[END_REF][START_REF] Rice | Ductile versus brittle behaviour of crystals[END_REF][START_REF] Kornev | The fracture of brittle and ductile crystals. Force and deformation criteria[END_REF]. One criterion is that a crystal will either be ductile or brittle depending upon the ratio of shear strength to tensile strength, which values rely on the crystal nature [START_REF] Kelly | Ductile and brittle crystals[END_REF]. For addressing this point to the case of magnetic arrays, and considering the difficulties of performing mechanical tests to nano or microsized systems, we built arrays with millimetric spherical magnets, see Fig. 1. We started analyz-ing a one-dimensional (1D) chain, two-dimensional (2D) ribbons and then three dimensional (3D) arrays with different crystalline structures, namely: simple cubic (cP), hexagonal (Hx) and hybrid magnetocrystals. The mechanical properties of these macroscopic magnetic structure were analyzed by performing tensile, bending and torsion experiments and compared to those obtained numerically using molecular dynamics simulations or by energy minimization.

Experimental setup

Magnetic neodymium spheres of diameter d = 5.00 ± 0.05 mm and magnetic remanence of 1.17-1.20 T were used in the experiments. The simplest structure formed with these beads is a chain with the magnetic dipoles aligned in the same direction (Fig. 1a). The 2D ribbons can be assembled in the following way: if a long chain is cut into two linear segments with an equal number of beads and afterwards joined laterally with their dipoles pointing in opposite directions, the segments attract each other forming a square layer. If the segments are approached laterally with their dipoles pointing in the same direction, the resulting structure is a hexagonal layer, see both ribbons in (Fig. 1b). On the other hand, the 3D magnetocrystals were assembled by superimposing layers of a given structure on top of each other. If neighboring chains have opposite dipoles, cubic structures are formed (Fig. 1c). If the magnetic dipoles are parallel in all the beads, the resulting structure is hexagonal (Fig. 1d). The layers can also be joined with their dipoles anti-parallel in one plane and parallel in the perpendicular plane for giving a cubic-hexagonal crystal (Fig. 1e). Following such procedures, we built arrays with the same number N of chains in each plane, using a total of N 2 chains of length l > 30d, with N= [START_REF] Komeili | Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK[END_REF][START_REF] Nakade | Synthesis and properties of ellipsoidal hematite/silicone core-shell particles[END_REF]. In fact, the pure hexagonal array corresponds to the well known bct (body-centered tetragonal) ground state structure of dipolar hard spheres (when undeformed, i.e. at rest). Here, we used -Hx-instead of -bct-notation to generalize its use to the hybrid structure case.

For measuring the mechanical response of the 3D structures we applied tensile, bending and torsional stresses by using the three experimental arrays depicted in Figs. 1f-h. The bending stiffness was measured by applying a perpendicular load to the crystal with the ends fixed to a support (Fig. 1f). The crystal traction was obtained by submitting the array to a tensile stress with one extremity fixed and by pulling the other one (see Fig. 1g). In both cases, the loading force F was measured using a force sensor Mark-10 with resolution of ±0.01 N and reading frequency of 10 Hz . The sensor was displaced with a velocity v = 0.75 mm/s by using a step motor in the direction indicated by the red arrow in each case. This allowed us to measure F as a function of time, t, or equivalently, as a function of the deformation ∆x = vt. For measuring the torsion strength, one crystal end was fixed to a torque meter Omega HHTQ88 with resolution of 0.1 N-cm and reading frequency of 8 Hz and rotated around its longer axis from the opposite end using the step motor (Fig. 1h). By following these procedures we determined the tensile force F t and the bending force F b as a function of ∆x, and the torque τ as a function of the rotation angle θ.

The data was recorded until crystal failure appeared and the experiments were repeated five times for each magnetocrystal of cross section N×N. In the case of 1D and 2D arrays, we only applied tensile stress to measure the maximum strength in each case.

