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We study the semilinear elliptic equation -∆u + g(u)σ = µ with Dirichlet boundary conditions in a smooth bounded domain where σ is a nonnegative Radon measure, µ a Radon measure and g is an absorbing nonlinearity. We show that the problem is well posed if we assume that σ belongs to some Morrey class. Under this condition we give a general existence result for any bounded measure provided g satisfies a subcritical integral assumption. We study also the supercritical case when g(r) = |r| q-1 r, with q > 1 and µ satisfies an absolute continuity condition expressed in terms of some capacities involving σ.

Introduction

Let Ω ⊂ R N be a bounded domain with a C 2 boundary, σ a nonnegative Radon measure in Ω and g : R → R a continuous function satisfying, for some r 0 ≥ 0, rg(r) ≥ 0 for all r ∈ (-∞, -r 0 ] ∪ [r 0 , ∞).

(1.1)

In this article we consider the following problem

-∆u + g(u)σ = µ in Ω u = 0 in ∂Ω, (1.2) 
where µ is a Radon measure defined in Ω. By a solution we mean a function u ∈ L 1 (Ω) such that ρg(u) ∈ L 1 σ (Ω), where ρ(x) = dist (x, ∂Ω) and L 1 σ (Ω) is the Lebesgue space of functions integrable with respect to σ, satisfying

- Ω u∆ζdx + Ω g(u)ζdσ = Ω ζdµ, (1.3) 
for all ζ ∈ W 1,∞ 0

(Ω) such that ∆ζ ∈ L ∞ (Ω). In the sequel, such a solution is called a very weak solution. A measure µ such that the problem admits a solution is called a good measure. We emphasize on the particular cases where g(r) = |r| q-1 r with q > 0, or g(r) = e αr -1 with α > 0 and N = 2.

When σ is a measure with constant positive density with respect to the Lebesgue measure in R N , this problem has been initiated by Brezis and Benilan [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF], [START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation. Dedicated to Philippe Bénilan[END_REF] who gave a general existence result for any bounded measure µ under an integrability condition of g at infinity; their proof is based upon an a priori estimate of approximate solutions u n in Lorentz spaces L q,∞ (Ω), yielding the uniform integrability of g(u n ) and hence the pre-compactness in L 1 (Ω). If g(r) = |r| q-1 r, integrability condition is fufilled if and only if 0 < q < N N -2 (any q > 0 if N = 2). In the 2-dim case the integrability condition have been replaced by the exponential order of growth of g in [START_REF] Vazquez | On a semilinear equation in R 2 involving bounded measures[END_REF]. When g(u) = |u| q-1 u with q ≥ N N -2 not any bounded measure is eligible for solving (1.2). In fact Baras and Pierre [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF] proved that when N > 2 and q > 1, a bounded Radon measure µ is eligible if and only if it vanishes on Borel sets with c 2,q -capacity zero, where q = q q-1 is the conjugate exponent of q. Contrary to the previous subcritical case, the method for proving the necessity of this condition is based upon a duality-convexity argument, while the sufficiency uses the fact that any positive Radon measure absolutely continuous with respect to the c 2,q -capacity can be approximated from below by an nondecreasing sequence of positive measures in W -2,q (Ω) (see [START_REF] Feyel | Topologies fines et compactifications associées à certains espaces de Dirichlet[END_REF]). Furthermore they also gave a necessary and sufficient condition for a compact subset K ⊂ Ω to be removable for equation -∆u + |u| q-1 u = 0 in Ω \ K, (1.4) namely that c 2,q (K) = 0.

The aim of this paper is to extend the previous constructions of Benilan-Brezis, Baras-Pierre and Vazquez to the case where σ is a general measure. In order to be able to deal with the convergence of approximate solutions we assume that σ belongs to the Morrey class

M + N N -θ
(Ω) for some θ ∈ [0, N ] which means

|B r (x)| σ := Br(x)
dσ ≤ cr θ for all (x, r) ∈ Ω × (0, ∞), (1.5) for some c > 0. Note that we extend σ by 0 in R N \ Ω and slightly abuse notation putting N N -θ = ∞ when θ = N . Our first result is the following:

Theorem A Assume σ ∈ M + N N -θ
(Ω) for some θ ∈ (N -2, N ] and that g satisfies (1.1). Then, for any µ ∈ L 1 ρ (Ω), there exists a very weak solution u of problem (1.3). If we assume moreover that g is nondecreasing and if u is a very weak solution of (1.3) with right-hand side µ ∈ L 1 ρ (Ω), then the following estimates hold

- Ω |u -u | ∆ζdx + Ω |g(u) -g(u )| ζdσ ≤ Ω |µ -µ | dx, (1.6) 
and -

Ω (u -u ) + ∆ζdx + Ω (g(u) -g(u )) + ζdσ ≤ Ω (µ -µ ) + dx (1.7)
for all ζ ∈ W 1,∞ 0

(Ω) such that ∆ζ ∈ L ∞ (Ω) and ζ ≥ 0.

Note that (1.6) implies the uniqueness of the solution of (1.3), that we denote by u µ , and (1.7) the monotonicity of the mapping µ → u µ .

The next result extends Benilan-Brezis unconditional existence result for measures.

Theorem B Let N > 2 and σ ∈ M + N N -θ (Ω) with N ≥ θ > N -N N -1
. Assume that g satisfies (1.1) and |g(r)| ≤ g(|r|) for all |r| ≥ r 0 where g is a continuous nondecreasing function on [r 0 , ∞) verifying ∞ r 0 g(t)t -1-θ N -2 dt < ∞.

(1.8)

Then, for any bounded Radon measure µ, there exists a very weak solution u of problem (1.3) which moreover belongs to L 1 σ (Ω). Moreover, if we assume that g is nondecreasing then the solution is unique.

