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Abstract: Each year, mycotoxins cause economic losses of several billion US dollars worldwide.
Consequently, methods must be developed, for producers and cereal manufacturers, to detect
these toxins and to comply with regulations. Chromatographic reference methods are time
consuming and costly. Thus, alternative methods such as infrared spectroscopy are being increasingly
developed to provide simple, rapid, and nondestructive methods to detect mycotoxins. This article
reviews research conducted over the last eight years into the use of near-infrared and mid-infrared
spectroscopy to monitor mycotoxins in corn, wheat, and barley. More specifically, we focus on the
Fusarium species and on the main fusariotoxins of deoxynivalenol, zearalenone, and fumonisin B1
and B2. Quantification models are insufficiently precise to satisfy the legal requirements. Sorting
models with cutoff levels are the most promising applications.

Keywords: NIR; MIR; mycotoxins; Fusarium; infrared spectroscopy

Key Contribution: We have updated a review of the literature dealing with infrared spectroscopy
and the detection of fusariotoxins in corn, wheat, and barley. The use of infrared spectroscopic tools
to detect and quantify mycotoxins does not provide the requisite regulatory precision, nevertheless,
these tools can be used for sorting cereals, be they in or out of risk groups.

1. Introduction

As of 2016, wheat, barley, and maize, which are grown for both human and animal consumption,
are among the most important cultivated plant species on the planet [1]. These cereals are subject to
infection by the cereal pathogen Fusarium, which is a major concern worldwide. A Fusarium infection
can cause plant disease and the fungus can produce fusariotoxins, which are small toxic molecules
secreted as fungal secondary metabolites onto cereals and are part of the mycotoxin family [2–4].
These mycotoxins have a significant impact not only on public health, but also on agriculture economics
and technology by reducing the yield, nutritional quality, and overall quality of the cereals [5–7].

The Food and Agriculture Organization (FAO) estimates that 25% of the world’s food crops are
affected by mycotoxin-producing fungi. Faced with this threat, a legal framework is gradually being
set up at the global level to set standards defining the maximum acceptable level of mycotoxin in
foodstuffs, and enforcing such standards requires methods to detect and quantify mycotoxins [8].

The most widely used methods to monitor mycotoxins are chromatographic and immunological
methods, or are based on biosensors [9–13]. Immunological methods, such as ELISA, can detect most
of the mycotoxins, but they are mainly used for screening. The main drawbacks are the number of
false positives (because of cross-reactivity and matrix-dependence) or false negatives (because of low
sensitivity), in comparison with chromatographic methods. Indeed, chromatographic methods can
analyze several mycotoxins at a time, with high sensitivity and selectivity, giving accurate toxins
contents. Although widely used, these methods are expensive and, by requiring time-consuming
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extraction and clean-up steps, provide results only after a significant time lapse. Moreover, the samples
are destroyed by the analysis. Cereal growers therefore require alternative methods that are simple,
rapid, and that can be applied in the field, to detect mycotoxins in their products. Infrared spectroscopy
has been used for many years for quality control in the food industry. In fact, the quality of cereals can
be monitored by infrared spectroscopy by determining the proximate parameters (moisture, protein,
oil, etc.). This technique is widely used because it is rapid, nondestructive, requires no chemicals,
and is therefore eco-friendly [14].

The versatility of infrared spectrometry has led to its use in multiple applications, including soil
chemistry, medicine, biology, agro-food, and cereals, and so forth. Because it probes the interactions
between infrared radiation and matter, infrared spectroscopy is an appropriate tool for analyzing raw
material, monitoring manufacturing processes, and validating finished products. From a theoretical
point of view, this technique has no limits, provided a predictive model may be developed for the given
process. The current trend consists of increasing the potential of this technique by developing new
chemometric methods to create a tool adapted to a given application [15–17]. We distinguish four types
of analyses for cereals: those related to nutritional quality (water, lipids, proteins, carbohydrate
content, etc.); biological quality (germinative ability, specific purity, etc.); technological quality, and;
sanitary quality (infestation by insects, pesticides, toxins, etc.). The challenge related to the presence of
mycotoxins falls into the latter category. Infrared methods have limited sensitivity for contaminants.
Furthermore, interpretation of infrared spectra cannot be done without the use of chemometrics,
and reliable models necessitate large data set of samples (with their reference values). Despite
those limitations, much research has focused on using infrared spectroscopy to monitor and analyze
fusariotoxins. Mycotoxins are small molecules (MW = 700 Da) [10,13]. These toxins are found at
very low concentrations, mostly parts per million (ppm), and are toxic at very low levels [13]. In fact,
the level of mycotoxins is very low compared with the major seed constituents (protein, starch, etc.).
Thus, analytical tools must be to detect such low concentrations; in the range of ppm (mg/mL) or a
few parts per billion (ppb; ng/mL), and infrared spectroscopy currently is not sufficiently sensitive.
However, changes in cereal properties such as protein, carbohydrate, or lipid content or texture are
associated with changes in fungal contamination. In fact, a fungal attack damages the tissues, cells,
or even molecules, and such damage is reflected in the spectral signature [18]. For example, Shenk and
Workman [19] have identified spectral areas of interest related to the presence of fungi in CH3, CH2,
CONH2, amide, starch, and cellulose structures. Mycotoxins are fungal metabolites and, like the molds
that synthesize them, their distribution within the silo is heterogeneous. Thus, the sanitary quality of a
given sample is not necessarily representative of the sanitary quality of the entire silo [20–22]. That is
why some of the research reviewed deals with online infrared analysis, to avoid sampling.

