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Abstract 
The fabrication of a freeform structural envelope is usually a highly complex task. The costliest aspect is 
often the connections between the constitutive parts. X-Mesh is a pavilion that demonstrates a new 
rationalization strategy. Its structure, composed of a hexagonal grid of beams and cladding panels, is 
based on a geometry that rationalizes connections at two levels: firstly, nodes are repetitive, only two 
types of nodes are used. Secondly, panels can easily be connected to the support beams as they are 
orthogonal to each other. We prove that the proposed geometrical configuration can be asymptotically 
built on a smooth surface. We generate the meshes by numerical optimization from a smooth target 
surface, with an initialization derived from the asymptotic case. This pavilion shows another way of 
rationalizing a gridshell beyond the popular planar-quad meshes and circular/conical meshes. It also 
demonstrates a way to generate hexagonal gridshells which are not necessarily synclastic, this limitation 
being typically imposed to achieve planarity of cladding panels.   
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Figure 1: Rendering of the X-Mesh pavilion 
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1. Introduction 
Free-form architectural structural envelopes have become increasingly popular in the past decades. The 
cost of these projects is usually strongly impacted by the fabrication of the nodes, which often need to be 
all unique. The connection between beams and panels is also problematic, as the kink angles between 
adjacent panels often vary significantly. 

Two main geometrical strategies have been studied and used to simplify node fabrications in order to  
reduce their cost. The first one is to use a geometry that allows for torsion-free nodes. In such nodes, all 
the median planes of the incoming beams meet on a common axis. For example, the nodes shown in 
Figure 2 are torsion-free. This property can be achieved by having all beams in a vertical plane or by 
using circular or conical meshes ([1], [2]). Planar hexagonal meshes also have torsion-free nodes, but the 
hexagons are necessarily non-convex (shaped like a bow-tie) in anti-clastic surfaces [3].  

The second one is node repetition. As detailed by Eike Schling in [4], node repetition can be achieved by 
two means. The first one is to have the exact same geometry for each node, or for some groups of nodes. 
For example, this can be achieved with meshes of revolution, or with isogonal molding surfaces [5]. The 
second one is to use construction tolerances or adjustable nodes to allow one or more degrees of angle 
variation with a same physical connector. This last option was for example used in the Neckarsulm 
swimming pool dome [6]. 

Regarding the beam-panel connection, the variation of the kink angle between the panel and the top 
surface of the beams renders impossible to make the connection structural, and thus to use the cladding 
system as a structural element. Furthermore, complex joining systems are needed if the king angle is too 
high. Solutions were studied in [7]. 

In this article, we propose a new geometric configuration, based on a hexagonal mesh, that solves both of 
these problems. In section 2, we detail this geometric structure, discuss its potential applications, and 
prove its existence. A generation method is then presented in section 3. Finally, in section 4, we present 
how this process has been applied to design and rationalize the X-Mesh pavilion. 

2. A new torsion free geometrical configuration 
The proposed geometrical configuration is a continuation of the work presented in [7], and is shown in 
Figure 2. The configuration is based on a hexagonal mesh with non-planar faces. Each of its nodes is 
assigned with an axis. The configuration satisfies the following properties: 

(a) The axes of two adjacent nodes are coplanar and their common plane corresponds to the median 
plane of the beam; 

(b) Every other node is flat: the incoming edges are coplanar. These nodes are referred to as 2D 
nodes, the other nodes are named 3D nodes; 

(c) For 2D nodes, the axis is perpendicular to the plane of the node; 
(d) For 3D nodes, the beam planes intersect at 120°. 