Note that we recover Benilan-Brezis result when σ is the Lebesgue measure (so that θ = N ). Note also that when g(r) = |r| q-1 r, the integrability condition (1.8) is fullfilled if and only if 0 < q < θ N -2 . In the 2-dimensional case the condition on θ is 2 ≥ θ > 0 but (1.8) has to be modified. If f : R → R + is nondecreasing we define its exponential order of growth at ∞ (see [START_REF] Vazquez | On a semilinear equation in R 2 involving bounded measures[END_REF]) by a ∞ (f ) = inf α ≥ 0 : ∞ 0 f (s)e -αs ds < ∞ .

(1.9)

Similarly, if h : R → R -is nondecreasing its exponential order of growth at -∞ is

a -∞ (h) = sup α ≤ 0 : 0 -∞ h(s)e αs ds > -∞ . (1.10) 
If g : R → R satisfies (1.1) but is not necessarily nondecreasing, we define the monotone nondecreasing hull g * of g by g * (r) =    sup{g(s) : s ≤ r} for all r ≥ r 0 0 for all r ∈ (-r 0 , r 0 ) inf{g(s) : s ≥ r} for all r ≤ -r 0 .

(1.11)

We set a ∞ (g) = a ∞ (g * + ) and a -∞ (g) = a -∞ (g * -).

(1.12)

Theorem C Let σ ∈ M + 2 2-θ
(Ω) with 2 ≥ θ > 0 and g : R → R satisfies (1.1).

(I) If a ∞ (g) = 0 = a -∞ (g), then for any µ ∈ M b (Ω), problem (1.3) admits a very weak solution.

(II) If 0 < a ∞ (g) < ∞ and -∞ < a -∞ (g) < 0 there exists δ > 0 such that if µ ∈ M b (Ω) satisfies µ M b ≤ δ problem (1.
3) admits a very weak solution.

In the supercritical case, that is when (1.8) is not satisfied, all the measures are not eligible for solving (1.3). Following [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF], [START_REF] Véron | Singularities of solutions of second order quasilinear equations[END_REF]Th 4.2 ] we can give a sufficient existence condition involving the Green function of the Laplacian. Let G(., .) be the Green kernel defined in Ω × Ω and G[.] the corresponding potential operator acting on bounded measures ν namely G[ν](x) = Ω G(x, y) dν(y). We have the following result:

Theorem D Let σ ∈ M + N N -θ (Ω) with N ≥ θ > N -N N -1
and assume that g is nondecreasing and vanishes at 0.

(I) If µ ∈ M b (Ω) satisfies ρg(G[|µ|]) ∈ L 1 σ (Ω), (1.13) 
then problem (1.3) admits a unique very weak solution.

(II) Let µ = µ r + µ s where µ r is absolutely continuous with respect to the Lebesgue measure and µ s is singular. Assume that g satisfies the ∆ 2 condition, namely that

|g(r + r )| ≤ a (|g(r)| + |g(r )|) + b for all r, r ∈ R, (1.14) 
for some a > 1 and b ≥ 0. Then the previous assertion holds if (1.13) is replaced by In order to make more explicit conditions (1.13), (1.15), we introduce the following growth assumption on g:

ρg(G[|µ s |]) ∈ L 1 σ (Ω). ( 1 
|g(r)| ≤ c(1 + |r| q ) for all r ∈ R, (1.16) 
for some q > 1. Notice that g(r) = 1 + r q satisfies (1.8) if and only if q < θ N -2 . When σ is the Lebesgue measure and g(r) = |r| q-1 r, Baras and Pierre [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF] gave a necessary and sufficient condition for the existence of a solution to (1.2) involving certain capacities associated to the Bessel potential spaces H s,p (R N ) where s ∈ R and p

∈ [1, ∞]. Let us recall that H s,p (R N ) = f : f = G s * h, h ∈ L p (R N ) , (1.17) 
where G s is the Bessel kernel of order s. By extension

G 0 = δ 0 , hence H s,p (R N ) = L p (R N ). When s is a positive integer, it is proved by Calderón [2, Theorem 1.2.3] that H s,p (R N ) is the standard Sobolev space W s,p (R N ).
If s > 0, we denote by c s,p the associated capacity, called the Bessel capacity. It is defined for any compact set

K ⊂ R N by c s,p (K) = inf { φ p H s,p : φ ∈ S(R N ), φ ≥ 1 on K}. (1.18)
The definition of c s,p is then extended first to open sets and then to arbitrary sets. We refer to [START_REF] Adams | Function spaces and potential theory[END_REF] for general properties of Bessel spaces and their associated capacities c s,p . We say that a measure µ ∈ M b (Ω) is absolutely continuous with respect to the c s,p -capacity if for any Borel subset

E ⊂ R N , c s,p (E) = 0 =⇒ |µ|(E) = 0.
Baras and Pierre's result states that equation (1.2), with σ standing for the Lebesgue measure and g(r) = |r| q-1 r, has a solution if and only if µ is absolutely continuous with respect to the c 2,q -capacity. The next result generalizes the "if" part to the case where σ belongs to some Morrey space.

Theorem E Let σ ∈ M + N N -θ (Ω) with N ≥ θ > N -N N -1
and assume that g is nondecreasing and satisfies (1.1) and (1.16). Let p > 1 and s ≥ 0 such that N > sp > N -θ and θp N -sp ≥ q. If µ ∈ M b (Ω) is absolutely continuous with respect to the c 2-s,p -capacity, then (1.2) admits a unique very weak solution.

As a particular case, we take p = q and obtain that if µ is absolutely continuous with respect to the c 2-N -θ q ,q -capacity, then (1.3) admits a unique solution. We thus recover Baras-Pierre's sufficient condition [START_REF] Baras | Singularités éliminables pour des équations semi-linéaires[END_REF] when θ = N .

We give an explicit condition on the measure µ in terms of Morrey spaces implying that it satisfies the conditions of Theorem E. Proposition 1.1 Under the assumptions on σ and g of Theorem E, if µ ∈ M N N -θ * (Ω) for some θ * > (N -2)q-θ q-1 , then (1.3) admits a unique very weak solution.

Notice that the condition on µ given in Proposition 1.1 is weaker than the one given after Theorem D.