This work reviews the recent research dealing with infrared spectroscopy and the detection of
fusariotoxins in corn, wheat, and barley and complements a previous review [23] by summarizing
the latest advances made since 2009. It relies on the reviews of McMullin et al. [24], Orina et al. [13],
and Min and Cho [25], and emphasizes research involving corn, wheat, and barley.

2. Infrared Spectroscopy

Infrared spectroscopy reveals the interaction between infrared electromagnetic radiation
(800–25,000 nm) and chemical bonds [15,26,27]. An analysis of the radiation reflected or transmitted
by a sample allows one to determine the energy of the molecular overtones and of the vibrations of
chemical bonds in the sample. The energy of these vibrations identifies the nature of the chemical
bonds, thereby providing information about the functional groups in the molecules.

Mid-infrared spectroscopy (2500 to 10,000 nm) is widely used in analytical organic chemistry.
The near-infrared (NIR) region (800 to 2500 nm or 12,500 cm−1 to 4000 cm−1) is less used because it
encompasses relatively broad overtones and combinations of CH, NH, OH, and SH groups. The broad
overtones and combined bands overlap, resulting in a complex spectrum with an intensity one to two
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orders of magnitude less than the spectral peaks in the mid-infrared. More details are available in the
tutorial by Agelet and Hurburgh [28,29].

Interpreting mid-infrared spectra is straightforward because of the specificity of the absorption
peaks. Conversely, interpreting NIR spectra is more complex, because they involve superpositions of
spectral peaks. It also requires the use of chemometrics, which is the application of mathematical tools
to obtain the maximum information possible from chemical data [30].

Developing a model requires calibrating a spectrometer with reference data obtained in the laboratory.
These data (protein content, moisture content, etc.) are correlated with the infrared spectra of the samples.
A predictive model is developed via five main steps [29]: (1) First, the calibration samples are selected.
They must be representative of the samples that will be routinely analyzed once the model is developed and
must be analyzed by using a chemical reference method (e.g., high-performance liquid chromatography
or gas chromatography mass spectroscopy) [31]. The range of the “analyte” content should be covered
by the range of the calibration samples. The samples are generally divided randomly into two sets:
a calibration set and a validation set (about 75% and 25%, respectively) [32,33]; (2) The infrared spectra of the
reference samples are then acquired either by reflection- or transmission-mode spectroscopy. In reflection
mode, the spectrometer detects the intensity of the light reflected by the sample, whereas in transmission
mode, the spectrometer records the intensity of light transmitted through the sample; (3) Mathematical
preprocessing is applied to eliminate baseline noise and drifts; (4) A model is developed to establish a
correlation between spectral values and reference values; (5) Finally, the model is validated. Once the
model is developed and validated, it can be used routinely. In the following paragraphs, we provide more
details about this process.

2.1. Spectral-Data Preprocessing

Spectral-data preprocessing [29] refers to the mathematical manipulation of raw spectral data and
is used to suppress or reduce intensity variations related to factors that should not be considered in the
model. The right choice of preprocessing may be critical to the development of the model. Different
preprocessing methods are commonly used in infrared spectroscopy: derivative [34,35], smoothing [36],
detrending (which is often used after a standard normal variation [35,37]), multiplicative scatter
correction [38], and so on. Derivatives are most commonly used in mycotoxin studies [39–42].

2.2. Types of Regression Used to Develop Prediction Model

Two main chemometric methods are used in infrared spectroscopy: classification methods,
and regression methods [43].

Classification models allow us to classify the samples into groups, called classes, based on their
distinguishing spectral features. Two approaches to classification exist: supervised and unsupervised.
In unsupervised classification, the spectral similarities and dissimilarities of the samples are used to
create groups, whereas in supervised classification, group membership is defined at the beginning of
the modeling (discriminant analysis) [30,44].

Regression methods are used to link spectra to chemical values and include linear and nonlinear
methods. The three best-known linear-regression methods are multiple linear regression, principal
component regression, and partial least squares regression (PLS). PLS is the most widely used method
in infrared spectroscopy [29], and particularly in works concerning mycotoxins [41,45–50]. It was
introduced by Wold in 1966 and popularized by Martens in the early 1980s [51]. This method consists
of establishing a regression of the variable to be predicted as a function of latent variables, which are
linear combinations of the original predictive variables (i.e., wavelengths). They are determined by
considering the original variables and the variable to be predicted and minimizing the sum of the
squares of the residuals [44]. The most used nonlinear method is the artificial neural network (ANN),
which was developed in the late 1980s and early 1990s [52]. The principle of ANNs is analogous to
that of biological neurons; it consists of connected neurons, each of which carries out a single task and
communicates the result to one or more neuron by applying precise rules [44].
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2.3. Validation and Performance of Model

The model’s ability to accurately predict the characteristics of new samples is ideally determined
by applying the model to a set of samples that was not used to develop the model. Such a procedure
constitutes an external validation of a test set. Sometimes the dataset is not sufficiently large to
subdivide it into two sets, so the cross-validation method is used.

The performance of a model is evaluated mainly by the coefficient of determination r2 and
the standard error of calibration (SEC) (see Table 1). The latter is based on the residuals, that is,
the differences between the predicted values and the actual values of the n samples of the calibration
set. The residuals represent the information contained in the data of the n reference samples which
are not explained by the model [36]. The full validation of the model involves the study of the
validation set. The samples in this set are used to test the predictive quality of the model by calculating
the standard error of prediction (SEP) the prediction deviation, and the root mean square error
of prediction (RMSEP). For cross-validation, the population of the calibration set is divided into t
subgroups. A calibration equation is determined based on (t − 1) groups and then validated on the
remaining group. This operation is resumed by permutation over the other subgroups. The calculated
standard deviation is the standard error of cross-validation (SECV), which is often optimistic [29].
The last performance metric to report is the relative prediction determinant (RPD), which represents
the ability of the model to predict unknown samples, considering the variability of the training set.
Williams [53] provides RPD thresholds to give an idea of the potential for applying calibrations to new
samples: if the RPD is less than 2.3, the model cannot be used, whereas if it exceeds 8, the model can
be used without hesitation.