This mesh can be used to design a hexagonal gridshell covered by tri-folded hexagonal panels. In that 
case, the properties that we just described can significantly simplify the fabrication, in particular with 
respect to the connections between the structural elements, as shown in Figure 3. Firstly, the contact 
between panels and beams top surface is perfect and the angle between beam webs and panels is 90°. 
Thanks to these properties, standard low-cost connections can be used to structurally connect beams to 
panels. Secondly each node is torsion-free: medial axes of beams meet on a common axis. As a result, 
structural depth can easily be given to the grid. Thirdly, one half of the nodes are planar, and for the other 
half, beam planes intersect at 120°, thus allowing a standardization of all beam connections.  
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Figure 2: Geometrical configuration  

 
Figure 3: Geometry of connections structural elements  

The thus formed gridshell is a cladded honeycomb structure. We note that Jiang et al. [8] proposed a 
method to design this type of structure without torsion on an arbitrary target surface. However, they do 
not constrain the node axes to be normal to the surface. This is major difference with our configuration, 
which is therefore much more constrained geometrically. 

The proposed properties (a), (b) and (c) form a new type of geometrical structure, based on a mesh in 
which face normals and vertex normals are coplanar. The proposed application is based on a hexagonal 
pattern, but many other types of patterns and structural applications are possible [7]. For clarity, we 
propose to name this type of mesh a Caravel mesh, an acronym standing for meshes with CoplanAR fAce 
and VErtex normaLs. 

3. Smooth surface approximation 
In this part, we prove by construction the existence of the geometric structure described in the previous 
sections in the asymptotic case, i.e. in the case where a mesh approximates a surface with smaller and 
smaller face size. In this case, properties can then be described in the setting of smooth differential 
geometry. We will show that it is asymptotically possible to construct our geometry from a planar 
hexagonal mesh approximating a smooth surface S without umbilics and such that one family of hexagon 
edges is aligned with curvature directions. 
 
Let us start by introducing a classical local approximation model of a surface. A surface S can be locally 
approximated at any point P at the second order by a paraboloid. This paraboloid is elliptic if the Gaussian 
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curvature K is positive (i.e. the surface is synclastic), cylindrical if K=0, and hyperbolic if K<0 (i.e. the 
surface is anticlastic). The equation of this paraboloid is, in the tangent plane at P: 

𝑧𝑧 = 1
2 (𝑘𝑘1𝑥𝑥2 + 𝑘𝑘2𝑦𝑦2)

Where k1 and k2 are the principal curvatures. The unit normal of the paraboloid at a point (x,y,z) 
neighboring P is given by : 

�⃗�𝑛 (𝑥𝑥, 𝑦𝑦) = 𝑛𝑛(𝑥𝑥, 𝑦𝑦)(−𝑘𝑘1𝑥𝑥 ;  −𝑘𝑘2𝑦𝑦 ;  1 ) 

The application (𝑥𝑥, 𝑦𝑦) ↦ �⃗�𝑛 (𝑥𝑥, 𝑦𝑦) is referred to as the surface Gauss map. The value of the real factor 
𝑛𝑛(𝑥𝑥, 𝑦𝑦)will not be important here. Considering a neighborhood such that |𝑥𝑥| ≪ 1/𝑘𝑘1 and |𝑦𝑦| ≪ 1/𝑘𝑘2, 
�⃗�𝑛 (𝑥𝑥, 𝑦𝑦) belongs at the first order to a horizontal plane, and is then an orthotropic dilatation in the directions 
x and y. The ratios of the dilatation in the x and y directions are k1 and k2, up to an homothety (the scaling 
of the Gauss map is not important in our construction). 

After this preliminary considerations, we are now going to construct a mesh and its vertex normals 
satisfying the properties described in the previous sections. We will use a capital N to describe the mesh 
normals, as they often differ from the surface normals n. 

Let us first consider a series of planar hexagonal meshes with decreasing faces sizes approximating S, 
and with one family of edges aligned with a principal curvature direction. As mesh size tends towards 
zero, each hexagon tends to have central symmetry and to be inscribed in a homothetic copy of the Dupin 
indicatrix, as explained in [9] – the Dupin indicatrix being the conic resulting from the intersection 
between the paraboloid and the plane z=1. As shown in Figure 3 (left), the surface Gauss map of the 
Dupin indicatrix is also a conic, with equation 𝑥𝑥

2

𝑘𝑘1
+ 𝑦𝑦2

𝑘𝑘2
= 1  (up to a homothety). 