When g(r) = |r| q-1 r with q > 1, one can find a necessary conditions for the existence of a solution of (1.3) in the supercritical case under additional regularity assumptions on σ. By [2, Def 2.3.3, Prop. 2.3.5], the following expression

c σ q (E) = inf Ω |v| q dσ : v ∈ L q σ (Ω), v ≥ 0, G[vσ] ≥ 1 on E , (1.19) 
where E is any subset of Ω defines an outer capacity. The measure is called θ-regular

if 1 c r θ ≤ Br(x) dσ ≤ cr θ for all (x, r) ∈ Ω × (0, 1],
The next result gives a necessary condition for a measure to be a good measure.

Theorem F Let q > 1 and σ ∈ M + N N -θ (Ω) be θ-regular with N ≥ θ > N -2. If µ ∈ M + b (Ω) is such that problem (1.
3) with g(r) = |r| q-1 r admits a very weak solution, then µ vanishes on any Borel set E such that c σ q (E) = 0.

Furthermore the c σ q -capacity admits the following representation in terms of Besov capacities. If Γ ⊂ Ω is the support of σ, we denote by

B 2-N -θ q ,Γ q ,∞ (Ω) the closed subspace of distributions ζ ∈ B 2-N -θ q q ,∞
(Ω) such that the support of the distribution ∆ζ is a subset of Γ. Then

c σ q (K) ∼ c 2-N -θ q ,Γ q ,∞ (K) := inf    ζ q B 2-N -θ q q ,∞ : ζ ∈ B 2-N -θ q ,Γ q ,∞ (Ω), ζ ≥ χ K    , (1.20) for all compact subset K ⊂ Ω.
Finally a complete characterization of removable sets can be obtained under a much stronger assumption on σ, namely that dσ = wdx with ω := w

-1 q-1 ∈ L 1 loc (Ω). If K ⊂ Ω is compact, we set c ω q (K) = inf Ω |∆ζ| q ωdx : ζ ∈ C ∞ 0 (Ω), 0 ≤ ζ ≤ 1, ζ = 1 in a neighborhood of K .
(1.21) This defines a capacity on Borel sets of Ω.

Theorem G. Assume q > 1 and there exists a nonnegative Borel function w in Ω in the Muckenhoupt class A q (Ω) such that dσ = wdx.

If K ⊂ Ω is compact, a function u ∈ L 1 loc (Ω \ K) such that |u| q w ∈ L 1 loc (Ω \ K) which satisfies -∆u + w |u| q-1 u = 0, (1.22)
in the sense of distributions in Ω \ K can be extended as a solution of the same equation in the whole Ω if and only if c q,w (K) = 0.

The assumption w ∈ A q (Ω) can be weakened and replaced by ω = w 1 1-q is qadmissible in the sense of [START_REF] Heinonen | Nonlinear Potential Theory of Degenerate Elliptic Equations[END_REF]Chap 1], a condition which implies in particular the validity of the Gagliardo-Nirenberg and the Poincaré inequalities.

Preliminaries

In the whole paper c denotes a generic positive constant whose value can change from one ocurrence to another even within a single string of estimates. Sometimes, in order to avoid ambiguity, we are led to introduce other notations for constant, for example c . bounded we can identify bounded Radon measures in Ω with measures µ in Ω such that |µ| (∂Ω) = 0. All the measures are extended by 0 in R N \Ω.

Let G(., .) be the Green kernel defined in Ω × Ω and G[.] the corresponding potential operator acting on bounded measures ν namely G[ν](x) = Ω G(x, y) dν(y). We denote L p,∞ (Ω) the usual weak L p space. The next result is classical and valid in a much more general setting (see e.g. [START_REF] Ph | A semilinear equation in L 1 (R N )[END_REF], [START_REF] Dolzmann | Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side[END_REF]).

Lemma 2.1 Let µ ∈ M b (Ω) and v = G[µ] be the (very weak) solution of -∆v = µ in Ω v = 0 in ∂Ω.
(2.1)

I-If N ≥ 2, then v ∈ L N N -2 ,∞ (Ω), ∇v ∈ L N N -1 ,∞ (Ω) and v L N N -2 ,∞ + ∇v L N N -1 ,∞ ≤ c µ M b . (2.2) II-If N = 2, then v ∈ BM O(Ω), ∇v ∈ L 2,∞ (Ω) and v BM O + ∇v L 2,∞ ≤ c µ M b . (2.3) 
This result can be refined when more information is available on the degree of concentration of µ. This leads to the definition of Morrey spaces of measures.

Morrey spaces of measures

If 1 ≤ p ≤ ∞ we define the Morrey space M p (Ω) as the set of bounded outer regular Borel measures µ defined in Ω and extended by 0 in Ω c , satisfying

|B r (x)| µ := Br(x) d |µ| ≤ cr N (1-1 p ) for all (x, r) ∈ Ω × R + , (2.4) 
for some c > 0. In particular

µ ∈ M N N -θ (Ω), θ ∈ [0, N ], if Br(x) d |µ| ≤ cr θ for all (x, r) ∈ Ω × R + .
We refer to [START_REF] Miyakawa | On Morrey spaces of measures: basic properties and potential estimates[END_REF] for a detailed study of M p (Ω) and full proofs of the various results we will recall now. Endowed with the norm

µ Mp = sup (x,r)∈Ω×R + r N ( 1 p -1) |B r (x)| µ , (2.5) 
M p (Ω) is a Banach space and M + p (Ω) = M p (Ω) ∩ M + b (Ω) is its positive cone. We also set M p (Ω) = M p (Ω) ∩ L 1 loc (Ω); it is a closed subspace of M p (Ω) and, if 1 < p < ∞, the following imbedding holds

L p (Ω) → L p,∞ (Ω) → M p (Ω).
(2.6)

Note that since Ω is bounded and any measure in Ω is extended to R N by 0, it is easily seen that if 1 ≤ q ≤ p ≤ ∞ we have a continuous embedding

M p (Ω) → M q (Ω) with v Mq ≤ (diam(Ω)) N q -N p v Mp for all v ∈ M p (Ω).
(2.7)

Indeed for any x ∈ Ω the ball centered at x with radius diam(Ω) contains Ω so that it is enough to consider r ≤ diam(Ω). We have

r -N (1-1/q) |B r (x)| µ ≤ r -N (1-1/q) µ Mp r N (1-1/p) ≤ (diam(Ω)) N q -N p µ Mp .
The following imbedding inequalities holds.