Table 1. Performance Criteria for Validated Model [29,36,54].

k = number of factors, yi = n measured values, ŷi = n predicted values

∑ di =
n
∑

i=1
(yi − ŷi) et ∑ x = ∑n

i=1 x

r2 Determination coefficient r2 = ∑ (ŷi−ȳ)2

∑ (yi−ȳ)2

Bias (same units as reference value) Bias Bias = ∑ di
n

SEC (same units as reference value) Standard Error of Calibration SEC = ∑ (di)
2

n−k−1

SEPc (same units as reference value) Standard Error of Prediction
(corrected by the bias) SEPc =

√
(di−bias)

n−1

RMSEP (same units as reference value) Root Mean Square Error of Prediction RMSEP =

√
∑ di

2

n

RPD Ratio of Performance to Deviation RPD =
StdErrorre f

SEPc

The largest r2 corresponds to the best model. In addition, the best model has the smallest SEPc [29,54].
The brief outline above describes a method to develop a predictive model based on infrared

spectroscopy. These instructions are valid regardless of the type of spectrometer used [29]. In general,
a spectrometer is made of several parts: a light source; a wavelength-selection system; a signal-detection
system; a signal-processing system, and; an apparatus for positioning the sample [55].

3. Using Infrared Spectroscopy to Quantify Fusariotoxins in Corn, Wheat, and Barley

A tool to quantify mycotoxins in these cereals is of interest only if it is sufficiently sensitive and specific
with respect to the maximum permissible levels for mycotoxins. Toxins should be detected, but with a low
false-negative rate, which minimizes the risk of cereal contamination in the food chain [21].

The first applications of infrared spectroscopy to the analysis of microorganisms date from the
1950s [56]. In the 1980s, Fraenkel et al. [57] and Davies et al. [58] published their first work on the use
of NIR spectroscopy to detect fungal contamination. Various studies have been carried out since the
1990s [23]. This work compiles the studies carried out since 2009 (Table 2).
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Table 2. Summary of studies of infrared spectroscopy applied to quantification of mycotoxins in barley, corn, and wheat. Deoxynivalenol (DON); Zearalenone (ZON);
partial least squares regression (PLS); near-infrared (NIR); standard error of cross-validation (SECV); linear discriminant analysis (LDA); liquid chromatography and
mass spectrometry (LC-MSMS); Fusarium-damaged kernels (FDKs).

Mycotoxin or Fungi Crop/Number of
Samples/Sample Preparation Spectral Range Performance and Characteristic Wavelengths Reference

DON Wheat: 30 kernels artificially
inoculated/Single kernel

NIR
950–1650 nm

DON band absorption: 1408 nm, 1904 nm, 1919 nm
Differences at 1204 nm, 1365 nm and 1700 nm, attributed to changes in food
reserves such as starches, proteins, and lipids.

Peiris et al. (2009) [39]

Fusarium-damaged kernels
Corn: 600 spectra in training set and

300 spectra in test set/Single kernel (spectra
collected on germ side and on other side of grain)

NIR
400–2498 nm

SIMCA classifier or Probabilistic Neural Network: best results: healthy grains
well classified = 99.3%, 98.7% for infected grains
Grain position (germ side or other side) is a significant factor for
disease detection

Draganova et al.
(2010) [59]

DON—Fusarium-damaged kernels Wheat/single kernels Prediction of DON levels in kernels having > 60 ppm DON : sorting Peiris et al. (2010) [40]

DON—ZON Wheat: 196 samples for DON, 120 samples for
ZON/Whole and milled grains

NIR
400–2500 nm

Whole kernels: DON(LC-MSMS)—DON(IR): r2 = 0.89 SECV = 612.05 µg kg−1

Milled kernels: DON(LC-MSMS)—DON(IR): r2 = 0.91 SECV = 578.33 µg kg−1

Whole kernels: ZON(LC-MSMS)—ZON(IR): r2 = 0.86 SECV = 254.29 µg kg−1

Milled kernels: ZON(LC-MSMS)—ZON(IR): r2 = 0.87 SECV = 231.85 µg kg−1

Tibola et al. (2010) [45]

Aspergillus flavus, Bipolaris zeicola,
Diplodia maydis, Fusarium oxysporum,

Penicillium oxalicum, Penicillium
funiculosum, Trichoderma harzianum

Corn: 864 inoculated single kernels
0 to 100% infected

NIR
904–1685 nm

All levels of infection:
LDA accuracy: 89% on control, 79% on infected
MLP accuracy: 84% on control, 83% on infected
False negatives: caused by inclusion of asymptomatic kernels

Tallada et al.
(2011) [60]

DON 399 wheat samples—whole grains
artificially infected

FT-NIR
10,000–400 cm−1

Reference = ELISA
PLS
0 < DON < 92 mg/kg: r = 0.94; SEP = 6.23 mg/kg; RPD = 3.02
0 < DON < 30 mg/kg: r = 0.92; SEP = 2.43 mg/kg; RPD = 2.60
PLS-DA: improvement from the best PLS model: r = 0.92, SEP = 2.35 mg/kg
Identification of two spectral regions (1390–1770 nm and 1880–2070 nm)

Dvoracek et al.
(2012) [46]

Fumonisins B1 and B2 Corn milled grains: 168 samples FT-NIR
650–2500 nm PLS: r2 = 0.964, SEC = 0.433 mg/kg, SEP = 0.839 mg/kg, RPD = 1.2

Gaspardo et al.
(2012) [47]

DON—Fusarium-damaged kernels
Wheat

Grains were dissected, and each section was
pressed to the ATR diamond crystal

FT-MIR
4000–380 cm−1

Marked differences in absorption patterns between sound and fusarium
damaged pericarp and germ spectra: shift 1035 cm−1 and increased
absorptions at 1160, 1203, 1313, and 1375 cm−1 (influence of DON and fungi
on wheat matrix)

Peiris et al. (2012) [61]

DON—Fusarium-damaged kernels Wheat
Whole grains?