Numerical simulations

For the 1D chain and the 2D ribbons, we performed molecular dynamics (MD) simulations to determine the structure dynamics under tension and the dipoles re-orientations for each particle. This numerical approach can be extended for the 3D structures; however, since the number of interactions grows as a power of N and given our computer capabilities, a random energy minimization method (REM) was implemented for the study of 3D magnetocrystals. i) Molecular dynamics symulations. MD simulations were performed using a velocity-Verlet algorithm as described in Refs. [START_REF] Frenkel | Understanding molecular simulation: from algorithms to applications[END_REF][START_REF] Bell | Particle-Based Simulation of Granular Materials[END_REF]. The method consists on finding the position r and velocity v of each particle at a time t + ∆t given the values r and v at a time t according to:

r(t + ∆t) = r(t) + v(t)∆t + a(t)∆t 2 /2 (1) 
v(t + ∆t) = v(t) + (a(t) + a(t + ∆t)) ∆t/2 (2) 
The acceleration a(t) is given by the total force acting on each particle at the time t divided by its mass. Moreover, the particle rotation θ and its angular velocity ω were also considered:

θ(t + ∆t) = θ(t) + ω(t)∆t + α(t)∆t 2 /2 (3) 
ω(t + ∆t) = ω(t) + (α(t) + α(t + ∆t)) ∆t/2 (4) 
where α(t) is the angular acceleration at a time t. We considered the magnetic attraction and the contact force between particles, the latter was approximated by the Hertz contact law using the Young modulus Y = 40 GPa for Neodymium.

The spherical magnets forming each structure have a magnetic dipole m of constant magnitude equal to the experimental value. It has been shown that the magnetic force between two uniformly magnetized spheres is the same as for two point magnetic dipoles of the same total magnetic moments located at the centers of the spheres [START_REF] Edwards | Dynamical interactions between two uniformly magnetized spheres[END_REF]. The force F ab acting on a magnetic dipole m a due to the magnetic field of a dipole m b located at a position r can be calculated from [START_REF] Jackson | Electrodynamics[END_REF], where the magnetic field B at a position r from m b is given by:

F ab = -∇U = ∇( m a • B( m b ))
B( m b ) = µ 0 4πr 3 (3( m b • r)r -m b ),
thus, the force is given by:

F ab = 3µ 0 4πr 4 [(r × m a ) × m b + (r × m b ) × m a -2r( m a . m b ) + 5r((r × m a ).(r × m b ))]
(5) where µ 0 is the vacuum permeability and r = r/|r| . On the other hand, α(t) was calculated dividing the torque acting on a magnet by its moment of inertia. The torque present on m a due to the magnetic field of m b is τ ab = m a × B( m b ) [START_REF] Grzybowski | Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface[END_REF], then:

τ ab = µ 0 4πr 3 m a × ( m b -3( m b .r)r) (6) 
Equations ( 5) and ( 6) were used to obtain a(t) and α(t) and then introduced in the velocity-Verlet algorithm to obtain the dynamics. In the numerical simulations, the sensor was simulated by a spring pulling the structure that also allows the rearrangement of the structure. From the spring deformation we obtained the tensile strength.

ii) Random Energy Minimization (REM). For the 3D case, we built numerically crystalline structures equivalent to those used in the experiments by positioning spheres into cubic and hexagonal arrays using Mathematica routines. For a cubic array, the magnetic dipoles orientations computed from random energy minimization technique [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF][START_REF] Solis | Minimization by Random Search Techniques[END_REF] have a disordered configuration as can be seen in Fig. 2a. These dipole configurations for cubic ensembles were also obtained in Ref. [START_REF] Vandewalle | Magnetic ghosts and monopoles[END_REF]. Nonetheless, our simulations show that if one of the crystal dimensions is increased, a preferential dipole orientation results as shown in Fig. 2b. Numerically, we mimicked the different types of crystal deformation by displacing the planes of magnetic beads in a desired direction (see examples in Figs. 2c-d), and the most stable configuration was obtained by random search minimization. This method has been previously applied for obtaining stable configurations of linear chains and rings and proposed in Ref. [START_REF] Messina | Self-assembly of magnetic balls: From chains to tubes[END_REF]. Roughly speaking, the approach consist on using a random search for calculating the magnetic dipole orientations at each deformation step. Afterwards, the interaction energy of each magnetic dipole m a in an external magnetic field B produced by a second dipole m b is calculated by [START_REF] Jackson | Electrodynamics[END_REF]:

U = -m a • B( m b ), (7) 
By adding the energy contributions of all the interacting beads, we calculate the total magnetic energy of the structure and its variation from the initial to the final position. In a first approximation, this value has to be equal to the mechanical energy supplied by the external force or torque. From the derivative of the magnetic energy with respect to the displacement or to the angle of torsion we can estimate the bending force, tension or torsion at failure. In all cases, the process finishes when such derivative reaches a maximum. The failure stresses calculated by REM were compared with those obtained experimentally.