Lemma 2.2 Let µ ∈ M p (Ω) and v be the solution of (2.1).

I-If 1 < p < N 2 , then v ∈ M q (Ω) with 1 q = 1 p -2
N and there holds

v Mq ≤ c µ Mp . (2.8) 
II-If p > N 2 , then v is bounded pointwise and

(i) v(x) ≤ c µ Mp for all x ∈ Ω, (ii) sup x =y |v(x) -v(y)| |x -y| α ≤ c µ Mp with α = 2 - N p if N > p > N 2 , (iii) sup x =y |v(x) -v(y)| |x -y| α ≤ c µ Mp with α ∈ (0, 1) if N = p, (iv) sup x |∇v(x)| ≤ c µ Mp if N < p.
(2.9)

Remark. The previous regularity results are proved in [START_REF] Miyakawa | On Morrey spaces of measures: basic properties and potential estimates[END_REF]Prop. 3.1,3.5] when v = I α * µ where I α is the Riesz potential. However it is easily seen that the proof in [START_REF] Miyakawa | On Morrey spaces of measures: basic properties and potential estimates[END_REF] can be adapted to our setting. In particular for (2.8) we need that G(x, y) ≤ c|x -y| 2-N , for (i) we use (2.7).

Remark. If we assume that µ ∈ M ρ (Ω)∩M p,loc (Ω), the previous estimates acquire a local aspect and remain valid provided the supremum in the norms on the left-hand sides are taken on compact subsets of Ω.

Trace embeddings

Some applications of Morrey spaces to imbedding theorems (also called trace inequalities) can be found in Adams-Hedberg's book [START_REF] Adams | Function spaces and potential theory[END_REF]. For the sake of completeness, we quote here the main result therein we will use in the sequel. 

I α * f L q σ (R N ) ≤ c 1 f L p (R N ) for all f ∈ L p (R N ), (2.10) 
for some c 1 = c 1 (N, α, p, q) > 0, and

σ ∈ M r (R N ) with 1 r = q 1 q - 1 p + α N . (2.11) 
(II)-The mapping f → G α * f is continuous from L p (R N ) to L q σ (R N ) if and only if σ(K) 1 q ≤ c 2 (c α,p (K)) 1 p for all K ⊂ R N , (2.12) 
where c α,p denotes the Bessel capacity of order α defined in (1.18). In fact this holds if and only if

σ(B r (x)) ≤ c 3 (c α,p (B r (x))) q/p for all x ∈ R N , 0 < r ≤ 1.
(2.13) (III)-A necessary and sufficient condition in order the mapping

f → G α * f be compact from L p (R N ) to L q σ (R N ) is (i) lim δ→0 sup x∈R N , r≤δ σ(B r (x)) (c α,p (B r (x))) q p = 0 (ii) lim |x|→∞ sup r≤1 σ(B r (x)) (c α,p (B r (x))) q p = 0. (2.14)
If R N is replaced by a smooth bounded set Ω, we extend any bounded Radon measure in Ω by zero in Ω c . In view of [2, 5.6.1] the c Iα ,p -Riesz capacity and c α,p -Bessel capacity of balls B r (x) with x ∈ Ω and r ≤ 1 are then equivalent. It follows that c α,p (B r (x)) r N -αp . Then, it follows from II and III above, the definition of H α,p (R N ) and the existence of an extension operator H α,p (Ω) → H α,p (R N ) that the following holds, Proposition 2.4 Under the assumptions of Proposition 2.3, the embedding H α,p (Ω) → L q σ (Ω) is: (I)-continuous if and only if (σ(K))

1 q ≤ c 2 (c α,p (K)) 1 p for all K ⊂ R N , i.e. if and only if σ ∈ M + r (R N ) with 1 r = q 1 q -1 p + α N . (II)-compact if and only if lim r→0 sup x∈Ω σ(B r (x)) r (N -αp)q p = 0. (2.15)
As an immediate corollary,

Proposition 2.5 Let σ ∈ M + N N -θ (Ω), i.e. σ(B r (x)) ≤ cr θ , N > αp and 1 < p < q < N p N -αp .
Then the embedding

H α,p (Ω) → L q σ (Ω), (2.16 
)

is continuous iff σ(K) ≤ c 1 (c α,p (K)) q p for all K ⊂ R N which holds iff q ≤ θp N -αp . And the embedding (2.16) is compact iff q < θp N -αp .
Other trace inequalities can be found in [START_REF] Maz'ya | Capacitary inequalities for fractional integrals with applications to partial differential equations and Sobolev multipliers[END_REF]. In the case N = αp the following estimate holds, see e.g. [START_REF] Adams | Traces of potentials II[END_REF], [20, Corollary 8.6.2], [START_REF] Yudovich | Some estimates connected with integral operators and with solutions of elliptic equations[END_REF].

Proposition 2.6 Let σ be a nonnegative Radon measure in R N with compact support and N = αp, p > 1. Then there exists a constant b = b(N, α, p) > 0 such that sup

f L p ≤1 R N exp b |G α * f | p dσ < ∞ (2.17) if and only if σ ∈ M + τ (R N ) for some τ ∈ (1, ∞). When p = 1 the next result is proved in [20, Sec 1.4.3]
Proposition 2.7 Let σ be a nonnegative bounded Radon measure in R N , α be an integer such that 1 ≤ α ≤ N and q ≥ 1. Then the following estimate holds

f L q σ ≤ c 2 |β|=α D α f 1 for all f ∈ C ∞ 0 (R N ), (2.18) 
for some

c 2 = c 2 (N, p, q, α) > 0 if and only if σ ∈ M + N N -q(N -α) (R N ).
3 The subcritical case

The variational construction

We prove in this section that if µ ∈ W -1,2 (Ω) then, under some assumptions on g and σ, equation (1.2) has a variational solution.