NIR
950–1650 nm

FDK-FDKNIR: r = 0.70 (2010) and 0.73 (2011)
DON-DONNIR: r = 0.56 (2010) and 0.63 (2011)
Differences due to changes in carbohydrate, lipid, protein, and DON levels,
and physical properties of the kernels

Balut et al. (2013) [62]

DON—NIV Barley: 200 spectra—cross-validation
Milled grains

NIR
12,000–4000 cm−1

DON-DONNIR: r = 0.875 rcrossval = 0.513
RMSEC = 0.147 e3, RMSECV = 0.268 e3RMSEP = 0.399 e3
NIV-NIVNIR: r = 0.828 rcrossval = 0.744 RMSEC = 0.310 e3 RMSECV = 0.371 e3
RMSEP = 0.433 e3
models applicable only for detection of highly contaminated grain lots

Bezdekova and
Bradacova (2013) [41]
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Table 2. Cont.

Mycotoxin or Fungi Crop/Number of
Samples/Sample Preparation Spectral Range Performance and Characteristic Wavelengths Reference

Fumonisins Corn
Milled grains

FT-NIR
650–2500 nm

PLS HPLC
r2 = 0.995; SEC = 0.232, r2 = 0.908; SEP = 0.933
Evaluation of the screening and classification ability with thresholds
corresponding to legal limits

Della Riccia and
Del Zotto (2013) [48]

DON Wheat 464 samples
Milled grains

FT-NIR
10,000–4000 cm−1

PLS
traces < DON < 16,000 µg/kg
RMSEP = 1977 µg/kg ≥ poor ability
LDA
3 classes (DON ≤ 1000 µg/kg)-1000 < DON < 2500 µg/kg-DON > 2000 µg/kg)
75–90% accuracy

De Girolamo et al.
(2014) [49]

DON—Fusarium-damaged kernels Wheat: 291 inoculated single kernels
DON levels: 0.49 to 29.25 mg/kg NIR

291 samples for FDK estimation
148 samples for DON estimation
DON(GC-MS)-DON(IR): r2 = 0.46, p < 0.001
FDK(visual): FDK(IR): (r2 = 0.52, p < 0.001).

Jin et al. (2014) [63]

DON—Fusarium-damaged kernels Wheat/Single kernel NIR
1100–1700 nm

Creation of several lots of varying quality (FDK et DON), based on the
crude protein.

Kautzman et al.
(2015) [64]

DON and fumonisins 381 samples for DON
511 samples for FUM/Whole grains NIR 400–2498 nm

Reference: HPLC MS
discriminant analysis
Accuracies from 60 to 84% with external validation

Levasseur-Garcia and
Kleiber (2015) [50]

DON—ZON
Corn artificially inoculated

9 < DON < 920 mg/kg
Milled grains

NIR r(DON/DON immunotest) = 0.80 Miedaner et al.
(2015) [65]

DON
110 corn samples (naturally and

artificially infected)
Milled grains—100–250 µm sieve fraction

MIR
4000–575 cm−1

Carbohydrate (1000 cm−1) and protein (1500 cm−1)-related vibrations ≥
spectral window used for modelling: 1800–800 cm−1

Classification threshold (cross-validation):
1750 µg/kg: overall classification accuracy = 79%
500 µg/kg: overall classification accuracy = 85%

Kos et al. (2016) [66]

DON Corn (24 samples), wheat
Grains extracts

MIR
1820–1560 cm−1

Alterations of the sample matrix caused by fungal infection: 1655, 1710,
1740 cm−1 ≥ Classification of grain Sieger et al. (2017) [67]

Fumonisins Corn (453 grains)
Single kernels Multispectral VIS-NIR

First round: 470, 527, 624, 850, 880, 910, 940, 1070 nm
second round: 910, 940, 970, 1050, 1070, 1200, 1300, 1450, 1550 nm
LDA ≥ maximum cross-validation sensitivity (77%) and sensibility (83%) to
reject corn kernels with fumonisin >1000 ng/g

