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Video images are being used with increased frequency in science, supplanting current methods such as light
scattering by statistical evaluation of the images. In this study we use light turbidity data due to density-induced
refractive index fluctuations to obtain critical amplitudes from image analysis. In order to bring hydrogen (H2)
very close to its critical point, we place the sample cell under weightlessness using a magnetic levitation
device. Images of an H2-filled cell are taken near its critical temperature of 33 K by illuminating the cell
with three different filters. We fit the turbidity data to a theoretical expression that allows us to estimate the
critical amplitudes of isothermal compressibility and fluctuation correlation length. The values of isothermal
compressibility and correlation length obtained from turbidity fitting are compared against literature values. Our
data analysis shows a large sensitivity of the fitting parameters to the refractive index value and to even minute
density deviations from criticality.

DOI: 10.1103/PhysRevE.100.052112

I. INTRODUCTION

We celebrate 150 years of critical phenomena studies that
started with carbon dioxide liquefaction by Andrews. In his
seminal work [1], Andrews introduced the concept of the
critical point. It was van der Waals who introduced the princi-
ple of corresponding states, which asserts that the functional
relations among pressure, temperature, and volume are the
same for all fluids [2]. Among other optical techniques used
for investigating critical phenomena, turbidity measures the
amount of light transmitted through a fluid and helps probe
the dynamics of density fluctuations near a fluid’s critical
point [3].

Close to the critical point, the physical properties of a fluid
follow well-known universal laws [4–10]. When the critical
point is approached, some parameters, such as the thermal
expansion coefficient, isothermal compressibility, and thermal
conductivity, diverge. Others, such as surface tension, liquid-
vapor density difference, capillary length, and coefficient of
thermal diffusivity, vanish. The fact that the above parameters
asymptotically approach zero when approaching the critical
point means that gravity effects become very large, which
requires weightlessness for studying critical point phenom-
ena. By heating or cooling a fluid, one can approach or move
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away from the liquid-vapor critical point. As a result, one
can modify the properties of the liquid and vapor phases in
a scaled way and thus study the liquid-vapor interface for a
variety of fluid conditions.

Hydrogen (H2) is a key player in space technology for
propulsion and cooling [11,12]. Fluid management under the
significant acceleration during takeoff and under micrograv-
ity in outer space poses significant technological challenges
to space missions [13]. Among other difficulties, effective
fluid management in microgravity requires a better under-
standing of thermo-hydrodynamics and phase change once
buoyancy forces are canceled. Performing classical micro-
gravity experiments with hydrogen is nearly impossible due
to safety concerns [14], which leaves us with the alternative
of counterbalancing gravity by using the diamagnetic property
of H2 [15].

We measured the turbidity dependence on temperature T
for a fluid H2 cell near its critical temperature Tc using three
different optical filters, which allowed turbidity estimation at
different wavelengths. In this study, we used the hydrogen
levitation device (HYLDE) that allows gravity compensation
by volumic magnetic forces induced by a magnetic field
gradient (see [16,17] for an introduction to magnetic compen-
sation of gravity and [14,15,18] and references therein for the
mathematical derivation of effective gravity under magnetic
compensation).
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Video images are increasingly used in many areas of
science and technology as they allow a better understanding
of physical processes than the more traditional light scattering
methods. We show that image analysis of turbidity gives the
same information on compressibility and correlation length
of H2 critical fluid as one gets with classical light scattering.
By fitting the turbidity τ versus reduced temperature (ε =
T/Tc − 1) with well-established theoretical formulas [19–23]
we found the values of two critical amplitudes: κT 0 for the
isothermal compressibility and ξ0 for the fluctuation correla-
tion length.

Among the benefits of our approach, we mention that mag-
netic compensation of gravity allows a very close approach to
critical temperature without gravity disturbances that usually
affect critical fluids, e.g., buoyancy-driven instabilities and
strong density gradients. The HYLDE cryogenics system
uses a low-power, adjustable, light source to minimize the
temperature disturbance of the probe. Another advantage of
our approach is that we can visualize the whole sample,
which allows us to detect density inhomogeneities. Working
with three different filters centered on red, green, and blue
wavelengths allows us to cross-check estimated values for
susceptibilities based on turbidity measurements. Finally, we
can use the same setup to study other critical phenomena, such
as phase transition, and determine critical temperature with
high precision (outside the scope of this study).

The present paper is organized as follows. First, we briefly
review background information on both critical point scaling
laws and turbidity. Next, the HYLDE setup is reviewed with-
out repeating all the details of previous studies. Our results
start with a critical review of existing data on H2 critical
parameters and the refractive index measurements near the
critical point. The bulk of the section on results is concerned
with extracting the critical amplitudes κT 0 and ξ0 by fitting
the turbidity τ versus reduced temperature ε graphs. We
also compare our results against existing experimental data
and theoretical predictions. Finally, we provide insight into
the expected power law exponents predicted by the existing
theoretical model of turbidity via numerical simulations.

II. BACKGROUND

A. Critical point phenomena

Near the liquid-vapor critical point, a number of ther-
modynamic quantities diverge asymptotically as power laws
when temperature is varied [4,5,9,24]. Among others, the
isothermal compressibility κT and the correlation length of
density fluctuations ξ both diverge as power laws near the
critical temperature Tc. For example, the susceptibility χ and
the fluctuation correlation length ξ are written as [4]

χ = pcκT = Γ0ε
−γ (1 + aχε	 + · · · ),

ξ = ξ0ε
−ν (1 + aξ ε

	 + · · · ). (1)

Here pc is the critical pressure and ε = T
Tc

− 1 is the re-
duced temperature, with T and Tc the temperature and critical
temperature, respectively. In addition, Γ0 = pcκT 0 and ξ0

are critical amplitudes that depend on the considered fluid;

γ = 1.24 and ν = 0.63 are universal critical exponents. The
existence of universal relations, the so-called scaling laws,
between exponents means that only two critical exponents are
independent. Consequently, all the amplitudes are connected
by universal ratios and only two critical amplitudes are in-
dependent [8–10,25]. Therefore, the experimental estimation
of the amplitudes, such as Γ0 and ξ0 from Eq. (1), is of
prime importance for the validation of the two-scale-factor
universality for simple fluids that are expected to belong to
the three-dimensional Ising-like systems [8,10,25]. In Eq. (1)
we also note that the terms inside the parentheses correspond
to nonanalytical corrections characterized by the universal
value 	 = 0.50 of the corresponding exponent [26,27]. The
amplitudes of the nonanalytical correction such as aχ or aξ

are fluid dependent and only one among these nonanalytic
amplitudes can be used to characterize each fluid (see, for
example, [28]). Typically, their magnitudes are of the order
of unity. Since in this study the temperature remains close
to Tc, the small contributions of nonanalytical amplitudes are
not taken into account hereafter. As a result, we are only
concerned with the estimation of critical amplitudes Γ0 and ξ0

from turbidity observed in recorded video images of a critical
H2 cell.