We assume that g ∈ C(R) satisfies (1.1), and set G(r) := r 0 g(s)ds. We will find a solution to (1.2) minimizing the functional

J(v) := 1 2 Ω |∇v| 2 dx + Ω G(v) dσ -µ, v , (3.1) 
over the set

X G (Ω) := {v ∈ W 1,2 0 (Ω) : G(v) ∈ L 1 σ (Ω)}. (3.2)
The next proposition is a variant of a result in [START_REF] Brezis | Strongly nonlinear elliptic boundary value problems[END_REF].

Proposition 3.1 Assume σ ∈ M + N N -θ (Ω) with N ≥ θ > N 2 -1. If µ ∈ W -1,2 (Ω) there exists u ∈ X G (Ω) which minimizes J in X G (Ω). Furthermore u is a weak solution of (1.2) in the sense that Ω ∇u.∇ζdx + Ω g(u)ζdσ = µ, ζ for all ζ ∈ C ∞ 0 (Ω). (3.3) 
If g is nondecreasing this solution is unique and denoted by u µ , and the mapping µ → u µ is nonnecreasing.

Proof.

Step 1: Existence of a minimizer. If N > 2 we apply (2.16) with α = 1 and p = 2, recalling that by Fourier transform H 1,2 (Ω) = W 1,2 (Ω) (it is a special case of Calderón's theorem), to obtain that

W 1,2 0 (Ω) → L 2θ N -2 σ (Ω). (3.4) 
If N = 2 with p = 2 we take any α < 1 and obtain

f L θ 1-α σ ≤ c 1 f W α,2 ≤ c 1 f W 1,2 . (3.5) According to Proposition 2.5 the imbedding of W 1,2 0 (Ω) into L p σ (Ω) is compact for any p ∈ [1, 2θ N -2 ) if N > 2 and 1 ≤ p < ∞ if N = 2. Let us first assume that g is bounded. Then |G(v)| ≤ m |v|. Since g is continuous, G(v) ∈ L 1 σ (Ω) for any v ∈ W 1,2 0 (Ω)
and the functional J is well defined and is of class

C 1 in W 1,2 0 (Ω). Furthermore lim v W 1,2 →∞ J(v) = +∞. (3.6)
Let {u n } be a minimizing sequence. By (3.6), {u n } is bounded in W 1,2 0 (Ω) and thus relatively compact in L 1 σ (Ω) and in L 2 (Ω). Hence there exist u ∈ L 2 (Ω) and v ∈ L 1 σ (Ω) such that, up to a subsequence, u n → v in L 1 σ (Ω), and u n → u strongly in L 2 (Ω) and weakly in W 1,2 0 (Ω). We can also assume that u n → u c 1,2 -quasi almost everywhere in the sense that there exists E ⊂ Ω with c 1,2 (E) = 0 such that u n (x) → u(x) for any x ∈ Ω\E. According to Proposition 2.5, σ is absolutely continuous with respect to the c 1,2 -capacity. It follows that σ(E) = 0 so that u n → u σ-almost everywhere and thus u = v σ-almost everywhere. Thus we have that

u n → u in L 2 (Ω), in L 1 σ (Ω)
, σ-almost everywhere and weakly in W 1,2 0 (Ω). Then we have that µ, u n → µ, u . By the dominated convergence theorem we have also that

G(u n ) → G(u) in L 1 σ (Ω). Therefore J(u) ≤ lim inf n→∞ J(u n ), (3.7) 
which implies that u is a minimizer of J in W 1,2 0 (Ω). If g is unbounded, we write g = g 1 +g 2 where g 1 = gχ (-r 0 ,r 0 ) , [START_REF] Grubb | Pseudo-differential boundary problems in L p spaces[END_REF]) we obtain that (3.6) holds. A minimizing sequence {u n } inherits the same property as above, hence u n → u σ-almost everywhere in Ω and in

g 2 = gχ (-∞-r 0 ]∪[r 0 ,∞) , where r 0 is defined in (1.1). Hence G(r) = G 1 (r) + G 2 (r) where |G 1 (r)| ≤ m |r| and G 2 (r) is nonnegative. Using again (2.
L 1 σ (Ω), this implies that G 1 (u n ) → G 1 (u) in L 1 σ (Ω) and G 2 (u) is σ-measurable. By Fatou's lemma G 2 (u)dσ ≤ lim inf n→∞ G 2 (u n )dσ,
which implies that (3.7) holds. Notice that, among the consequences, X G is closed subset of W 1,2 0 (Ω). Hence u in a minimizer of J in X G (Ω). Uniqueness holds if g is nondecreasing since it implies that J is stricly convex and actually X G is a closed convex set.

Step 2: The minimizer is a weak solution. For k > r 0 we define g k by

g k (r) =    g(r) if |r| ≤ k g(k) if r > k g(-k) if r < -k
Then g k is continuous and bounded and the minimizer

u k ∈ W 1,2 0 (Ω) of J k (v) = 1 2 Ω |∇v| 2 dx + Ω G k (v) dσ -µ, v where G k (r) = s 0 g k (s)ds,
is a weak solution (i.e. in the sense given by (3.3)) of

-∆u + g k (u)σ = µ in Ω u = 0 on ∂Ω. (3.8)
The following energy estimate holds

Ω |∇u k | 2 dx + Ω u k g k (u k )dσ = µ, u k ≤ µ W -1,2 u k W 1,2 , (3.9) 
and it implies

Ω |∇u k | 2 dx + Ω |u k g k (u k )| dσ ≤ µ 2 W -1,2 + mσ(Ω) = M, (3.10) 
for some m = m(r 0 ) > 0. Up to a subsequence, {u k } k converges to some u as k → ∞, weakly in W 1,2 0 (Ω), strongly in L 2 (Ω), and almost everywhere in Ω. By Proposition 2.4 the imbedding of W 1,2 (Ω) in L q σ (Ω) is compact for any q < 2θ N -2 . Hence the subsequence can be taken such that u k → u, σ-almost everywhere as k → ∞, and consequently g k (u k ) → g(u) σ-almost everywhere. Let E ⊂ Ω be a Borel set, then for any λ > r 0 ,