Results and discussion

Tensile strength of a single chain. The first system analyzed was a linear chain subjected to a tensile stress. Figure 3a shows the measured tensile force F T as a function of ∆x for three experiments with a chain of 30 spheres (color lines). Notice the abrupt growth of F T from zero to a maximum experimental value F max T ≈ 3.45 N at which the chain breaks. Then, as ∆x increases, F T decays rapidly to zero. However, even when the mechanical rupture has been achieved, the magnetic attraction remains important. In Fig. 3b, F max T is given as a function of the number of magnetic spheres conforming the chain (black points). It was found that when only two magnetized spheres are separated F max T ≈ 3.0N. This value increases and saturates at F max T ≈ 3.45 N for chains having more than 10 beads. This implies that the contribution to the attractive force between two neighbors due to the presence of the other beads is merely of ∼ 12%, even when the chain is considerably long. The value of F max T for two spheres is useful for calculating the magnetic moment of the spheres. From Eq. ( 5), if m a = m b = m and both dipoles point in the same direction parallel/anti-parallel to the position vector r, the force F on m is attractive/repulsive with a magnitude:

F ab = 3µ 0 m 2 2πr 4 . (8) 
Given that we obtained experimentally F max T = 3.0 N for two spheres separated by a distance d = 5.0 mm, by following Eq.( 8) one finds the sphere magnetic moment m = 0.056 A•m 2 . This value was used in the MD simulations to calculate F max T for different chain lengths, which is shown as a red line that saturates at ∼ 3.6 N in Fig. 3b. Note that the numerical result slightly overestimates the saturation value found experimentally.

In addition, we computed the force acting on a given magnetic sphere of the chain as a function of the separation ∆x after rupture. This force is the sum of the individual forces exerted on the sphere by the other spheres. After the rupture, if r is the distance from one sphere to the other sphere at the failure point, one has:

F T = 3µ 0 m 2 2π 1 r 4 + 1 (r + d) 4 + 1 (r + 2d) 4 + ... + 1 (r + nd) 4 F T = 3µ 0 m 2 2πr 4 1 + k=n k=1 1 (1 + kd r ) 4
and by renaming in the last equation the summation as β, one obtains:

F tot = 3µ 0 m 2 2πr 4 (1 + β) (9) 
Since the first term of Eq.( 9) corresponds to Eq.( 8) for two magnetized spheres, the second term includes the contribution of the rest of the chain. By using Eq.( 9) to fit the experimental data in Fig. 3a (red line) with the value of m given above one obtains β = 0.12, in agreement with the contribution of ∼ 12%

previously discussed in the experimental data.

Tensile strength of 2D ribbons. The above results showed that the tensile strength for chains of more than 10 spheres is practically constant. According to this result, we have chosen to work with arrays of at least 30 spheres long. That being said, let us now focus on the tensile strength of 2D ribbons of 2 × 1 chains.

The snapshots on the left of Fig. 4a show that, when tensile stress is applied, the ribbon breaks without deformation for the square array, resembling a fragile fracture. In contrast, the hexagonal ribbon suffers ductile-like deformation in a zig-zag motion, see Fig. 4b. Note that equivalent results were obtained numerically, as it is shown by the snapshots in the middle of Fig. 4. In the MD simulations, the radial line in each particle indicates the orientation of the magnetic dipole. This allowed us to observe how the dipoles rotate during the deformation. In the square case, the dipoles are re-oriented erratically following the rupture, causing loose of attractive interaction. In the hexagonal case, the dipoles remain almost aligned, and this allows the ductile deformation. The plots on the right show the measured force as a function of the deformation ∆x. Note that the square array supports a maximum tensile strength F max T ≈ 5.6 N, and then it decreases rapidly to zero. For the hexagonal structure, F max T ≈ 4 N, followed by a periodic variation of of F T that reaches local maxima of ∼ 2 N after each deformation step of half particle diameter d/2, i. e. when the dipoles are aligned again. The average values obtained from five repetitions were F max T = 5.8 ± 0.2 N and 4.1 ± 0.1 N for square and hexagonal arrays, respectively. For the periodic zic-zac maxima F T = 2.1 ± 0.2 N. Note that the tensile strength expected from the contribution of two individual long chains is of 6.9 N. Thus, the hexagonal structure generates a greater screening of the attractive interaction than the square array. Two videos obtained from MD simulations showing the deformation of the structures due to a tensile stress can be found in the Supplementary material. Tensile strength of magnetocrystals. Let us now focus in the main purpose of this work: the mechanical response of three-dimensional magnetic structures.