B. Turbidity

Turbidity is obtained from measured light transmission T
through a sample with thickness e [19–21],

T = IT /I0, (2)

where IT is the transmitted light intensity and I0 is the incident
light intensity. Turbidity can be calculated as

τ = −1

e
ln(T ). (3)

Very close to critical point, turbidity is only due to the
Rayleigh scattering of light [19]. The enhancement of re-
fractive index fluctuations due to the density (order param-
eter) fluctuations becomes increasingly important as one ap-
proaches the critical point and leads to the so-called critical
opalescence phenomenon [4–6,9]. According to the Ornstein-
Zernike theory, turbidity is related to the scattered light inten-
sity integrated over all scattered angles [22,23]

I (k) = AT κT sin2(�)/[1 + (qξ )2], (4)

where q represents the amplitude of the transfer wave vector
between the incident wave vector ki and scattered ks, i.e., q =
|ki − ks| = 2k0 sin(θ/2). The wave vector of the incident light
is k0 = 2πn/λ0, � is the angle between the polarization of the
incident beam wave vector and the scattered light wave vector,
n is the refractive index of the fluid, λ0 is the wavelength of
the incident light in the vacuum, and θ is the scattering angle.
The factor A is given by [19–21]

A = π2

λ4
0

(
ρ

∂n2

∂ρ

)2

T

kB = π2

λ4
0

(
(n2 − 1)(n2 + 2)

3

)2

kB, (5)

where kB is the Boltzmann constant. The factor A varies
strongly with both λ0 (due to the λ−4

0 factor) and with the
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index of refraction n. The index of refraction n corresponds
to λ0 at T = Tc and ρ = ρc. For the derivative ∂n2

∂ρ
, we used

Lorentz-Lorenz relationship

1

ρ

n2 − 1

n2 + 2
= r(λ), (6)

where r(λ) is almost constant at a given wavelength.
It should be noticed that varying the wavelength from blue

(0.45 μm) to red (0.65 μm) has the same effect on turbidity
as varying the sample’s thickness by a factor

e1

e2
= ln(λ1)

ln(λ2)
≈ 2. (7)

Indeed, consider two samples of thicknesses e1 and e2, illumi-
nated by light with wavelengths λ1 and λ2, respectively. From
Eq. (3) and the definition of the factor A in Eq. (5) one gets,
for the ratio of turbidities of the two samples,

τ2

τ1
= e1

e2

ln(λ2)

ln(λ1)
,

which leads to Eq. (7) for τ1 = τ2.
Integrating Eq. (4) over all scattering angles, one gets the

turbidity [19–21]

τ = AπTc(1 + ε)κT F (a) + τB. (8)

The parameter τB is a background contribution due to the
light attenuation other than scattering by critical fluctuations,
e.g., Brillouin and Raman scattering and light reflection or
absorption by the windows. The background turbidity τB also
includes the effect of uncertainty in the estimation of I0. The
function F (a) is given by [19–21]

F (a) =
(

2a2 + 2a + 1

a3

)
ln(1 + 2a) − 2

(
1 + a

a2

)
(9)

and represents an interference term which depends on a =
2(k0ξ )2 and whose limit value for ε → ∞ is 8/3 [29]. For
a reasonable range of 1 Å � ξ0 � 3 Å and all wavelengths in
the visible spectrum, the interference function F (a) in Eq. (9)
is at least at 77.7% of its limit value of 8/3 for all ε > 10−3.
In other words, for ε > 10−3 the interference function is
quasiconstant and its effect on turbidity formula given by
Eq. (8) can be neglected. This approximation corresponds in
H2 to an off-critical temperature of about T − Tc > 33 mK
(see the discussions on Fig. 5 in Sec. IV C below regarding
the asymptotic behavior of turbidity for both large and very
small values of reduced temperature).

III. EXPERIMENTS AND METHODS

A. Magnetic levitation setup

Due to earth’s gravity, fluids near the critical point com-
press under their own weight. Additionally, due to the diver-
gence of the thermal expansion coefficient near the critical
point, minute temperature gradients induce strong convective
flows inside critical fluids [4–7,9,10,30]. In order to compen-
sate for these strong gravity effects, we carried out the ex-
periments using the HYLDE cryogenic facility [14–16]. The

HYLDE setup uses a magnetic field up to 10 T generated by
a cylindrical superconducting coil. Hydrogen is diamagnetic;
thus it can levitate near the upper end of the coil where a
nearly constant magnetogravitational potential field is pro-
duced. Gravitational field compensation is possible because
a diamagnetic substance, such as H2, placed in a magnetic
field is subject to a force that is proportional to its magnetic
susceptibility and to the local gradient ( �B · �∇ ) �B [see Eq. (1) in
[14] and Eq. (1) in [16]]. The theoretical background for mag-
netic compensation of gravity in H2 is detailed in [16]. With
respect to the experimental setup, without repeating the very
detailed description and schematics presented in [16], we only
mention that the apparatus consists of a cryostat that contains
the superconducting coil and an anticryostat containing the
sample and the optics [see Fig. 1 in [16], Fig. 3(a) in [18], and
Fig. 1(a) in [14] for details]. The Nb-Ti superconducting coil
inside the cryostat is dipped in liquid helium at a temperature
of 2.16 K and a pressure of 0.1 MPa. The experimental cell
is mounted inside the anticryostat and maintained under a
vacuum of less than 10−7 mbar. Endoscopes for a light source
and a video camera are mounted inside the anticryostat. The
positions of the endoscopes can be adjusted independently. A
more detailed schematics of HYLDE is shown in Fig. 1(a) of
[31] or [14] together with an actual photo of the experimental
cell of size 7 × 7 × 7 mm3 [see Fig. 1(b) in [31] or [14]]. The
same HYLDE setup was used in [32] (see their Fig. 10) with
a 3 × 3 × 3 mm3 cell.

It has been demonstrated [17] that the magnetic levitation
technique using a solenoid of cylindrical configuration only
achieves total compensation of gravity at a single point in
space. As a result, there is always a residual gravitational field
radially directed towards the center of the cell. The uniformity
of the gravitational field depends on the size of the cell (see the
in-depth analysis of the effective gravity homogeneity inside
cylindrical samples under magnetic levitation in [16]). Using
the HYLDE setup, a uniform magnetogravitational potential
field better than 1% and 2.5% can be achieved in cells of side
h = 3 and 7 mm, respectively [16].

Hydrogen can be found in two states of spin polarization:
ortho and para. When H2 is cooled down, the balance be-
tween ortho-H2 (o-H2) and para-H2 (p-H2) is shifted and the
percentage of p-H2 (antiparallel spins) increases from about
33% at room temperature to 96% at 30 K (see [33]). As the
temperature decreases towards Tc, more o-H2 (parallel spins
of H nuclei) transforms into p-H2, which in turn determines
a decrease of Tc itself. In our experiment, the change in tem-
perature was much faster than the slow drift of Tc because of
o-H2 to p-H2 conversion. It has been found that Tc follows an
exponential relaxation with a time constant of about 2500 min
[34]. As the experiments are performed within hours after
filling the cell with the fluid initially at room temperature,
the H2 state is thus normal-H2 (n-H2). Its critical point is
defined by a range of values for Tc, pc, and ρc given in Tables I
and II.

Hydrogen is filled inside the cell by using a capillary tube
of inner diameter 0.5 mm. The capillary tube is fitted with a
thermal switch made of a small block of copper continuously
cooled under the triple point of H2 by a copper wire connected
to the helium bath of the cryostat. The switch is heated using
a resistive heater. In the absence of heating, the H2 inside
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TABLE I. Relevant critical parameters for n-H2 based on our extensive review of the existing literature.

Tc (K) pc ρc Polarizability (cm3/mol) Ref.

33.18 9864.8 mmHg 29.87 kg/m3 [35]
29.88 kg/m3 2.0372 [36]

33.19 9864.8 mmHg 30.12 kg/m3 [37]
33.19 9865 mmHg 14.94 × 10−3 mol/cm3 [38]
33.19 1.315 MPa = 12.98 atm 30.12 kg/m3 = 14.94 mol/l 2.0372 [39]
33.18 12.98 atm 30.12 kg/m3 = 0.01494 mol/cm3 l 2.0372 [40]

2.0373 [41]

the capillary tube freezes, thus closing the cell. To fill or
empty the cell, the switch is heated up, thus melting solid
H2 inside the capillary tube. To determine the critical density,
the cell is filled up to half its height at a temperature to
within 50 mK of Tc and the meniscus is monitored under
g = 1 while temperature slowly increases from Tc − 50 mK
towards Tc. If the level of the meniscus does not change
within the optical resolution while changing the temperature,
it means that the cell is filled at its critical density (see also
[34] for a detailed description of the procedure). A measur-
ing accuracy of 0.2 mm for the meniscus corresponds to a
density uncertainty of (ρ − ρc)/ρc ≈ 2%. The experimental
cell is provided with thermal bridges, strands of copper wires
connecting the bottom flange of the anticryostat, which is
maintained at liquid helium temperature. Resistive heaters in
thermal contact with the cell are used for both heating and
controlling the temperature of the cell. The temperature is
monitored by two thermometers attached on the cell’s wall.
The temperature control of the cell achieved with a standard
proportional-integral-derivative control system is better than
0.3 mK.