M ≥ E |g k (u k )u k | dσ = E∩{|u k |>λ} |g k (u k )u k | dσ + E∩{|u k |≤λ} |g k (u k )u k | dσ ≥ λ E∩{|u k |>λ} |g k (u k )| dσ + E∩{|u k |≤λ} |g k (u k )u k | dσ. Therefore E |g k (u k )| dσ = E∩{|u k |>λ} |g k (u k )| dσ + E∩{|u k |≤λ} |g k (u k )| dσ ≤ M λ + max{|g(r)| : |r| ≤ λ}σ(E)
For > 0 we first choose λ such that M λ ≤ 2 and then σ(E) ≤ 1+2 max{|g(r)|≤λ} . This implies the uniform integrability of

{g k (u k )} k in L 1 σ (Ω). Hence g k (u k ) → g(u) in L 1
σ (Ω) by Vitali's convergence theorem. Since u k is a weak solution of (3.8), there holds for any ζ ∈ C ∞ 0 (Ω),

Ω ∇u k .∇ζdx + Ω g k (u k )ζdσ = µ, ζ . (3.11)
Letting k → ∞ we obtain, using the above convergence results,

- Ω ∇u.∇ζdx + Ω g(u)ζdσ = µ, ζ . (3.12)
Hence u is a weak solution. If g is monotone, uniqueness is also a consequence of the weak formulation. Furthermore if µ, µ belong to W -1,2 (Ω) are such that µ -µ is a nonnegative measure, then µ -µ, (u µ -u µ ) + ≤ 0. Taking (u µ -u µ ) + for test function in the weak formulation yields (u µ -u µ ) + = 0.

The L 1 case

In the sequel we set

X(Ω) = {ζ ∈ C 1 (Ω), ζ = 0 on ∂Ω and ∆ζ ∈ L ∞ (Ω)}, (3.13) 
and

X + (Ω) = X(Ω) ∩ {ζ ∈ C 1 (Ω) : ζ ≥ 0 in Ω}.
We recall (see e.g. [START_REF] Véron | Elliptic equations involving measures[END_REF]) that if

f ∈ L 1 ρ (Ω) and u ∈ L 1 (Ω) is a very weak solution of -∆u = f in Ω, (3.14) 
there holds

- Ω |u| ∆ζdx ≤ Ω f sign(u)ζdx for all ζ ∈ X + (Ω), (3.15) 
and -

Ω u + ∆ζdx ≤ Ω f sign + (u)ζdx for all ζ ∈ X + (Ω). (3.16) Proposition 3.2 Assume N ≥ 2, σ ∈ M + N N -θ (Ω) with N ≥ θ > N -2 and g : R → R is a continuous nondecreasing function vanishing at 0. If µ ∈ L 1 ρ (Ω) there exists a unique u := u µ ∈ L 1 (Ω) very weak solution of (1.2). Furthermore, if u µ , u µ ∈ L 1 (Ω) are the very weak solutions of (1.2) with right-hand sides µ, µ ∈ L 1 ρ (Ω), then - Ω u µ -u µ ∆ζdx + Ω g(u µ ) -g(u µ ) ζdσ ≤ Ω (µ -µ )sign(u µ -u µ )ζdx,
(3.17) and

- Ω (u µ -u µ ) + ∆ζdx + Ω (g(u µ ) -g(u µ )) + ζdσ ≤ Ω (µ -µ )sign + (u µ -u µ )ζdx (3.18)
for any ζ ∈ X + (Ω). In particular the mapping µ → u µ is nondecreasing.

The following result will be used several time in the sequel. Its proof is standard but we present it for the sake of completeness.

Lemma 3.3 Assume N > q ≥ 1 and σ ∈ M + N N -θ
with N ≥ θ > N -q. Then σ vanishes on any Borel set with c 1,q -capacity zero.

Proof. It suffices to prove the result when E is compact. We define the Λ θ Hausdorff measure of a set E by

Λ θ (E) = lim κ→0 Λ κ θ (E) := lim κ→0 inf    ∞ j=1 r θ j : 0 < r j ≤ κ ≤ ∞, E ⊂ ∞ j=1 B r j (a j )    . (3.19)
Note that Λ ∞ θ (E) is the Hausdorff content of E and it is smaller than (diam (E)) θ . For any covering of E by balls B r j (a j ), j ≥ 1, we have

σ(E) ≤ ∞ j=1 σ(B r j (a j )) ≤ σ N N -θ ∞ j=1 r θ j . It follows that σ(E) ≤ σ N N -θ Λ θ (E).
Next, if c 1,q (E) = 0 then Λ θ (E) = 0 according to [2, Th. 5.1.13], and thus σ(E) = 0 by the previous inequality.

We introduce the flow coordinates near ∂Ω defined by

Π(x) = (ρ(x), τ (x)) ∈ [0, 0 ] × ∂Ω where τ (x) = proj ∂Ω (x).
It is well-known that for 0 small enough, Π is a

C 1 -diffeomorphism from Ω 0 := {x ∈ Ω : ρ(x) ≤ 0 } to [0, 0 ] × ∂Ω.
With this diffeomorphism we can assimilate the surface measure dS on Σ = {x ∈ Ω : ρ(x) = } with the surface measure dS on Σ 0 = ∂Ω by setting which implies (3.20).