Stasiewicz et al.
(2017) [42]
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The referenced studies target deoxynivalenol (14/19), fumonisins (4/19), zearalenone (2/19),
fungi (2/19) and nivalenol (1/19). Most of the work therefore concerns DON and Fusarium head blight.
This work includes quantification models or grading models in batches of toxin levels. For DON,
quantification models have variable performances (Tibola et al., 2010; Dvoracek et al., 2012; Balut et al.,
2013; Bezdekova and Bradacova, 2013; De Girolamo et al., 2014; Jin et al., 2014, Miedaner et al., 2015).
Tibola et al. (2010) [45] worked on wheat grains naturally contaminated with Fusarium graminearum
and DON (196 samples). The wheat samples were analyzed as whole grains (125 g), and then
crushed and sieved to obtain diameters less than 1.0 mm. Reference analyses were done by combined
liquid chromatography and mass spectrometry (LC-MSMS). They developed a model for predicting
DON in whole-grain (crushed) grades with r2 = 0.89 (0.91). Dvoracek et al. (2012) [46] worked on
whole-wheat samples to determine their DON content. They conclude that the combination of two
tools, a discriminant analysis (DA) followed by a PLS regression, improves the accuracy of the models.
The quality of the models depends strongly on the choice of the class limits, in terms of DON contents.
Balut et al. (2013) investigated ways to predict DON and FKD levels in wheat [62]. The correlation
between Fusarium-damaged kernels (FDKs) and FDKs predicted by NIR spectroscopy is 0.7 and 0.73,
respectively, and the correlation between DON and DON predicted by NIR spectroscopy is 0.56 and
0.63 for the years 2010 and 2011, respectively. Bezdekova and Bradacova [41] applied FT-NIR to barley
to determine DON and NIV content. Barley was not only inoculated artificially, but also naturally
contaminated. De Girolamo et al. [49] used FT-NIR to study DON in wheat samples. The authors
propose classification models that yield an interesting percent of correct classification (75–90%). Jin et al.
(2014) [63] conducted a similar study with artificially inoculated wheat samples. The authors found a
significant correlation between the GC-MS DON levels and the predictions by their infrared model
(r2 = 0.46, p < 0.001), as well as a significant correlation between the number of FDKs evaluated visually
and estimated by infrared spectroscopy (r2 = 0.52, p < 0.001). The authors explain that a bias exists in
this study because the DON content determined by GC-MS was for bulk samples, whereas the spectra
were collected from individual grains. Miedaner et al. [65] worked with samples of corn artificially
inoculated with Fusarium graminearum. They predicted DON levels by using NIR spectra and obtained
r = 0.80. No information is given on model errors.

DON assay quantification models are poor at predicting a specific grade, especially with respect
to regulatory grades. However, these models can be used to classify grain lots according to a level of
toxin contamination [40,41,49,64,66]. Peiris et al. (2009, 2010) [39,40] used a grain-to-grain method to
identify wheat grains infected with Fusarium and to predict DON levels. Their findings indicate that
it is possible to predict the DON concentration when it exceeds 60 ppm [39,40]. Kautzman et al. [64]
developed a model based on an indirect indication of the presence of mycotoxins; namely, the crude
protein level. By sorting grains based on this index and classifying them into different fractions,
they reduced the DON content and the percent of FDKs (for the best batches). Levasseur-Garcia
and Kleiber (2015) [50] proposed different models for identifying maize grain contaminated with
DON or with fumonisins (FUM). Based on the European detection limits, the models provide correct
identification at a rate of 60% and 84%, respectively, in external validation. Kos et al. [66] worked on
DON in corn samples. They used a bagged decision tree classification, focusing on a spectral window
corresponding to 800–1800 cm−1. This window contains information related to carbohydrates and
proteins. The rate of proper cross-validation ranking varies between 79% and 85%, depending on the
DON limit used to create the classes. Sieger et al. [67] proposed a new on-site mycotoxin analysis
by combining mid-infrared tunable quantum cascade laser spectroscopy (QCL) with GaAs/AlGaAs
thin-film waveguides to classify deoxynivalenol-contaminated maize and wheat samples, and aflatoxin
B1 affected peanuts at European Union (EU) regulatory limits of 1250 µg kg−1 and 8 µg kg−1,
respectively. Very few techniques are available for on-site analysis. This recent work therefore
offers a very interesting opportunity for field use, thanks to miniaturization [68].

The work on fumonisins draws the same conclusions [42,47,48,50]. The best models have screening
ability with thresholds corresponding to legal limits. Gaspardo et al. [47] propose a model that uses
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Fourier-transform NIR (FT-NIR) spectroscopy to predict FB1 and FB2 levels in corn samples. The model
has a low RPD value (1.2), even for screening purposes [49,69]. Della Riccia and Del Zotto [48]
developed a PLS model to predict the fumonisin levels of maize samples. They propose predictive
models that can be used for classification, emphasizing the 4 mg/kg threshold stipulated by EU
regulation. Stasiewicz et al. [42] tested a low-cost multispectral tool, combining both the visible and
the NIR to sort fumonisin-contaminated maize grains. By using two-stage sorting, they spread the
grains with a success percent close to 80%.

The work to identify levels of infection by several fungi have good performances investigated
Fusarium-infected corn kernels [59]. They combined visible and NIR spectroscopy and used various
classification approaches such as the soft independent modeling of class analogy (SIMCA) and neural
networks. The spectrum of each grain was collected from both the germ side and the opposite
side, with the best results coming from the side opposite the germ. Healthy and infected grains are
properly graded at a rate of 99.3% and 98.7%, respectively. These results were obtained from a test set.
Tallada et al. (2011) applied NIR spectroscopy (904–1685 nm) to single kernels to identify maize grain
infected to varying degree with eight fungal strains. They used linear discriminant analysis (LDA)
or ANNs. The objective was to discriminate between healthy and diseased grains. The ANN (LDA)
model correctly discriminated 84% (89%) of healthy grains and 83% (79%) of infected grains [60].

Moreover, as mycotoxins and fungi cannot be directly detected in the grain matrix, because of
the lack of sensitivity of infrared devices, indirect information of contamination is used in models.
The contamination is assessed by detecting alterations of the grains. Indeed, different authors have
identified spectral zones that indicate grain alterations due to fungal attack or to the presence of
mycotoxins [40,66,70,71]: the changes are related to carbohydrate content (900–1200 cm−1) and proteins
(amide bands I and II, 1200–1750 cm−1).