B. Turbidity measurement method

Traditionally, light transmission is measured with a thin
(0.1 mm) polarized laser beam. Here light transmission is
measured by a fixed gain camera on the image itself, pixel
by pixel or averaged over a window (Fig. 1). In order to avoid
collecting multiple scattered light, the total aperture angle of
the collecting lens is small (α = ±0.75◦ or α = 13 mrad),
similar to laser transmission methods. This small aperture is
the result of a long depth (0.4 m typically) of focus. The CCD
camera resolution was 1024 × 1024 pixels at 30 frames/s
[34], although because of the small aperture of the optical

system only about 750 × 750 pixels were used. Incident light
is produced by a collimated beam originating from a white-
light lamp with switchable interferential filters centered on
blue (465.2 nm, bandwidth 71 nm), green (519.4 nm, band-
width 92 nm), and red (669.4 nm, bandwidth 78 nm).

A detailed view of the cell is shown in Fig. 2 (see also
Fig. 2 in [34] for more details on the optical parameters of
the HYLDE). The cell is cylindrical with a sapphire window
at one end and a mirror at the other end [see Fig. 2(a)]. Its
thickness is e0 = 21.00 mm and its radius is 20 mm. The
mirror placed at the end of the cell reflects the light back,
which makes the final light path through the fluid e = 2e0.
Compared to a laser beam, which typically heats up the fluid
by 1 mK/mW, this method has the advantage of dissipating
less power.

We used an eight-bit CCD camera, which allowed for 256
gray-level discretization of recorded images. In gray levels,
the maximum intensity is 255 [see Figs. 3(a) and 3(b)] and
the minimum we recorded is about 6 [see Figs. 3(c) and 3(d)],
which corresponds to the electronic noise of the camera. As a
result, the minimum detectable transmission with our setup
is Tmin ≈ 6/255 ≈ 0.0235, which corresponds to a maxi-
mum turbidity τmax = (−1/e) ln(Tmax) ≈ 100 m−1. Accord-
ingly, the maximum transmission is T ≈ (255 − 6)/255 ≈
0.976, which corresponds to a minimum turbidity value of
τmin = (−1/e) ln(Tmin) ≈ 0.6 m−1. In Fig. 3 we show two
representative images of the cell far from the critical point
[see Figs. 3(a) and 3(b)] and closer to Tc [see Figs. 3(c) and
3(d)]. The histograms of gray-level intensities [Figs. 3(c) and
3(d)] correspond to the squares marked and placed at the same
location in the corresponding images [Figs. 3(a) and 3(b)].
As the temperature approaches Tc, the histogram becomes
narrower, i.e., towards more homogeneous illumination, and
shifts to lower light intensities.

TABLE II. Relevant critical parameters for p-H2 based on our extensive review of the existing literature.

Tc (K) pc ρc Polarizability Ref.

32.976 9696.84 mmHg 31.43 kg/m3 [37]
32.938 1.28377 MPa 15.556 mol/dm3 [41]
32.976 9696.8 mmHg 0.015.59 mol/cm3 [35]
32.933 0.03136 g/cm3 [42]
32.994 12.770 atm 1/62.8 mol/cm3 [43]
32.976 1.2928 MPa = 12.759 atm 31.43 kg/m3 = 15.59 mol/l 2.0279 cm3/mol [39]
32.976 12.759 atm 0.01559 mol/cm3 2.0279 cm3/mol [40]

1. 004 cm3/g [36]
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CCD
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e0

2α

Lamp

Optical
   filter

Optical 
   fiber

FIG. 1. Schematic representation of the HYLDE optical setup.
The total angular aperture is 2α = 26 mrad. The solid arrows indicate
the 2α aperture.

IV. RESULTS

A. Critical review of the literature on critical
parameters for hydrogen

The turbidity given by Eq. (8) is sensitive to selected
values for n and λ0. To assess its sensitivity, we performed
a first-order (linear) perturbation of the logarithm of Eq. (8)
and found

δτ

τ
=

(
1

A

∂A

∂n
+ 1

F (a)

dF (a)

da

∂a

∂n

)
δn

+
(

1

A

∂A

∂λ
+ 1

F (a)

dF (a)

da

∂a

∂λ

)
δλ. (10)

The refractive index sensitivity is dominated by the first term
1
A

∂A
∂n = 4n(1+2n2 )

(n2−1)(n2+2) . For n = 1.05 this term 1
A

∂A
∂n ≈ 40 and

for n = 1.04 the same term is 1
A

∂A
∂n ≈ 50. The first factor

(a) (c)(b)

(21 mm)

e0

FIG. 2. Hydrogen sample cell and optical paths of e = 2e0 =
2 × 21 mm in the fluid. (a) Schematics. (b) Details. (c) Photo.
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FIG. 3. Images of (a) and (c) the sample cell and (b) and (d) the
corresponding gray-level histograms of the region of interest. Far
from the critical point of H2, T − Tc = 993.5 mK, (a) the image is
bright and (b) the gray-level distribution shifts towards lighter levels.
Closer to critical point T − Tc = 2 mK, (c) there is less transmitted
light and (d) the corresponding histogram shifts towards darker gray
levels.

in the second term of δn is 1
F (a)

dF (a)
da → 1 and the second

factor ∂a
∂n → 0 as T → Tc. Similarly, wavelength sensitivity

is dominated by the first term 1
A

∂A
∂λ

= 4
λ

, whereas the second
term vanishes as T → Tc. Therefore, the dominant terms, in
absolute value, that drive the relative error of turbidity are

δτ

τ
= 4n2(1 + 2n2)

(n2 − 1)(n2 + 2)

δn

n
+ 4

δλ

λ
. (11)

Of the two terms above, the relative error on the refractive
index δn/n has a factor that is one order of magnitude larger
than the wavelength uncertainty δλ/λ. This justifies our in-
depth review of the literature while searching for accurate
refractive indices near Tc.

We thoroughly reviewed the literature for available data
regarding n-H2 (see Table I) and p-H2 (see Table II). Our
experiment was performed shortly after the H2 reached the
critical temperature such that the liquid likely did not reach
ortho-para equilibrium and n-H2 dominates in our experiment.

B. Index of refraction

The refractive index n has been derived in two different
ways: (i) from the Lorentz-Lorenz formula of specific refrac-
tion

r = (n2 − 1)/(n2 + 2)/ρ (12)

or (ii) from the Clausius-Mossotti relation

RCM = (φ − 1)/(φ + 2)/ρ, (13)
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TABLE III. Refraction index nc near critical temperature. The wavelengths in our experiment were 669.4 nm (red), 519.4 nm (green), and
465.2 nm (blue).

n-H2 p-H2

nc Red Green Blue nc Red Green Blue Source

1.04911 (546.2 nm) 1.04667–1.04706 [38,44]
1.04857 1.04929 1.04977 1.04613–1.04652 1.04685–1.04724 1.04733–1.04772 [38,44] & Eq. (15)

1.04726 1.04489–1.04527 [44]
1.04857 1.04929 1.04977 1.04613–1.04652 1.04685–1.04724 1.04733–1.04772 [44] & Eq. (13)

1.04544–1.04582 [41]
1.04624–1.04663 1.04679–1.04718 1.04713–1.04753 [41] & Eq. (13)

1.050958 [42]

where φ = n2
∞ is the dielectric constant and n∞ is the re-

fractive index for infinite wavelength. The value of RCM can
be experimentally determined from the polarizability using
RCM = P/M, where M is the molecular weight and P is the
molar polarizability. Once determined, the value of RCM is
then used to estimate the dielectric constant φ and the cor-
responding refractive index n∞. To avoid notation confusion,
we use φ for the dielectric constant throughout the paper and
reserve ε only for the reduced temperature.