Σ v(x)dS (x) = Σ 0 v( , τ )dS(τ ).
This result allows us to obtain the uniqueness of the solution even if the righthand side is a measure. Proof. By Lemma 3.3 with α = 1, p = 2, σ is absolutely continuous with respect to the c 1,2 capacity (it is diffuse in the terminology of [START_REF] Brezis | Nonlinear Elliptic Equations with Measures Revisited[END_REF]), and if h ∈ L 1 σ (Ω) the measure h + σ, which is the increasing limit of inf{n, h + }σ is also diffuse. Similarly h -σ is diffuse and so is hσ. Next we assume that u and u are two very weak solutions of (1.2) and set w = u -u . Hence 

-∆w + (g(u) -g(u ))σ = 0. Since ρ(g(u) -g(u )) ∈ L 1 σ (Ω),
Equivalently -∆w + + χ {w≥0} (g(u) -g(u ))σ = -τ.
Since the M-boundary trace of w + is zero, it follows that w + = -G[χ {w≥0} (g(u)g(u ))σ + τ ]. Hence w + = 0 and u ≤ u . Similarly u ≤ u.

The following variant will be useful in the sequel.

Lemma 3.6 Assume N ≥ 2, σ ∈ M + N N -θ (Ω) with N ≥ θ > N -2 and g : R → R is a continuous nondecreasing function. If u, u ∈ L 1 (Ω) are such that ρg(u) and ρg(u ) belong to L 1 σ (Ω) and satisfy - Ω (u -u )∆ζdx + Ω (g(u) -g(u ))ζdσ = Ω ζdν for all ζ ∈ X + (Ω) (3.23)
for some ν ∈ M + (Ω) diffuse with respect to the c 1,2 -capacity, then u ≥ u c 1,2 -quasi everywhere in Ω.

Proof. We use Kato's inequality, Lemma 3.4 and [18, Lemma 1.5.8] in the same way as in the proof of Lemma 3.5 since the measures (g(u) -g(u ))dσ and ν are diffuse,

∆(u -u) is diffuse, hence ∆(u -u) + ≥ χ {u ≥u} ∆(u -u) = (g( ) -g(u))χ {u ≥u} + χ { u ≥u} ν ≥ 0
Since u -u ∈ W 1,q 0 (Ω) for any 1 < q < N N -1 , we conclude that (u -u) + = 0 almost everywhere and c 1,2 -quasi everywhere by [START_REF] Adams | Function spaces and potential theory[END_REF]Th 6.1.4].

The next result and the corollary which follows are the key-stone for the proof of Proposition 3.2.

Lemma 3.7 Let σ ∈ M + N N -θ (Ω) with N ≥ θ > N -2, h ∈ L ∞ σ (Ω), f ∈ L s (Ω) with s > N
2 and w ∈ L 1 (Ω) be the very weak solution of

-∆w + hσ = f in Ω w = 0 in ∂Ω. (3.24)
Then w is continuous in Ω and for any nondecreasing bounded function γ ∈ C 2 (R) vanishing at 0, there holds

- Ω j(w)∆ζdx + Ω γ(w)hζdσ ≤ Ω γ(w)ζf dx for all ζ ∈ X + (Ω), (3.25) 
where j(r) = r 0 γ(s)ds.

Proof. The solution is unique and expressed by

w = G[f -hσ]. Since N N -θ > N 2 , w ∈ C α (Ω)
for some α ∈ (0, 1) by Lemma 2.2. Hence γ(w) is continuous and therefore measurable. We extend σ by zero in Ω c and denote σ n = σ * η n where {η n } is a sequence of mollifiers. Then σ n → σ in the narrow topology of Ω. For n ∈ N * , let w n be the solution of

-∆w n + hσ n = T n (f ) in Ω w n = 0 in ∂Ω, (3.26) 
where

T n (f ) = min{|f |, n}sgn(f ). Then w n ∈ W 2,s (Ω)∩W 1,∞ 0 (Ω) for all 1 < s < ∞. By Green's formula - Ω j(w n )∆ζdx + Ω γ(w n )hζdσ ≤ Ω γ(w n )ζf dx for all ζ ∈ X + (Ω). (3.27)
Since w n → w uniformly in Ω, (3.25) follows.

Corollary 3.8 Under the assumptions of Lemma 3.7, there holds

- Ω |w| ∆ζdx + Ω sign 0 (w)hζdσ ≤ Ω sign 0 (w)ζf dx, (3.28) 
and -

Ω w + ∆ζdx + Ω sign + (w)ζhdσ ≤ Ω sign + (w)ζf dx, (3.29) 
for any ζ ∈ X + (Ω). Moreover there exists a constant C > 0 depending only on Ω such that

Ω sign 0 (w)hdσ ≤ C Ω |f |dx. (3.30) 
Proof. For proving (3.28) we consider a sequence {γ k } of odd nondecreasing functions such that

γ k (r) =    1 if r ≥ 2k -1 0 if -k -1 ≤ r ≤ k -1 -1 if r ≤ -2k -1
and such that {rγ k (r)} is nondecreasing for any r. Using γ k in place of γ in (3.25) we obtain

- Ω j k (w)∆ζdx + Ω γ k (w)ζhdσ ≤ Ω γ k (w)ζf dx for all ζ ∈ X + (Ω), (3.31) 
where j k (r) = r 0 γ k (s)ds. Since γ k (w) ↑ w on Ω + := {x ∈ Ω : w(x) > 0}, there holds by the monotone convergence theorem,

Ω + γ k (w)ζ |h| dσ ↑ Ω + wζ |h| dσ as k → ∞.
Since

Ω + (w -γ k (w))ζhdσ ≤ Ω + |(w -γ k (w))ζh| dσ = Ω + (w -γ k (w))ζ|h|dσ,
we obtain

Ω + γ k (w)hζdσ → Ω + whζdσ as k → ∞.
Similarly, γ k (w) ↓ w on Ω -:= {x ∈ Ω : w(x) < 0} so that

Ω - γ k (w)hζdσ → Ω - whζdσ as k → ∞.
Combining these two results yields

Ω γ k (w)ζhdσ → Ω + wζhdσ - Ω - wζhdσ = Ω sign 0 (w)ζhdσ.
Usiing dominated convergence theorem there holds

Ω γ k (w)∆ζdx → Ω sign 0 (w)∆ζdx,
and

Ω γ k (w)ζf dx → Ω sign 0 (w)ζf dx.
This implies (3.28). The proof of (3.17) is similar. Eventually we prove (3.30). Let η 1 be the solution of