Another point concerns methods for the simultaneous analysis of several of mycotoxins [72].
This is well achieved by LC-MS/MS (liquid chromatography with tandem mass spectrometry), but in
the current state of research, no studies based on an infrared tool report a multi-toxin model. This is
probably a research direction for the years to come.

In a global way, the use of the infrared tool in toxin detection is an integral part of quality control of
agricultural products, and monitoring of the resources. Mycotoxins could be part of a multi-parametric
analysis of cereals, in seconds, with no sample preparation [73].

4. Conclusions

In recent years, several studies have investigated the use of spectroscopic methods to detect
mycotoxins in grains. These methods are fast, inexpensive, nondestructive, and, once the model is
developed, require little sample preparation and few well-trained technicians.

However, the use of infrared spectroscopic tools to detect and quantify mycotoxins does not
provide the requisite regulatory precision [24]. The large standard errors show that, because of the
sensitivity limits of the devices, these quantization models are insufficiently precise to satisfy the legal
requirements [13,24,74].

Thus, mycotoxin detection capabilities need to be improved. Hopefully, the recent and continuous
improvements in mathematical preprocessing will increase the sensitivity and precision of the models.
Note that these tools can be still used for sorting food products, be they in or out of risk groups [14,75–77],
which would allow “distinguishing, sorting, screening and monitoring” with cutoff levels [78]. Because
mycotoxin-contaminated products are not evenly distributed within a given lot, large volumes must be
scanned to increase the margin of safety. The most promising applications might be in-line single-kernel
analyses, which would promote the production of commercial foodstuffs (feed, food, baby food) with
optimal quality from any grade of raw material. All these methods detect a change in the grains related to
the presence of the fungus [23,64].

This review thus highlights some of the developments over the past eight years in the detection
of fusariotoxins to give an overview of the current state of the art for applying infrared spectroscopic
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methods to this field and to outline the most promising methods. Future work will require
working on masked mycotoxins, whose importance is discussed in the review of Dall’Asta and
Battilani [79]. The use of other spectroscopic techniques should also be developed; for example,
Raman spectroscopy [80] or hyperspectral imaging techniques [81–84].

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

ANN Artificial neural networks
ATR Attenuated total reflection
DA Discriminant analysis
DON Deoxynivalenol
FDK Fusarium damaged kernel
FT-NIR Fourier transform near infrared spectroscopy
FUM Fumonisins
LC-MS Liquid chromatography-mass spectrometry
KNN K-nearest neighbor classification
LDA Linear discriminant analysis
MIR Mid-infrared wavelength
MPL Multilayer perceptron neural network
NIR Near-infrared wavelength
PCA Principal component analysis
PCR Polymerase chain reaction
PLS Partial least squares regression
PLSDA Partial least squares discriminant analysis
SVM Support vector machines
VIS Visible wavelength
ZON Zearalenone
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v Brně: Brno, Czech Republic, 2013; pp. 634–638.

42. Stasiewicz, M.J.; Falade, T.D.O.; Mutuma, M.; Mutiga, S.K.; Harvey, J.J.W.; Fox, G.; Pearson, T.C.;
Muthomi, J.W.; Nelson, R.J. Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in kenyan
maize. Food Control 2017, 78, 203–214. [CrossRef]

43. Dardenne, P.; Sinnaeve, G.; Baeten, V. Multivariate calibration and chemometrics for near infrared
spectroscopy: Which method? J. Near Infrared Spectrosc. 2000, 8, 229–237. [CrossRef]

44. Tuffery, S. Data Mining and Statistics for Decision Making; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007;
p. 533.

45. Tibola, C.S.; Fernandes, J.M.C.; Delanora, R. Predicting wheat mycotoxin content using near-infrared
reflectance spectroscopy. In Proceedings of the 2010 National Fusarium Head Blight Forum, Milwaukee,
WI, USA, 7–9 December 2010; Canty, S., Clark, A., Anderson-Scully, A., Ellis, E., Van Sanford, D., Eds.;
University of Kentucky: Lexington, KY, USA; p. 121.

46. Dvoracek, V.; Prohaskova, A.; Chrpova, J.; Stockova, L. Near infrared spectroscopy for deoxynivalenol
content estimation in intact wheat grain. Plant Soil Environ. 2012, 58, 196–203.

47. Gaspardo, B.; Del Zotto, S.; Torelli, E.; Cividino, S.R.; Firrao, G.; Della Riccia, G.; Stefanon, B. A rapid
method for detection of fumonisins b-1 and b-2 in corn meal using fourier transform near infrared (ft-nir)
spectroscopy implemented with integrating sphere. Food Chem. 2012, 135, 1608–1612. [CrossRef] [PubMed]

48. Della Riccia, G.; Del Zotto, S. A multivariate regression model for detection of fumonisins content in maize
from near infrared spectra. Food Chem. 2013, 141, 4289–4294.

49. De Girolamo, A.; Cervellieri, S.; Visconti, A.; Pascale, M. Rapid analysis of deoxynivalenol in durum wheat
by ft-nir spectroscopy. Toxins 2014, 6, 3129–3143. [CrossRef] [PubMed]

50. Levasseur-Garcia, C.; Kleiber, D. A method for the allotment of maize contaminated by toxins. J. Near
Infrared Spectrosc. 2015, 23, 255–265. [CrossRef]

51. Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the pls method.
In Lecture Notes in Mathematics; Ruhe, A., Kågström, B., Eds.; Springer Verlag: Heidelberg, Germany, 1982;
pp. 286–293.

52. Borggard, C.; Thodberg, H.H. Optimal minimal neural interpretation of spectra. Anal. Chem. 1992, 64,
545–551. [CrossRef]

53. Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; American Association
of Cereal Chemists Inc.: St. Paul, MN, USA, 1987; p. 330.

54. Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification;
NIR Publications: Chichester, UK, 2002.

http://dx.doi.org/10.1016/S0731-7085(02)00401-6
http://dx.doi.org/10.1366/0003702854248656
http://dx.doi.org/10.1255/jnirs.846
http://dx.doi.org/10.1094/CCHEM-01-10-0006
http://dx.doi.org/10.1016/j.foodcont.2017.02.038
http://dx.doi.org/10.1255/jnirs.283
http://dx.doi.org/10.1016/j.foodchem.2012.06.078
http://www.ncbi.nlm.nih.gov/pubmed/22953900
http://dx.doi.org/10.3390/toxins6113129
http://www.ncbi.nlm.nih.gov/pubmed/25384107
http://dx.doi.org/10.1255/jnirs.1168
http://dx.doi.org/10.1021/ac00029a018


Toxins 2018, 10, 38 12 of 13

55. Givens, D.I.; De Boever, J.L.; Deaville, E.R. The principles, practices and some future applications of near
infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr. Res. Rev.
1997, 10, 83–114. [CrossRef] [PubMed]

56. Miguel Gomez, M.A.; Bratos Perez, M.A.; Martin Gil, F.J.; Duenas Diez, A.; Martin Rodriguez, J.F.; Gutierrez
Rodriguez, P.; Orduna Domingo, A.; Rodriguez Torres, A. Identification of species of brucella using fourier
transform infrared spectroscopy. J. Microbiol. Methods 2003, 55, 121–131. [CrossRef]

57. Fraenkel, H.; Gough, P.B.; Maughan, W.S. Method and Apparatus for Sorting Agricultural Products.
U.S. Patent 4203522, 20 May 1980.

58. Davies, A.M.C.; Dennis, C.; Grant, A. Screening of tomato purée for excessive mould content by near-infrared
spectroscopy : A preliminary evaluation. J. Sci. Food Agric. 1987, 39, 349–355. [CrossRef]

59. Draganova, T.; Daskalov, P.; Tsonev, R. An approach for identifying of fusarium infected maize grains by
spectral analysis in the visible and near infrared region, simca models, parametric and neural classifiers.
Int. J. Bioautom. 2010, 14, 119–128.

60. Tallada, J.G.; Wicklow, D.T.; Pearson, T.C.; Armstrong, P.R. Detection of fungus-infected corn kernels using
near-infrared reflectance spectroscopy and color imaging. Trans. Asabe 2011, 54, 1151–1158. [CrossRef]

61. Peiris, K.H.S.; Bockus, W.W.; Dowell, F.E. Infrared spectral properties of germ, pericarp, and endosperm
sections of sound wheat kernels and those damaged by fusarium graminearum. Appl. Spectrosc. 2012, 66,
1053–1060. [CrossRef]

62. Balut, A.L.; Clark, A.J.; Brown-Guedira, G.; Souza, E.; Van Sanford, D.A. Validation of fhb1 and qfhs.Nau-2dl
in several soft red winter wheat populations. Crop Sci. 2013, 53, 934–945. [CrossRef]

63. Jin, F.; Bai, G.; Zhang, D.; Dong, Y.; Ma, L.; Bockus, W.; Dowell, F. Fusarium-damaged kernels and
deoxynivalenol in fusarium-infected u.S. Winter wheat. Phytopathology 2014, 104, 472–478. [CrossRef]
[PubMed]

64. Kautzman, M.E.; Wickstrom, M.L.; Scott, T.A. The use of near infrared transmittance kernel sorting
technology to salvage high quality grain from grain downgraded due to fusarium damage. Anim. Nutr.
2015, 1, 41–46. [CrossRef]

65. Miedaner, T.; Han, S.; Kessel, B.; Ouzunova, M.; Schrag, T.; Utz, F.H.; Melchinger, A.E. Prediction of
deoxynivalenol and zearalenone concentrations in fusarium graminearum inoculated backcross populations
of maize by symptom rating and near-infrared spectroscopy. Plant Breed. 2015, 134, 529–534. [CrossRef]

66. Kos, G.; Sieger, M.; McMullin, D.; Zahradnik, C.; Sulyok, M.; Oner, T.; Mizaikoff, B.; Krska, R. A novel
chemometric classification for ftir spectra of mycotoxin-contaminated maize and peanuts at regulatory limits.
Food Addit. Contam. Part A 2016, 33, 1596–1607. [CrossRef] [PubMed]

67. Sieger, M.; Kos, G.; Sulyok, M.; Godejohann, M.; Krska, R.; Mizaikoff, B. Portable infrared laser spectroscopy
for on-site mycotoxin analysis. Sci. Rep. 2017, 7, 44028. [CrossRef] [PubMed]

68. Alcalà, M.; Blanco, M.; Moyano, D.; Broad, N.W.; O’Brien, N.; Friedrich, D.; Pfeifer, F.; Siesler, H.W.
Qualitative and quantitative pharmaceutical analysis with a novel hand-held miniature near infrared
spectrometer. J. Near Infrared Spectrosc. 2013, 21, 445–457. [CrossRef]

69. Williams, P.C. Implementation of near-infrared technology. In Near Infrared Technology in the Agricultural and
Food Industries, 2nd ed.; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul,
MN, USA, 2001.