While reviewing the literature on the refractive index mea-
surements near the critical point, we found two sets of data:
(a) the index of refraction is given at a particular wavelength,
or set of wavelengths, and (b) the wavelength is not spec-
ified (see Table III). The second case occurs because the
Clausius-Mossotti relationship (13) was used to determine the
refractive index n∞ from the dielectric constant. In both cases,
we computed wavelength corrections for the refractive index
based on Cauchy’s formula of specific refraction [45]

r(λ) = r∞ + A/λ2 + B/λ4, (14)

with A = 0.779 956 9 × 106 and B = 0.495 126 × 1012 for λ

in angstroms and r in cm3/g. However, if the specific refrac-
tion is in mol/dm3 as in [41], then Cauchy’s coefficients must
be multiplied by the molar mass/1000.

Based on Eq. (12), the refractive index is calculated with

n(λ) =
√

1 + 2ρr(λ)

1 − ρr(λ)
. (15)

Sometimes the specific refraction or the refraction index was
measured using interferometry methods at a given wave-
length. In such cases, when the wavelength λ1 is known, to
avoid uncertainties regarding r∞, we computed the refractive
index at the wavelengths in our experiment n(λ2) based on a
known value of the refractive index n(λ1). Based on Eqs. (12)
and (14) one gets

n2
1 − 1

n2
1 + 2

1

ρ
= r∞ + A/λ2

1 + B/λ4
1 (16)

at a given wavelength λ1. By rewriting the same relationship
at a different wavelength λ2 and eliminating r∞ one gets

n(λ2) =
√

n(λ1)2 + 2β

1 − β
, (17)

with β = ρ n(λ1 )2+2
3 ( 1

λ2
2
− 1

λ2
1
)[A + B( 1

λ2
2
+ 1

λ2
1
)]. Equation (17)

has been used to handle the calculation of wavelength-
dependent refractive indices when the refractive index is
known at a specific wavelength λ1 (see rows 1 and 2 in
Table III).

1. Refractive index values at Tc (Table III)

Souers derived a simple equation for all liquid and gases
from 30 to 100 K [38,44],

n(546.2 nm) = 1 + 3.15 × 10−6ρ, (18)

where the density ρ is in mol/m3, with molar weight of
H2 equal to 2.015 94 g/mol. It has been stated that the
above equation “is a reasonable estimating procedure for all
hydrogen isotopes in all phases. It will probably be accurate
to a few percent” [44]. A crude estimate of the index of
refraction with the above formula at Tc gives (see the first
row of Table III) nc = 1.046 67 − 1.047 06 for p-H2 and nc =
1.049 11 for n-H2. Since we know the wavelength λ1 for
which the empirical formula (18) is valid, we used Cauchy’s
dispersion formula [45] (see the second rown in Table III) to
correct the index of refraction value for our filters according
to Eq. (17).

Stewart [44] derived a specific refraction formula from
measurements of the dielectric constant. Stewart’s formula
is for p-H2 and is limited to temperatures below 100 K and
densities below 0.080 g/cm3. The density dependence of
specific refraction (see p. 13 in [45]) is

r∞ = 1/P = 0.995 75 − 0.090 69ρ + 1.1227ρ2, (19)

where polarizability P is in cm3/g and ρ in g/cm3. With r∞
from Eq. (19) we estimated the refractive index using Eq. (12)
to be 1.044 89 � nc � 1.045 27 for p-H2 with densities in the
range 29.87 kg/m3 � ρc � 30.12 kg/m3, and nc = 1.047 26
for n-H2 with ρc = 31.43 kg/m3. We also used Eq. (14) to
account for Cauchy’s correction (see row 4 in Table III).

Koch [46] determined the refractive index at 20 wave-
lengths from 230.2 to 546.1 nm. Kirn [47] determined the
refractive index at 15 wavelengths from 185.4 to 546.1 nm
[45]. “The average deviation from those experimental points
of Koch and Kirn lying in the visible region is 0.04%” [45].
Their formula is given by Eq. (19).
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McCarty et al. [40] (see pp. 1–31 therein) arrived at a
formula similar to Eq. (19),

r∞ = 0.995 75 − 0.090 69ρ + 1.227ρ2, (20)

except that the last coefficient is 1.227 in [40] as opposed to
1.1227 in [45]. We believe this is a typographical error, given
that in the same book [40] (pp. 1–15) they show the Clausius-
Mossotti equation

RCM = 0.995 75 − 0.090 69ρ + 1.1227ρ2, (21)

which is the same as Eq. (19).
Younglove [41] derived a density-, temperature-, and

pressure-dependent Clausius-Mossotti relationship

RCM = A + Bρ + Cρ2 + Dρ3 + ET + FP, (22)

with densities in mol/dm3 and the following coefficients:
A = 0.202 454 43 × 10−2, B = 0.371 718 32 × 10−6, C =
−0.920 850 13 × 10−8, D = −0.340 653 29 × 10−11, E = 0,
and F = 0 (see pp. 1–349 in [41]). Since in most formulas of
specific refraction the density is in g/cm3 instead of mol/dm3

as in [41], Cauchy’s coefficients for wavelength correction in
Eq. (13) must be multiplied by the molar mass/1000. For H2,
the molar weight is 2.015 94 g/mol [41].

2. Temperature dependence of the refractive index

Usually, the temperature dependence of the refractive in-
dex is not given explicitly, but rather implicitly through the
temperature dependence of the density. We only found one
explicit temperature-dependent formula of refractive index by
McCarty [42] and many other explicit formulas for the tem-
perature dependence of density (see, for example, [37,42]).

McCarty [42] used a modified Benedict-Webb-Rubin equa-
tion of state for para-H2 which considers the temperature
dependence of density and expands specific refraction into a
power series to get a formula for the temperature dependence
of the refractive index (see p. 7 of [42])

n = 1.050 958 659 4 + 0.091 463 402 563ε0.410 439 837 53.

(23)

This formula assumed that Tc = 32.933 139 76 K, although
not all digits are significant as McCarty gives Tc = 32.933 K
elsewhere in the same work. A hint that not all digits
are significant in Eq. (23) is the fact that the temperature-
dependent density parameters are given, for example, as A1 =
−1.088 021 524 3 ± 0.214 (see p. 3 in [42]). This suggests
that the error on A1 propagated also to the refractive index and
not all digits in Eq. (23) are significant. Equation (23) could
also be corrected for wavelength with Eq. (14).

Jungwoon’s review of p-H2 data gave the following correc-
tions for temperature-dependent density [37]:

ρliquid = ρc[1 + 1.7707(1 − ε)0.3817],

ρgas = ρc{−0.013 97 + 0.630 32 exp[−(1 − ε)/0.160 13]

+ 0.375 72 exp[−(1 − ε)/0.013 65]}. (24)

The corrections given by Eqs. (23) and (24) could be sub-
stituted into any or all of Eqs. (18), (19), and (22) above
to get a more accurate estimate of the refractive index at
each temperature. Subsequently, turbidity fitting using Eq. (8)

w1 w2

w3
w4

)b()a(

FIG. 4. Sample cell unit with H2 at (a) T = 35 K and (b) T =
33.008 K. Four overlapping windows (marked w1–w4) were used
for transmitted light intensity measurements. As the temperature
approached Tc = 33.0065 K, less light was transmitted (b).

could be done with refractive indices corresponding to actu-
ally measured temperature instead of using only nc for the
entire temperature range. Additionally, correcting the specific
refraction for both temperature with Eq. (23) and wavelength
with Eq. (14) could improve the fitting of turbidity data.

C. Fitting turbidity data for hydrogen

In the following, we only show the fitting results for two
refractive indices selected from Table III. A summary of
some of our fitting results for H2 is shown in Table IV for a
constant index of refraction, i.e., for nc = 1.049 11 (measured
at 546.2 nm) as listed in the first row of Table III. Since
the wavelength at which the refractive index was measured
is given, we use Eq. (17) to correct the refractive index for the
wavelengths of our particular filters. The procedure is similar
for any other constant refractive index from Table III.