The deformation dynamics of cP, Hx and hybrid cP-Hx arrays of dimensions 3×3 is depicted in the snapshots shown in Fig. 5. As in the 2D case, the cP crystal breaks in two parts like in a fragile failure, but an extensive deformation is observed in the other two crystals, resembling a ductile failure. In the plots on the right, the first peak of F T as a function of ∆x reveals a larger tensile strength for the cP array (F T ∼ 25 N) than for the Hx array (F T ∼ 20 N). Moreover, the subsequent dynamics for pure structures a similar dynamics to the one observed in 2D systems. For Hx arrays, the beads can develop a continuous rearrangement that decreases the structure dimensions (see Fig. 5b and Supplementary Movie) and produces a periodic variation of F T with maxima every ∆x ≈ 2.5 mm = d/2. This dynamics arises from the fact that the broken chains are displaced along the slip planes oriented at 45 • to the nearest free neighbour, where the magnetic field is stronger and where the product m j • B has a maximum [START_REF] Edwards | Dynamical interactions between two uniformly magnetized spheres[END_REF]. Only when a linear chain of beads remains the failure of the structure is attained. This continuous rearrangement reminds the creep deformation in crystalline structures [START_REF] Reed-Hill | Physical Metallurgy Principle[END_REF]. For cP-Hx crystals, the failure dynamics is a combination of cP and Hx crystals behaviors: The stronger interactions are in the cubic planes and they determine the maximum strength (F T ≈ 25 N), but the deformation after failure is periodic as for hexagonal crystals, see Fig. of different N×N dimensions are shown in Fig. 6. The expected dependence from the contribution of N 2 individual chains would be F max T = 3.45N 2 N, indicated in the plot as a blue line. However, if we impose a quadratic fit to the experimental data, it is found a contribution per chain of 2.39 N and 1.72 N for cP (black line) and Hx arrays (red line) respectively. These values 210 deviate from the expected value of 3.45 N by 30% and 50% approximately. It is important to notice that if N 2 steel wires of the same stiffness were used instead of magnetic chains, the total strength would be N 2 times the contribution of an individual wire, but here the magnetic interaction between chains generates a screening associated to the dipoles arrangement, which is more important in a 215 hexagonal lattice as it was also found in the 2D systems. Energy minimization simulations reproduce the tensile strength for the cP structure (dashed black line). Nonetheless, a considerable deviation from the experimental value was cP (REM) Hx (REM) obtained for the Hx array (dashed red line).

Bend strength of magnetocrystals. In contrast to 1D and 2D arrays, magnetocrystals acquire stiffness in all directions and they can support considerable bending and torsion. The bend strength or flexural strength is the stress for failure by bending. Figure 7a shows 3×3 crystals subjected to bending by a perpendicular force F B . In the case of a hexagonal structure the failure is fragile and breaks for an almost negligible flexural deformation δx. This contrast with the cubic structure that resists a considerable bending before failure (ductile). Let us recall that when a tensile stress is applied to a cP array the failure is fragile and for the Hx array is ductile. Therefore, a magnetocrystal can be ductile or fragile depending on which crystallographic direction the stress is applied.

Figure 7b shows F B as a function of the perpendicular bending deformation δx for different N×N structures obtained from experiments (continuous lines) and from energy minimization (dashed lines). In all cases analyzed, the hexagonal crystal is stronger than the cubic one but considerably less elastic, since the maximum bending force F max B (first peak) is measured at δx Hx δx cP . For hybrid structures, if one pulls along the hexagonal planes (Hx-cP) the array becomes harder, even more than a pure Hx array; but if one pulls along the cP planes (cP-Hx) the crystal is elastic. This indicates that we can combine stiffness and elastic features in a single array.

Figure 8 shows F max B as a function of the crystal dimension N×N. From the inset of this figure we have that F max B ∝ N 3 for a hexagonal structure, while for a cubic crystal F max B ∝ N (N -1). It is known that for a continuous rectangular cross section bar under a load in a three-point bending setup, as the one used in our experiments, the bending stress is equal or slightly larger than the failure stress in tension and is given by:

σ = 3 2 F max B L ab 2 , (10) 
where a and b are the width and thickness of the bar and L is the length of the support span. In our experiments and simulations, for all the analyzed σ cP , as it is reflected by the experimental data. For hybrid structures, 250 the measured resistance force, i.e. the bending strength, is mainly dictated by the crystal structure of the plane along which the deformation force is applied. Nevertheless, F max B is the largest for the Hx-cP and the lowest for the cP-Hx; therefore, the elasticity given by the cP-planes improves the stiffness in the Hxplanes, but the rigidity of the Hx-planes decreases the stiffness of the cP-planes.
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Note that in all cases, the simulations predict well the experimental values. Torsional strength of magnetocrystals. The last mechanical test applied to the crystals was the response to torsion. Figures 9a-c show the measured torque τ in function of the angle of torsion θ for the different structures. Clearly, the resistance to torsion is considerably higher for Hx structures than for cP ones.