70. Hirano, S.; Okawara, N.; Narazaki, S. Near infrared detection of internally moldy nuts. Biosci. Biotechnol.
Biochem. 1998, 62, 102–107. [CrossRef] [PubMed]

71. De Girolamo, A.; Lippolis, V.; Nordkvist, E.; Visconti, A. Rapid and non-invasive analysis of deoxynivalenol
in durum and common wheat by fourier-transform near infrared (ft-nir) spectroscopy. Food Addit. Contam.
Part A 2009, 26, 907–917. [CrossRef] [PubMed]

72. Krska, R.; Schubert-Ullrich, P.; Molinelli, A.; Sulyok, M.; Macdonald, S.; Crews, C. Mycotoxin analysis:
An update. Food Addit. Contam. 2008, 25, 152–163. [CrossRef] [PubMed]

73. Shepherd, K.D.; Walsh, M.G. Infrared spectroscopy—Enabling an evidence-based diagnostic surveillance
approach to agricultural and environmental management in developing countries. J. Near Infrared Spectrosc.
2007, 15, 1–19. [CrossRef]

74. Norris, K. Hazards with near infrared spectroscopy in detecting contamination. J. Near Infrared Spectrosc.
2009, 17, 165–166. [CrossRef]

http://dx.doi.org/10.1079/NRR19970006
http://www.ncbi.nlm.nih.gov/pubmed/19094259
http://dx.doi.org/10.1016/S0167-7012(03)00120-9
http://dx.doi.org/10.1002/jsfa.2740390410
http://dx.doi.org/10.13031/2013.37090
http://dx.doi.org/10.1366/11-06683
http://dx.doi.org/10.2135/cropsci2012.09.0550
http://dx.doi.org/10.1094/PHYTO-07-13-0187-R
http://www.ncbi.nlm.nih.gov/pubmed/24400658
http://dx.doi.org/10.1016/j.aninu.2015.02.007
http://dx.doi.org/10.1111/pbr.12297
http://dx.doi.org/10.1080/19440049.2016.1217567
http://www.ncbi.nlm.nih.gov/pubmed/27684544
http://dx.doi.org/10.1038/srep44028
http://www.ncbi.nlm.nih.gov/pubmed/28276454
http://dx.doi.org/10.1255/jnirs.1084
http://dx.doi.org/10.1271/bbb.62.102
http://www.ncbi.nlm.nih.gov/pubmed/27393358
http://dx.doi.org/10.1080/02652030902788946
http://www.ncbi.nlm.nih.gov/pubmed/19680966
http://dx.doi.org/10.1080/02652030701765723
http://www.ncbi.nlm.nih.gov/pubmed/18286405
http://dx.doi.org/10.1255/jnirs.716
http://dx.doi.org/10.1255/jnirs.844


Toxins 2018, 10, 38 13 of 13

75. Levasseur-Garcia, C.; Bailly, S.; Kleiber, D.; Bailly, J.-D. Assessing risk of fumonisin contamination in maize
using near-infrared spectroscopy. J. Chem. 2015, 2015, 10. [CrossRef]

76. Copetti, M.V.; Iamanaka, B.T.; Pereira, J.L.; Lemes, D.P.; Nakano, F.; Taniwaki, M.H. Co-occurrence of
ochratoxin a and aflatoxins in chocolate marketed in brazil. Food Control 2012, 26, 36–41. [CrossRef]

77. Pei-Shih, L. Infrared spectroscopy detection of fungal infections and mycotoxins for food safety concerns.
J. Infect. Dis. Ther. 2015, 3, 241.

78. Lattanzio, V.M.T.; Pascale, M.; Visconti, A. Current analytical methods for trichothecene mycotoxins in
cereals. TrAC Trends Anal. Chem. 2009, 28, 758–768. [CrossRef]

79. Dall’Asta, C.; Battilani, P. Fumonisins and their modified forms, a matter of concern in future scenario?
World Mycotoxin J. 2016, 9, 727–739. [CrossRef]

80. Mignani, A.G.; Ciaccheri, L.; Mencaglia, A.A.; De Girolamo, A.; Lippolis, V.; Pascale, M. In Rapid screening
of wheat bran contaminated by deoxynivalenol mycotoxin using raman spectroscopy: A preliminary
experiment. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors (EWOFS’2016),
Limerick, Ireland, 31 May–3 June 2016; p. 99160W.

81. Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging
process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598.
[CrossRef]

82. Arnal Barbedo, J.G.; Tibola, C.S.; Pontes Lima, M.I. Deoxynivalenol screening in wheat kernels using
hyperspectral imaging. Biosyst. Eng. 2017, 155, 24–32. [CrossRef]

83. Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral imaging
applications in agriculture and agro-food product quality and safety control: A review. Appl. Spectrosc. Rev.
2013, 48, 142–159. [CrossRef]

84. Del Fiore, A.; Reverberi, M.; Ricelli, A.; Pinzari, F.; Serranti, S.; Fabbri, A.A.; Bonifazi, G.; Fanelli, C.
Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. Int. J. Food Microbiol.
2010, 144, 64–71. [CrossRef] [PubMed]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2015/485864
http://dx.doi.org/10.1016/j.foodcont.2011.12.023
http://dx.doi.org/10.1016/j.trac.2009.04.012
http://dx.doi.org/10.3920/WMJ2016.2058
http://dx.doi.org/10.1016/j.tifs.2007.06.001
http://dx.doi.org/10.1016/j.biosystemseng.2016.12.004
http://dx.doi.org/10.1080/05704928.2012.705800
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.08.001
http://www.ncbi.nlm.nih.gov/pubmed/20869132
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Infrared Spectroscopy 
	Spectral-Data Preprocessing 
	Types of Regression Used to Develop Prediction Model 
	Validation and Performance of Model 

	Using Infrared Spectroscopy to Quantify Fusariotoxins in Corn, Wheat, and Barley 
	Conclusions 
	References