The second example uses one of the most complex refrac-
tive index formulas we found in the literature and includes the
temperature dependence of the refractive index as shown in
Eq. (23) (see p. 7 of [42]). The results for the temperature-
dependent refractive index (23) are summarized in Table V.
Given the complexity of the formula, we performed the fol-
lowing different fittings shown in Table V from Ref. [42]:
(i) nc = 1.050 958 659 4 = const; (ii) nc = 1.050 958 659 4 =
const, corrected with Eq. (17) for the wavelengths of our
filters (since no wavelength was provided, we assumed that
λ → ∞, i.e., assumed that nc was derived from dielectric
constant measurements); (iii) use the above filter-corrected
values for nc and further add the temperature dependence
from Eq. (23); and (iv) use the temperature dependence from
Eq. (23) with no wavelength correction.

We fitted the turbidity data for each of the three colors (red,
669.4 nm; green, 519.4 nm; and blue, 465.2 nm) and for each
of the four window locations shown in Fig. 4(a). Representa-
tive turbidity plots versus reduced temperature data are shown
in Fig. 5 for all three color filters used in this experiment.
The data far from Tc give the background turbidity τ ≈ τB.
The data closer to Tc, where a is still small and F (a) nearly
constant (approximately equal to 8/3), give the isothermal
compressibility τ ∝ κT ∝ ε−γ [slope approximately equal to
−γ in Fig. 5(a)]. Close to the critical point and for a � 1, F (a)
compensates the divergence of κT and the turbidity exhibits
a logarithmic behavior, thus allowing the determination of ξ
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TABLE IV. Fitting results for a relatively small refractive index nc = 1.049 11 measured at 546.2 nm [38].

nc Color κT 0 × 109 (Pa−1) ξ0 (Å) τB (m−1) χ 2 R2

1.04911 red 76.2 ± 4.3 1.57 ± 0.10 0.99 ± 0.14 0.251 0.992
(546.2 nm) red 57.5 ± 0 1.12 ± 0.03 1.51 ± 0.13 0.447 0.986

red 85.2 ±1.4 1.78 ± 0 0.81 ± 0.12 0.281 0.991
red 57.5 ± 0 1.78 ± 0 2.41 ± 0.33 3.674 0.887

green 68.8 ± 5.5 2.77 ± 0.18 0.83 ± 0.19 0.332 0.991
green 57.5 ± 0 1.20 ± 0.10 3.13 ± 0.35 3.44 0.905
green 41.7 ± 1.1 1.78 ± 0 1.63 ± 0.22 0.837 0.977
green 57.5 ± 0 1.78 ± 0 0 ± 0.42 6.143 0.831

blue 69.3 ± 7.8 3.36 ± 0.28 0.54 ± 0.26 0.594 0.986
blue 57.5 ± 0 2.92 ± 0.05 0.87 ± 0.18 0.637 0.985
blue 32.09 ± 1.18 1.78 ± 0 1.83 ± 0.32 1.813 0.957
blue 57.5 ± 0 1.78 ± 0 0 ± 1.03 36.428 0.129

1.04857 red 78.0 ± 4.4 1.57 ± 0.10 0.99 ± 0.14 0.251 0.992
from Eq. (17) red 57.5 ± 0 1.09 ± 0.03 1.55 ± 0.13 0.483 0.985

red 87.21 ± 1.42 1.78 ± 0 0.81 ± 0.12 0.281 0.991
red 57.5 ± 0 1.78 ± 0 2.48 ± 0.34 4 0.877

1.04929 green 68.3 ± 5.5 2.77 ± 0.18 0.83 ± 0.19 0.332 0.991
from Eq. (17) green 57.5 ± 0 2.41 ± 0.04 1.13 ± 0.13 0.382 0.99

green 41.4 ± 1.1 1.78 ± 0 1.63 ± 0.22 0.836 0.977
green 57.5 ± 0 1.78 ± 0 0 ± 0.44 6.488 0.821

1.04977 blue 67.4 ± 7.5 3.35 ± 0.28 0.54 ± 0.26 0.594 0.986
from Eq. (17) blue 57.5 ± 0 2.98 ± 0.05 0.81 ± 0.18 0.62 0.985

blue 31.2 ± 1.2 1.78 ± 0 1.83 ± 0.32 1.811 0.957
blue 57.5 ± 0 1.78 ± 0 0 ± 1.11 41.736 0.002

[slope approximately equal to −ν in Fig. 5(b)]. Note that a
leveling off of the turbidity near Tc can occur if the density
is not strictly equal to the critical density. This question of
density close to the critical value becomes very limiting when
one approaches the critical temperature very closely [21]. This
effect can be correctly analyzed only using the universal Ising-
like parametric form of the fluid equation of state (see, for ex-
ample, Refs. [48,49]). Such a complex analysis can be ignored
for our present experimental approach of the critical point.

However, we note that when the density is off-critical, one
observes a phase change at the coexistence temperature Tcx

instead of Tc. As a result, the temperature scale then becomes
T/Tcx − 1 instead of the reduced temperature ε = T/Tc − 1.
Furthermore, the turbidity divergence is replaced by turbidity
saturation. For a detailed explanation of the reasons behind
the estimated slopes in Fig. 5, see the numerical estimation of
the power law exponents based on the theoretical formula of
turbidity given by Eq. (8) in Sec. IV E.
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FIG. 5. Turbidity variation with reduced temperature in (a) log-log and (b) semilogarithmic scale for all three filters. The region far from Tc

in (a) highlights the background contribution (horizontal line). Closer to Tc, the divergence of the isothermal compressibility leads to a straight
fitting line with a slope approximately equal to −γ in (a). The region very close to Tc in the log-linear plot of (b) reveals the contribution of the
interference term from which the correlation length can be determined [straight line with slope approximately equal to 2ν − γ ≈ −ν in (b)].
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TABLE V. Fitting results for a temperature-dependent refractive index from Ref. [42]. The best fitting results are highlighted in bold for
each index of refraction and filter color.

nc Color κT 0 × 109 (Pa−1) ξ0 (Å) τB (m−1) χ 2 R2

1.0509586594 = const red 70.4 ± 4.0 1.56 ± 0.10 0.99 ± 0.14 0.251 0.992
from Eq. (23) at Tc red 57.5 ± 0 1.24 ± 0.03 1.36 ± 0.11 0.347 0.989

green 63.6 ± 5.1 2.76 ± 0.18 0.83 ± 0.19 0.332 0.991
green 57.5 ± 0 2.55 ± 0.04 1.00 ± 0.13 0.348 0.99

blue 64.1 ± 7.2 3.35 ± 0.28 0.54 ± 0.26 0.594 0.986
blue 57.5 ± 0 3.09 ± 0.05 0.72 ± 0.18 0.598 0.986

1.05208 = const red 67.3 ± 3.8 1.56 ± 0.10 0.99 ± 0.14 0.251 0.992
from Eq. (17) at Tc red 57.5 ± 0 1.31 ± 0.03 1.28 ± 0.11 0.305 0.99

1.05284 = const green 58.9 ± 4.7 2.76 ± 0.18 0.83 ± 0.19 0.332 0.991
from Eq. (17) at Tc green 57.5 ± 0 2.71 ± 0.04 0.87 ± 0.13 0.333 0.991

1.05332 = const blue 58.2 ± 6.5 3.34 ± 0.28 0.54 ± 0.26 0.594 0.986
from Eq. (17) at Tc blue 57.5 ± 0 3.31 ± 0.05 0.55 ± 0.18 0.579 0.986

1.05208 red 59.6 ± 3.1 1.45 ± 0.09 0.94 ± 0.14 0.241 0.992
from Eq. (17) with Eq. (23) red 57.5 ± 0 1.39 ± 0.03 1.01 ± 0.09 0.237 0.993

1.05284 green 49.4 ± 3.7 2.49 ± 0.16 0.78 ± 0.19 0.335 0.991
from Eq. (17) with Eq. (23) green 57.5 ± 0 2.82 ± 0.04 0.49 ± 0.14 0.382 0.99

1.05332 blue 47.4 ± 4.9 2.98 ± 0.24 0.47 ± 0.27 0.601 0.986
from Eq. (17) with Eq. (23) blue 57.5 ± 0 3.44 ± 0.06 0.11 ± 0.19 0.656 0.985