Let us pick three vertices on an hexagon ABCDEF to form a triangle ACE. We build the Fermat center P 
of ACE, i.e. the point such that (𝑃𝑃𝑃𝑃⃗⃗⃗⃗  ⃗, 𝑃𝑃𝑃𝑃⃗⃗⃗⃗  ⃗) = (𝑃𝑃𝑃𝑃⃗⃗⃗⃗  ⃗, 𝑃𝑃𝑃𝑃⃗⃗⃗⃗  ⃗) = (𝑃𝑃𝑃𝑃⃗⃗⃗⃗  ⃗, 𝑃𝑃𝑃𝑃⃗⃗⃗⃗  ⃗) = 120°. P will be a flat node of the mesh, 
and A,C and E will be 3D nodes. This construction yields properties (b) and (d). 

In order to fulfill property (b), the mesh normal at P, NP, must be the normal of triangle ABC. This normal 
is, in the space of normals,  the center of the Gauss map of the Dupin indicatrix. As we want no torsion 
along PA, PB and PC (property (a)), the mesh normal at A, NA, must lie on a line lA parallel to (AP) 
passing through NP. In the general case, this line does not include the surface Gauss map at A, therefore 
𝑁𝑁𝐴𝐴 ≠ 𝑛𝑛𝑎𝑎(this is a second order difference, as the normals are equal at the limit).  

Now, considering adjacent hexagons Figure 3 (middle), we observe that the lines previously built intersect 
on one point with the same lines from the neighboring hexagons if and only if edges AB and DE are 
aligned with a principal direction (i.e. parallel to an axis of the conic). These intersections points 
NQ1,NQ2… are the normals of the 3D nodes.  
The hexagonal network (in red) along with the attached normals described by the hexagonal mesh on the 
Gauss map (also in red) verify all the geometrical properties described in the previous sections. 
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Figure 3: Asymptotic construction 

3. Generation method 
We now give a method to generate the geometrical configuration described in section 2. In a first step, 
we compute an initial mesh close to this configuration. In a second step, we optimize node position and 
normals orientation such that properties (a) to (d) are satisfied within given tolerances. 

The initial mesh is constituted of hexagons where all edges are aligned with principal curvature directions. 
Each hexagon has two 180° corners, so the mesh looks like a brick wall. Wang et al. showed in [9] that 
this type of mesh can converge efficiently towards a planar-hexagons mesh. Since we showed in section 
2 that our geometric configuration can be built on a planar-hexagons mesh, this initialization is also 
effective for our geometry.  

The mesh resulting from the initialization is then used as the input of a non-linear optimization defined 
within the framework of RhinocerosTM‘s plugin Kangaroo2. The optimization problem is made of multiple 
geometrical criteria. Each criterion is expressed as a projection. Every node is assigned with a normal. A 
first criterion forces every node of valence three to be torsion-free (property (a)), by requiring the normals 
of the three neighboring nodes to be such that the median planes of the beams coming to the node meet 
on a common line corresponding to its normal. A second criterion makes the 2D nodes and their respective 
neighboring nodes coplanar (property (b)). A third one constraints the normals of the 2D nodes to be 
respectively aligned with the normals of the planes defined by their three neighboring nodes (property 
(c)). Finally, a fourth one forces 3D nodes to be, when projected on the triangles defined by their three 
neighboring nodes, the Fermat points of these triangles (property (d)). Complementary criteria are also 
set for smoothing purposes, such as proximity to the target surface, and to treat the boundaries.  
This optimization problem is highly non-linear and non-convex. Hence, there is no theoretical guarantee 
that the mesh obtained after iterations of the optimization algorithm perfectly meet all the criteria or reach 
a global minimum of the problem. However, empirically, the resulting mesh tends to satisfy all the 

509



Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 
 Form and Force  

6 
 
 

geometrical properties within very low tolerances as shown in Figure 4. Thus, this two-step method allows 
in practice to generate a geometrical configuration as described in section 2 within acceptable tolerances. 

 
Figure 4: Convergence of algorithm regarding properties (a) to (d) 

4. The X-Mesh pavilion 
In order to demonstrate the innovation and the adaptability of the workflow hereby presented, it was 
applied to the design and realization of a pavilion for the IASS 2019 Pavilion contest.  