However, the angles of failure θ f are smaller for Hx than for cP arrays. Similarly to the previous mechanical tests detailed above, the mechanical response to torsion of hybrid arrays is congruent with their response to bending and tension: an astonishing combination of rigidity and plasticity. In the case of a continuous rod of length L subjected to torsion, the relation between the torque τ and the twist angle θ is given by:

τ = GJ T L -1 θ (11) 
where the product of the shear modulus, G, and the second moment of area ,J T , gives the torsional rigidity, and θ/L is the twist ratio. For a rectangular cross section bar of sides a ≥ b, J T = K 1 ( a b )ab 3 , where the values of K 1 ( a b ) are given in [START_REF] Francu | Torsion of a non circular bar[END_REF]. In our crystals, the linear dependence of τ (θ) given by Eq.( 11) is roughly observed only for θ θ f . Therefore, we applied a fit of the form τ = s 3 θ to the linear range of each curve in Figs. 9a-c to obtain the slopes s 3 = GK 1 ( a b )ab 3 /L, which are plotted as a function of the crystal dimension in Fig. 9d. The log-log plot in the inset reveals the expected dependence s 3 = AN 4 , where A in units [N/m 3 ] is a constant obtained from data fit that depends on the crystalline structure. Hencefore, one obtains that the mean shear modulus given by G = AL/K 1 d 4 calculated for each structure is G cP ≈ 29 kPa, G Hx ≈ 54 kPa and G cP -Hx ≈ 32 kPa (G cP < G cP -Hx < G Hx ).

Although the above analysis allowed us to quantify the shear modulus, it is only valid assuming the linear dependence imposed by Eq. ( 11). Nevertheless, both experiments and REM simulations (solid lines in Figs. 9a-c) show that magnetocrystals obey a nonlinear dependence on θ. A model considering the combined effects of elasticity including stretching and radial compression is required to determine the functional form for G(θ), as the one used to study the preservation of order in twisted bundles of elastic structures [START_REF] Panaitescu | Persistence of Perfect Packing in Twisted Bundles of Elastic Filaments[END_REF].

Concluding remarks

The mechanics of continuous media states that the elastic properties of materials can be explained as a consequence of their crystalline structure and their atomistic collective response to the external forces applied [START_REF] Nabarro | Theory of Crystal Dislocations[END_REF]. Previous studies for magnetic beads were focused on chains and rings [START_REF] Kiani | Elastic properties of magnetosome chains[END_REF][START_REF] Boltz | Buckling of elastic filaments by discrete magnetic moments[END_REF][START_REF] Spiteri | Columnar aggregation of dipolar chains[END_REF]. Here, after characterizing 1D and 2D structures, we have broaden the investigation by studying the mechanical response of three-dimensional magnetocrystals to tensile stress, flexural stress and torsion.

Our results showed that cubic structures under tensile stress exhibit a fragile failure while hexagonal structures show a deformation process akin to a creep deformation [START_REF] Reed-Hill | Physical Metallurgy Principle[END_REF]. The tensile strength dependence in function of the cross section are well approximated by a square dependence (F max T ∝ N 2 ). This hardening is fully consistent with the correlated enhanced cohesive energy reported in Ref. [START_REF] Spiteri | Columnar aggregation of dipolar chains[END_REF]. In the case of flexural strength, the cubic structures exhibit a ductile behavior, and hexagonal structures exhibit a fragile behavior. Intriguingly, the combination of cubic and hexagonal crystals adopt the failure strength of the Hx crystal and the plasticity of the cP crystal. Theoretically, it is expected that the bending force (F max B ) in function of the number of stacking planes forming the cross section (N×N) follows a N 3 law, however this is only obeyed for hexagonal structures, while cubic structures follow an unexpected N (N -1) law. This last point, indicates that hexagonal structures under bending are more difficult to deform (hence fragile) than cubic structures which are more elastic (ductile). Our analysis about torsional strength allowed us to determine the shear modulus and shows that this is considerably higher for hexagonal crystals than for cubic crystals. Indeed, the cohesion is much higher in a hexagonal array (with a ferromagnetic arrangement) than in a cubic lattice (with antiferromagnetic arrangement. Our conclusions suggest that magnetocrystals can be ductile or fragile depending on which crystallographic direction the stress is applied. Additionally, our studies revel new behaviors associated to the dynamical local particle re-arragemet laying outside the usual mechanical response of crystalline structures.