1.050958 red 62.2 ± 3.3 1.44 ± 0.09 0.94 ± 0.14 0.241 0.992
with Eq. (23) red 57.5 ± 0 1.32 ± 0.03 1.09 ± 0.10 0.251 0.992

green 53.0 ± 4.0 2.49 ± 0.16 0.78 ± 0.19 0.335 0.991
green 57.5 ± 0 2.66 ± 0.04 0.62 ± 0.13 0.35 0.99

blue 51.8 ± 5.4 2.97 ± 0.24 0.47 ± 0.27 0.602 0.986
blue 57.5 ± 0 3.21 ± 0.05 0.27 ± 0.18 0.608 0.986

For each refractive index in Tables IV and V, the fitting
results are shown as the mean plus or minus standard deviation
(s.d.). The mean value was computed over the four fitting
values corresponding to each of the four windows shown
in Fig. 4. The fitting was performed in four different ways
(see Tables IV and Fig. 6): (i) κT 0, ξ0, and τB were all free
parameters; (ii) κT 0 = 57.5 × 10−9 Pa−1 (±0 s.d.), while both
ξ0 and τB were free parameters; (iii) ξ0 = 1.78 Å (±0 s.d.),

while both κT 0 and τB were free parameters; and (iv) κT 0 =
57.5 5 × 10−9 Pa−1 (±0 s.d.), ξ0 = 1.78 Å (±0 s.d.), and τB

was a free parameter.
The reference values κT 0 = 57.5 × 10−9 Pa−1 and ξ0 =

1.78 Å are predicted using the master crossover functions
[50] for one-component fluids constructed from the mean
crossover functions for uniaxial three-dimensional Ising-like
systems calculated in [27,50]. Consequently, when the four
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FIG. 6. (a) A log-log (a) and (b) a log-linear plot of experimental turbidity data (closed squares) and four different fitting conditions
for a green filter with four windows with κT 0, ξ0, and τB free parameters (solid line); κT 0 = 57.5 × 10−9 Pa−1, ξ0, and τB free parameters
(long-dash–short-dashed line); ξ0 = 1.78 Å, κT 0, and τB free parameters (short-dashed line); and κT 0 = 57.5 × 10−9 Pa−1, ξ0 = 1.78 Å, and
τB free parameter (long-dashed line).
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critical coordinates of the critical point of any one-component
fluid are known, the leading amplitudes of any singular phys-
ical property related to its corresponding master crossover
function can be directly estimated [see, for example, Eqs. (71)
and (72) and the data of Table III from [50] for the above
referenced values of concern]. These values are very close to
the n-H2 values κT 0 = 57.56 × 10−9 Pa−1 and ξ0 = 1.745 Å
as reported in [10], Table 1.6, p. 44. In the same table, the
values for p-H2 were unknown for κT 0 and ξ0 = 1.54 Å
[10].

The fitting results in Table IV for each refractive index
and filter color follow the above order of fitting parameter
constraints. For example, the first row of Table IV is for
nc = 1.049 11 measured at 546.2 nm according to Ref. [38].
It contains a row for each of the three filters used in the exper-
iment (red, green, and blue). For nc = 1.049 11 measured at
546.2 nm for the red filter, there are four different fitting aver-
ages depending on which parameters were constant during the
fitting procedure. The first row has all free parameters
and reads κT 0 = (76.2 ± 4.3) × 10−9 Pa−1, ξ0 = (1.57 ±
0.10) Å, and τB = (0.99 ± 0.14) m−1. The goodness of fit is
measured by χ2 = 0.251 (the smaller the better) and adjusted
R2 = 0.992 (the larger the better).

The next row in Table IV has an index of refraction
nc = 1.048 57 from Eq. (17). This means that we used the
experimentally measured index of refraction nc = 1.049 11 (at
546.2 nm) from the first row and Eq. (17) to correct for the
corresponding wavelength of the filter used in our experiment
(red, green, and blue).

Two of the four fitting averages for each case are obviously
off due to very high χ2 and small, sometimes even negative
R2. This can be clearly seen also from Fig. 6, where we show
only one example, i.e., the green filter with window 4. The fit-
ting with only ξ0 = 1.78 Å fixed (short-dashed line) severely
overestimates the background turbidity, whereas the fitting
with both κT 0 = 57.5 × 10−9 Pa−1 and ξ0 = 1.78 Å fixed
(long-dashed line) does not even converge (see Fig. 6). The
two fittings with either all three parameters κT 0, ξ0, and τB free
(solid line) or only κT 0 = 57.5 × 10−9 Pa−1 fixed (long-dash–
short-dashed line) are almost indistinguishable from each
other, except for some minute differences at large temperature
visible only on a log-log plot [Fig. 6(a)]. Therefore, we did
not further consider the fittings with ξ0 = 1.78 Å fixed and
the fittings with κT 0 = 57.5 × 10−9 Pa−1 and ξ0 = 1.78 Å
fixed. The only reasonable fittings are the first two lines of
each filter color, i.e., with all three parameters free or with
κT 0 = 57.5 × 10−9 Pa−1 fixed in our analysis.

Since we never used the fitting results with ξ0 fixed, i.e.,
the third line in each fitting result shown in Table IV, and
with both κT 0 and ξ0 fixed, i.e., the fourth line in each
fitting result shown in Table IV, such fitting results are no
longer shown for the temperature-dependent refractive index
example in Table V. This was done in order to avoid showing
an exceedingly large table of which we only use half of the
fitting results for further analysis.

While Tables IV and V are comprehensive, we also pre-
sented the data in a condensed graphical form in Fig. 7.
We notice that the three filters provided estimates that are
clearly separated in nonoverlapping clusters. The red filter
provides the closest estimate to the expected values of both
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FIG. 7. Two representative refractive indices nc = 1.049 11 and
nc = 1.050 96 with wavelength correction (marked by λ) and
temperature-dependence (marked by T). There is a consistent in-
crease of ξ0 between red, green, and blue filters.

κT 0 and ξ0: κT 0 = (59.6 ± 3.1) 10−9 Pa−1, ξ0 = (1.45 ±
0.09) Å, and τB = (0.94 ± 0.14) m−1 for nc = 1.050 958
corrected for both filter color with Eq. (17) and temperature
with Eq. (23). It seems however that the filter color correction
of the refractive index is less important than the temperature
correction as the next best parameter estimation is κT 0 =
(62.2 ± 3.3) × 10−9 Pa−1, ξ0 = (1.44 ± 0.09) Å, and τB =
(0.94 ± 0.14) m−1.

For the green filter, nc = 1.050 958 corrected for filter
color gives κT 0 = (58.9 ± 4.7) × 10−9 Pa−1, ξ0 = (2.76 ±
0.18) Å, and τB = (0.83 ± 0.19) m−1. The next best fitting
result is for nc = 1.050 958 corrected for temperature with
Eq. (23), which gives κT 0 = (53.0 ± 4.0) × 10−9 Pa−1, ξ0 =
(2.49 ± 0.16) Å, and τB = (0.78 ± 0.19) m−1.

For the blue filter, nc = 1.050 958 corrected for filter
color gives κT 0 = (58.2 ± 6.5) × 10−9 Pa−1, ξ0 = (3.34 ±
0.28) Å, and τB = 0.54 ± 0.26 m−1. The next best fitting
result for this filter is for nc = 1.050 958 corrected for
temperature with Eq. (23), which gives κT 0 = (51.8 ± 5.4) ×
10−9 Pa−1, ξ0 = (2.97 ± 0.24) Å, and τB = 0.47 ± 0.27 m−1.

With all free parameters, we notice from Fig. 7 that the
estimation of κT 0 comes within one standard deviation of
the expected value κT 0 = 57.5 × 10−9 Pa−1 in the case of
nc = 1.050 958. It is also clear from Tables IV and V that
the estimated ξ0 decreases with the filter’s wavelength, while
imposing a unique value of ξ0 = 1.78 Å for all filters overes-
timates the κT 0 for the red filter and severely underestimates
it for the green and blue filters. In addition, the estimated
values of ξ0 and τB are virtually the same whether all three
parameters are free or if we impose κT 0 = 57.5 × 10−9 Pa−1.
In light of the above results, the fitting method gives consistent
results across all filters.