4.1. Design 

The shape of the pavilion is a doubly curved envelope, of which transversal sections are horseshoe arches. 
The shape has both synclastic and anticlastic portions, and demonstrates the ability of our method to 
generate structures on a broad class of forms. The pavilion is high enough to walk under, so it is possible 
to enjoy the view from the inside as well as from the outside. 

The starting point of the design is a surface, which was discretized by a hexagonal mesh aligned with 
curvature lines. There are two ways to align a hexagonal mesh with curvature directions. The alignment 
with the horizontal curvature lines is chosen in order to create the graphic impression of an ascending 
movement, as the triangular panels are pointing upwards diagonally. 

The concept of this pavilion focuses on highlighting the geometrical properties through the architectural 
treatment of the elements, especially the connections. The conception of each type of node is entirely 
based on the geometrical rationalization that simplifies its fabrication. We took advantage of each 
geometrical strategy to define the technology of the pavilion. 

The pavilion is made of laser-cut aluminum plates. There are two main components: beams and cladding 
panels, as shown in Figure 6. 

4.2. Structure 

The torsion free nodes allowed us to conceive the main hexagonal grid as a beam structure. Indeed, since 
adjacent node axes are coplanar, their common plane defines the median planes of beams. This allowed 
us to build all of our elements out of sheet materials.  
We took advantage of the node repetition to design two standards types of connections, one for each type 
of geometrical node (2D and 3D). These nodes are showed in Figure 6. 2D nodes offered us the possibility 
to create a structural connection through the common plane of the three incoming beams. This connection 
was realized by two aluminum panels on the superior and inferior edge of the three beams. 

Structurally, the height of the beams can be adjusted to have sufficient vertical inertia. The horizontal 
inertia is guaranteed by the cladding panels. Panels are fixed to the edges of the three beams thanks to 
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locking tabs in which the carved panels are pushed into. As beams are orthogonal to panels, all the cuts 
are orthogonal to the sheet planes, and can thus be realized by 2D laser cutting. 

  
Figure 6: Technological solution for the 2D and 3D nodes 

The technological treatment of the 3D nodes is based on the existence of an axis assigned to each node 
and on the fact that beam planes always intersect at 120°. For 3D nodes, a hinged connection is build from 
two pieces, cut out from thicker aluminum sheets and swagged in a stamping press. These formed parts 
are all identical and guaranty the 120° angle between each beam plane of the 3D node. They are 
maintained in place thanks to a single screw, materializing the direction of the normal axis of the node. 

The two types of junctions are adapted on the free edges of the pavilion; thus it is unnecessary to develop 
an entirely different solution for the nodes on the boundary. Only two beams are joined on 3D nodes on 
naked edges, so in order to keep the same technological solution, we add a short stub that closes the node. 
2D nodes with only two beams can work the same way on naked edges than on interior edges, as long as 
the panel is designed accordingly. This degree of freedom offers the opportunity to adapt the general 
design of the edge. 

4.3. Mesh alignment with ground level 
For aesthetic and fabrication reasons, it was desirable to align the mesh with the the ground. Since the 
mesh follows curvature directions, we modified the target surface so that its bottom boundaries (verifying 
z=0) are curvature lines. By the Joachimsthal theorem, this property is achieved if the surface  has a 
constant slope along the lines z=0. As our target surface is a B-spline, the slope at the ground boundary 
is given by the bottom two rows of control points. We therefore optimized the position of these control 
points so that the slope of the surface is constant at the ground level.  

4.4. Structural check 
To ensure the safety and structural behavior of the pavilion, we implemented a finite element model of 
the structure and verified its behaviour under dead load and accidental load. Stress concentrations around 
the cuts were verified by local models using 2D plate elements. 

5. Conclusion 
In this article, we demonstrated the potential of the so-called Caravel meshes for structural applications 
by designing a full scale pavilion which is to be exhibited at the 60th IASS Symposium in October 2019. 
The geometry is further rationalized so that only two types of nodes are used throughout the whole 
structure. 
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