Figure 1 :

 1 Figure 1: Assemblies of magnetic beads: a) chain , b) square and hexagonal 2D ribbons, c) cubic crystal, d) hexagonal crystal and e) hybrid crystal. Gray arrows indicate the magnetic dipole orientation for each chain. f-h) Experimental arrays used to measure the mechanical response of the magnetic crystals to f) bending, g) tension and h) torsion. Red arrows indicate the applied force direction.

Figure 2 :

 2 Figure 2: (Color online) a) Dipoles orientations in a cubic structure. b) If one crystal dimension is increased, the dipoles are reoriented in one direction. c-d) Examples of cP structures built numerically and subjected to bending and torsion. For simulating the bending, each layer of the structure is translated laterally by keeping fixed the crystal extremities. The torsion is simulated by rotating each layer of the crystal.

FFigure 3 :

 3 Figure 3: Tensile force required for breaking a chain: a) FT vs ∆x. Colour lines are experimental data and the dashed black line represents F ∝ ∆x -4 . b) F max T depending on the number of magnetic spheres conforming the chain obtained from experiments (black points) and simulations (red line).

Figure 4 :

 4 Figure 4: 2D ribbons subjected to tensile stress: a) Square structure and b) Hexagonal structure. The snapshots on the left show the deformation process, images in the middle show the MD simulations for equivalent arrays, and the plots on the right the measured tensile strength F T as a function of the deformation ∆x. In the plots, solid lines correspond to the experiments and dashed lines to the numerical result.
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  . The maximum failure force F max T measured for (•) cP and ( ) Hx arrays

Figure 5 :

 5 Figure 5: Magnetocrystals subjected to tensile stress: a) cP, b) Hx and c) cP-Hx structures. The snapshots on the left show the deformation process and the plots on the right the measured tensile strength as a function of the deformation ∆x. The structures can be deformed in a periodic arrangement (blue lines) or in a disordered fashion (red lines) depending on the deformation speed.

Figure 6 :

 6 Figure 6: Maximum failure force F max T of magnetocrystals subjected to tension as a function of the crystal dimensions N × N (solid points). Solid lines correspond to F max T ∝ N 2 and dashed-lines to energy minimization simulations.

Figure 7 :

 7 Figure 7: a) Hx and cP magnetocrystals subjected to flexural stress. Note that the Hx-array breaks (V-shape) while the cP-array bends. b) Bending force F B required to produce a perpendicular deformation δx for Hx, cP, Hx-cP and cp-Hx arrays. The dotted lines correspond to the REM simulations.
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 3 only the hexagonal arrays follow the expected dependence on σ. From the slope s1 = 0.162±0.007 of the black line in the inset of Fig.8and by using Eq. (10) for the hexagonal structure with L = 23d = 11.5 cm and a = b = √ N d, one finds that the bending strength is σ Hx = 344 ± 40 kPa. For the cubic structure, Eq. (10) cannot be applied considering that F max B 245 does not follow the cubic dependence on N . Instead, we calculated the resulting stress under an axial force given by:σ cP = F max B /ab = F max B /N (N -1)d 2, and from the fitting slope s 2 = 0.58 ± 0.01 of the red line in the inset of Fig. 8 one finds: σ cP = 23.2 kPa. Although this is a rough comparison, clearly σ Hx

Figure 8 :

 8 Figure 8: Maximum bend strength F max B for different types of magnetocrystals as a function of the crystal dimensions N × N obtained from experiments (solid points) and simulations (open points). Inset shows that F max B ∝ N 3 for a hexagonal structure and F max B ∝ N (N -1) for a cP structure.

Figure 9 :

 9 Figure 9: a-c) Torsional resistance τ opposed by the three types of arrays to the angular deformation θ. d) s3 (see text) as a function of the crystal dimensions N × N for Hx ( ), cP (•) and hybrid crystals ( ). Inset: Log s3 vs log N indicates a fourth-power dependence.
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