Equation (11) gives an explicit formula for the sensitivity
of turbidity (8) to small changes in refractive index and wave-
length. To complete the sensitivity analysis of turbidity (8), we
also checked how the fitting results change when the critical
temperature Tc = 33.0065 K is shifted a few mK around the
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best fitting with the smallest error bars and the largest adjuster R2 is for Tc = 33.0065 K.

measured value. Although we performed the analysis for all
data, in Fig. 8 we only present the results for the last example
from Table V.

We notice from Fig. 8 that by slightly shifting Tc below
the measured value of 33.0065 K the error bars start rapidly
increasing with the distance from Tc = 33.0065 K. However,
the adjusted R2 [Fig. 8(d)] remains reasonably high, which
indicates an acceptable fit. For temperatures slightly larger
than 33.0065 K, the fitting errors are very large and R2

deteriorates quickly.
To conclude, for the index of refraction nc = 1.050 958 that

was corrected for filter wavelength with Cauchy’s formula
given by Eq. (14), we found that (i) κT 0 = (59.6 ± 3.1) ×
10−9 Pa−1 and ξ0 = (1.45 ± 0.09) Å for the red filter, (ii)
κT 0 = (58.9 ± 4.7) × 10−9 Pa−1 and ξ0 = (2.76 ± 0.18) Å
for the green filter, and (iii) κT 0 = (58.2 ± 6.5) × 10−9 Pa−1

and ξ0 = (3.34 ± 0.28) Å for the blue filter (see Table V for
additional fitting results).

D. Comparison with existing data

One of the earliest experiments on liquid H2 was performed
by Johnston et al. [51]. They measured the pressure versus
volume for seven isotherms with temperature between 20.38
and 32.58 K of normal liquid H2. Even though the last
isotherm at 32.58 K is not quite the critical temperature of
n-H2 of Tc = 33.19 K, it gives us a rough estimate of what
should be the range of compressibility. We fitted their data

(not shown) and found that the compressibility reaches almost
80 × 10−9 Pa−1 at a pressure of 23.672 atm and temperature
of 32.58 K. The extrapolation to pc = 12.89 atm (see Table I)
gives a compressibility in the range (130–160) × 10−9 Pa−1.
While isothermal compressibility diverges near Tc, these es-
timates give us a hint as to what to expect for the order of
magnitude of the critical amplitude κT 0.

Theoretical predictions based on the van der Waals model
have four different asymptotic forms (see Table III in [52]).

(i) For ε > 0 at ρc, the isothermal compressibility is given
by κ pc = gε−γ , with γ = 1 (as opposed to γ = 1.239 from
the three-dimensional Ising model) and g = 1/6. As a re-
sult, the estimated critical amplitude is κT 0 = g/pc ≈ 127 ×
10−9 Pa−1.

(ii) For ε < 0 and along the p-V coexistence curves, the
isothermal compressibility is given by κ pc = g′(−ε)−γ ′

, with
γ ′ = 1 and g′ = 1/12. As a result, the estimated critical
amplitude is κ ′

T 0 = g′/pc ≈ 63 × 10−9 Pa−1.
(iii) For ε > 0 at Pc, the isothermal compressibility is given

by κ pc = gpε
−γ , with γ = 2/3 and gp = 1/(31/3 × 6). As

a result, the estimated critical amplitude is κT 0 p = gp/pc ≈
88 × 10−9 Pa−1.

(iv) For ε < 0 at Pc, the isothermal compressibility is given
by κ pc = g′

p(−ε)−γ ′
, with γ ′ = 2/3 and g′

p = 1/(31/3 × 6).
As a result, the estimated critical amplitude is κT 0 p′ =
g′

p/pc ≈ 88 × 10−9 Pa−1.
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For a somewhat different theoretical perspective, Ivanov
[53] summarized a large body of data and found a strong
correlation between critical exponents and critical amplitudes.
The isothermal compressibility is given by its usual formula
[see Eq. (2) in [53]]

pcκT = Γ ε−γ .

Based on Eq. (19), different critical point studies ranging from
the three-dimensional Ising model to theoretical models of
CO2 to experiments with Xe, NH3, and SF6 concluded that the
correlation between the amplitude Γ and the critical exponent
is [see Eq. (4) in [53]]

�γ g = γ0,

with g = 7.15 ± 0.16 and γ0 = 0.23 ± 0.01. Based on [53],
the critical amplitude κ0 = Γ

pc
= γ0

γ g pc
= 37.789 × 10−9 Pa−1,

where we used γ = 1.239 and pc = 1.315 MPa (see Table I).
Even if we assume that the values of γ and pc are exact, the
propagated relative error on κ0 is δγ0

γ0
+ ln(γ )δg ≈ 7.8%, i.e.,

κ0 = (37.8 ± 2.9) × 10−9 Pa−1. One of the main points of the
study is that the critical amplitudes and critical coefficients
vary widely from study to study even for the same substance.
In addition, the study did not include any data for critical H2.
Therefore, this estimation of critical amplitude κ0 for H2 could
be less than optimal.

To summarize, reasonable agreement was found with the
expected compressibility [κT 0 = 57.56 × 10−9 Pa−1 (see Ta-
ble 1.6 on p. 44 in [10]) and κT 0 = 57.5 × 10−9 Pa−1 (in
[50])], while a correlation length is found larger than the
expected values of ξ0 = 1.745 Å (see Table 1.6 on p. 44 in
[10]) and ξ0 = 1.78 Å (in [50]). The most likely reason is that
the correlation length determination needs data very close to
Tc where even small off-criticality in density can cause large
changes in turbidity.

E. Estimates of power law exponents

As we previously mentioned, the interference function
F (a) in Eq. (9), for a reasonable range of 1 Å � ξ0 � 3 Å and
all wavelengths in the visible spectrum, is at least at 77.7% of
its limit value of 8/3 for all ε > 10−3. In other words, for ε >

10−3 the interference function is quasiconstant and its effect
on turbidity formula can be neglected. This approximation
corresponds in H2 to an off-critical temperature of about
T − Tc > 33 mK. In other words, for T − Tc > 33 mK the
temperature-dependent part of the turbidity formula given by
Eq. (8) becomes

τ ≈ AπTc(1 + ε)κ0ε
−γ (1 + aχε	)8/3 ∝ ε−γ ,

where the nonanalytical amplitude aχ from Eq. (1) was used
with 	 = 0.5. Since in this study the temperature range is ε ∈
(10−5, 10−2), no further corrections are needed. As a result, a
plot of turbidity τ versus the reduced temperature ε should
look like a power law with an exponent close to the value
of −γ . However, the contribution of background turbidity τB

becomes significant at large temperatures and may cover the
above-mentioned power law trend. Therefore, there are two
competing factors: (i) We need a wide range of large temper-
atures to get a good power law fit and (ii) as the temperature

departs from Tc towards larger temperatures the temperature-
dependent turbidity (1 + ε)(1 + aχε	)ε−γ becomes smaller
than the background turbidity τB. As a result, depending on
the level of background turbidity, the temperature range where
one can determine the critical exponent γ is quite narrow. This
may lead to significant errors in the estimation of γ from the
power law fit of turbidity τ versus reduced temperature ε for
large temperatures.

At the other extreme, we are interested in finding the
asymptotic behavior of the turbidity formula given by Eq. (8)
for very small values of the reduced temperature ε. Due to
the asymptotic behavior of the correlation length ξ = ξ0ε

−ν ,
the variable a in the interference term F (a) of Eq. (9) is
asymptotically described by a = 2(k0ξ )2 ∝ ε−2ν . As the re-
duced temperature decreases (ε → 0), the variable a diverges
(a → ∞). While the second term of F (a) vanishes as a → ∞,
the first term leads to an ∞/∞ case, which can be solved with
l’Hôpital’s theorem and gives lima→∞ F (a) = 0. After minor
rearrangements of some terms, it can be shown that the power
series approximation of F (a) for the case when a is very large,
i.e., ε → 0, becomes

2 ln(2)

a
+ 2 ln(2)

a2
+ O(a−3).

Therefore, the asymptotic behavior of F (a) as a → ∞ is
F (a) ≈ 2 ln(2)

a ∝ ε2ν . As a result, the temperature-dependent
part of turbidity equation (8) becomes τ = AπTc(1 +
ε)κ0ε

−γ 2 ln(2)
2(k0ξ0ε−ν )2 ∝ ε2ν−γ .

The exponents γ and ν are related by η = 2 − γ

ν
≈ 0.02

[54,55]. The Fisher exponent η, however, corresponds to
an asymptotic correlation function different from Ornstein-
Zernike theory and Eq. (8) is no longer valid. Since our
data are not close enough to the critical point in terms
of density and temperature, we will not discuss this issue
further.

The above detailed analysis is confirmed by the plot of
the apparent power law exponent (τ ∝ εx) shown in Fig. 9(a),
which was obtained from numerical simulation of the theoret-
ical formula of turbidity given by Eq. (8). We notice that the
absolute value of the apparent power law exponent x for large
temperatures is smaller than γ . As we notice from Fig. 9(a), it
is impossible to establish in what temperature range the power
law exponent is in any way related to γ and/or ν. To gain
some insight into the effect of the critical exponents γ and ν

on the power law exponent of the theoretical turbidity formula
given by Eq. (8), we carried out two sets of numerical simu-
lations: with fixed γ = 1.239 and variable ν ∈ {0.5, 0.6, 0.7}
[see solid lines in Figs. 9(b)–9(d)] and with fixed ν = 0.63
and variable γ ∈ {1.1, 1.2, 1.3} [see dotted lines in Figs. 9(b)–
9(d)]. We notice that critical exponent ν only changes the
apparent power law exponent of turbidity versus reduced
temperature for small temperatures [see Fig. 9(b)]. Indeed,
all three curves for ν ∈ {0.5, 0.6, 0.7} converge quite rapidly
to the same trace and are indistinguishable for ε � 0.01 [see
Fig. 9(c)]. At the same time, γ covers a broad range of
temperatures by shifting all power law exponents proportional
to the value of γ . This trend is visible in all Figs. 9(b)–9(d) and
the proportional shift covers ε � 5 × 10−4.

To conclude, for reduced temperatures larger than ε � 5 ×
10−4, the apparent turbidity power law exponent is entirely
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FIG. 9. Theoretical turbidity τ and its corresponding apparent
power law exponent x (τ ∝ εx). (a) The log-log plot of the theoretical
turbidity formula given by Eq. (8) (top) and the corresponding
apparent power law exponent x (bottom). The critical exponents
were γ = 1.239 and ν = 0.63. The reduced temperature range in our
experiment was ε ∈ (10−5, 10−2). (b) For a fixed γ = 1.239 a slight
change of ν only affects the power law exponent at low temperatures.
For ε � 5 × 10−3 and ν = 0.5 (red solid line), ν = 0.6 (green solid
line), and ν = 0.7 (blue solid line), the power law exponent is very
sensitive to ν. This is highlighted by the magnification of the shaded
area of (b), which is shown in (c), and by further magnifying the
shaded are in (c), which is shown in (d). For fixed ν = 0.63, an
increase in γ , i.e., γ = 1.1 (red dotted line), γ = 1.2 (green dotted
line), and γ = 1.3 (blue dotted line) in panels (b)–(d), shows that the
power law exponent is most sensitive to γ in the range ε � 5 × 10−4.

determined by critical exponent γ . For reduced temperature
ε � 5 × 10−3, the critical exponent ν has a significant contri-
bution to the apparent power law exponent.

V. CONCLUSION

Experiments near the critical point of cryogenic fluids like
H2 require suppressing gravity effects and pose a series of
challenges. First, for safety reasons, it is almost impossible
to perform such experiments in microgravity. This is the
reason why the only feasible alternative is the use of magnetic
compensation to simulate weightlessness. Second, careful
consideration must be given to the experimental conditions
such that the n-H2 to p-H2 ratio is correctly determined.
Thermophysical properties are sensitive to the n-H2 to p-H2

ratio. Given that the relaxation time constant for H2 is about
2500 min to reach the ortho-para equilibrium [34] and that
experiments are performed within a couple of hours after
filling in the cell, the sample cell contains mostly n-H2.
Finally, since turbidity is measured through light transmission
measurements, careful consideration was given to the light
source and its intensity so that we minimize the effect of
light-induced heating of the sample cell.

The paper’s main results are concerned with (i) the careful
design of HYLDE to generate good quality data very near
Tc through magnetic compensation of gravity, (ii) the use of
image analysis for turbidity measurements corresponding to
three different wavelengths centered on red, green, and blue
filters, (iii) agreement of isothermal compressibility critical
amplitude κT 0 with previous estimates, and (iv) better correla-
tion length critical amplitude ξ0 being obtained with data very
near Tc and density closer to critical value.

This study shows that light transmission measurements
directly on the image of a critical fluid sample can give
turbidity data with comparable precision as the traditional
techniques using a laser beam. Using different wavelength
filters gives more useful data and allows us to cross-check the
critical amplitude values. This technique shows great promise
as it allows both a detailed observation of the sample and local
measurement of turbidity. When a density gradients exist, as
is often the case in space or magnetic weightlessness exper-
iments, different regions of interest of those images can be
selected and compared. The more turbid regions correspond
to fluid density closest to the critical density.

Concerning H2 under magnetic weightlessness, the data are
fitted to the simplest formula (8) with isothermal compress-
ibility, correlation length, and background turbidity as free
parameters. One can see the extreme sensitivity of the fit to
the refractive index value. Data the furthest from Tc provide
the background turbidity estimate and compressibility terms,
while data close to Tc give the correlation length. To sum-
marize our results, for nc = 1.050 958 corrected for the filter
wavelength we found (i) κT 0 = (59.6 ± 3.1) × 10−9 Pa−1 and
ξ0 = (1.45 ± 0.09) Å for the red filter, (ii) κT 0 = (58.9 ±
4.7) × 10−9 Pa−1 and ξ0 = (2.76 ± 0.18) Å for the green
filter, and (iii) κT 0 = (58.2 ± 6.5) × 10−9 Pa−1 and ξ0 =
(3.34 ± 0.28) Å for the blue filter (the uncertainty is one
standard deviation in Table V). These fitting results are in
good agreement with previously published values for n-H2

susceptibility: κT 0 = 57.56 × 10−9 Pa−1 (see Table 1.6 on p.
44 in [10]) and κT 0 = 57.5 × 10−9 Pa−1 (in [50]). In contrast,
the correlation length was found larger than the expected
value of ξ0 = 1.745 Å (see Table 1.6 on p. 44 in [10]) and
ξ0 = 1.78 Å (in [50]). This discrepancy is due to the fact
that data very near Tc are affected by even minute density
deviations from critical density.

A more accurate estimation of critical amplitudes could be
achieved by controlling the density gradient throughout the
sample to ensure that critical density is truly reached at some
places. For that purpose, a dedicated sample could be placed
either slightly off the axis at the compensation point height or
on the axis of the compensation point.

The present experimental method, which uses image anal-
ysis at different wavelengths for a fluid under reduced gravity
by magnetic means, offers several benefits to the study of
critical point phenomena. First, magnetic compensation of
gravity allows a very close approach to the critical temper-
ature without gravity disturbances that usually affect critical
fluids, e.g., buoyancy-driven instabilities and strong density
gradients. Second, the light intensity can be made very weak
to negligibly disturb the temperature of the sample, which is
extremely important for cryogenic fluids. Third, each image
covers the whole sample, which allows us to detect density
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inhomogeneities. In the case of imposed density gradients,
the image analysis allows us to quantify the gradient. Fourth,
other processes, such as phase transition, can be studied
with the same setup. The critical temperature can thus be
determined with high precision. Additionally, it is easy to vary
turbidity intensities and cross-check results by using filters
with different wavelengths.
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