-∆η 1 = 1 in Ω η 1 = 0 in ∂Ω. (3.32) Then η 1 = G[1] ∈ X + (Ω)
and there exists c, c > 0 depending only on Ω such that cρ ≤ η 1 ≤ c ρ. Given α ∈ (0, 1], let j (r) = (r + ) αα , r ≥ 0, and

ζ = j (η 1 ). Note that ζ ∈ C 2 (Ω), 0 ≤ ζ ≤ η α , ζ = 0 on ∂Ω, j > 0, j < 0, so that -∆ζ = j (η 1 ) -j (η 1 )|∇η 1 | 2 ≥ 0. We deduce from (3.28) that Ω sign 0 (w)(η + ) α hdσ ≤ Ω sign 0 (w)η α |f |dx + α Ω sign 0 (w)hdσ.
We obtain

Ω sign 0 (w)ρ α hdσ ≤ C Ω ρ α |f |dx + α |σ(Ω)|
Letting → 0 and then α → 0 we infer the result by dominated convergence.

We are now in position to prove Proposition 3.2.

Proof of Proposition 3.2. We divide the proof into several steps.

Step 1: We assume that µ ∈ L ∞ (Ω). Let {η n } be a sequence of molifiers and

σ n = σ * η n . If µ ∈ L ∞ (Ω), the solution u n = u n,µ of -∆u n + g(u n )σ n = µ in Ω u n = 0 in ∂Ω, (3.33) is continuous in Ω. Since -G[µ -] ≤ -u - n ≤ 0 ≤ u + n ≤ G[µ + ] (3.34)
by the maximum principle, the sequence {u n } is uniformly bounded. Recalling that g is nondecreasing we have that the sequence {g(u n )} is also uniformly bounded in Ω, hence

g(u n )σ n is bounded in M N N -θ
(Ω) independently of n, and from (2.9) it follows that u n is bounded in C α (Ω) for some α ∈ (0, 1] independently of n. Up to some subsequence, {u n }, and thus also {g(u n )}, are then uniformly convergent in Ω with limit u = u µ and g(u) = g(u µ ). Because σ * η n converges to σ in the narrow topology, u µ is a very weak solution of (1.2). Notice that being continuous, g(u) is measurable for the measure σ. By Lemma 3.5, u µ is the unique solution of (1.2), hence the whole sequence {u µn } converges to u µ . Applying Corollary 3.8 with w = u, σ = σ and ζ = η 1 yields 

Ω |u| dx + Ω |g(u)| η 1 dσ ≤ Ω |µ| η 1 dx, ( 3 
Ω (u -u ) + dx + Ω (g(u) -g(u )) + η 1 dσ ≤ Ω η 1 sign + (u -u )(µ -µ ) + dx.
(3.36) which implies the monotonicity of the mapping µ → u µ .

Step 2: We assume that µ ∈ L 1 (Ω) is bounded from below. Set = ess inf µ. For k > 0 set µ k = min{k, µ} and u k := u µ k ∈ L ∞ (Ω). The sequence {µ k } is nondecreasing, hence according to Step 1, the sequence {u k } is a nondecreasing sequence of continuous functions in Ω bounded from below by η 1 , where η 1 is defined in (3.32). Its pointwise limit, denoted by u, is thus lower semicontinuous. Moreover g(u k ) → g(u) pointwise, hence g(u) is lower semicontinuous and thus σ-measurable. Relation (3.35) applied to µ k and u k gives

Ω |u k | dx + Ω |g(u k )| η 1 dσ ≤ Ω |µ k | η 1 dx.
Passing to the limit using Fatou's lemma in the left-hand side and the dominated convergence theorem in the right-hand side yields

Ω |u| dx + Ω |g(u)| η 1 dσ ≤ Ω |µ| η 1 dx.
(3.37)

We deduce that u ∈ L 1 (Ω) and ρg(u) ∈ L 1 σ (Ω). We have indeed a more precise result. Since g vanishes at 0 g( Since u k → u almost everywhere and -lη 1 ≤ u k ≤ u with u ∈ L 1 (Ω), we can pass to the limit in the first term to obtain

u k ) = g(u + k ) + g(-u - k ). Hence ρg(u + k ) → ρg(u + ) in L 1 σ (Ω) by the monotone convergence theorem. Furthermore g(-u - 1 ) ≤ g(-u - k ) ≤ 0, which implies that ρg(-u - k ) → ρg(-u -) in L 1 σ (Ω)
Ω u k ∆ζdx → Ω u∆ζdx. Because |µ k | ≤ |µ| ∈ L 1 (Ω)
and µ k → µ almost everywhere, we can also pass to the limit in the last term:

Ω ζµ k dx → Ω ζµdx.
It remains to pass to the limit in the nonlinearity. Because u k ↑ u and g is nondecreasing, we have g(u k ) ↑ g(u). Thus by the monotone convergence theorem,

- Ω u∆ζdx + Ω g(u)ζdσ = Ω ζµdx,
and u is very weak solution of (1.2).

Step 3: We assume that µ ∈ L 1 (Ω). For ∈ R, we set µ = sup{µ, } and denote by u the solution of (1.2) with right-hand side µ . Note that the sequence {µ } is increasing, bounded from above by µ + so that u ≤ u µ + , where u µ + is the solution of (1.2) with right-hand side µ + which exists according to the previous step, and the sequence {u } is monotone nondecreasing with with pointwise limit u when → -∞. Hence u ≤ u ≤ u µ + for any ≤ 0. The sequence {g(u )} is monotone nondecreasing with limit g(u) when → -∞, and there holds g(u) ≤ g(u ) ≤ g(u µ + ) for any ≤ 0. Since g(u ) is lower semicontinuous and σ-measurable, g(u) shares the same properties. Applying (3.37) to µ = µ and u = u gives

Ω u dx + Ω g(u ) η 1 dσ ≤ Ω µ η 1 dx.
Passing to the limit in the left-hand side using Fatou's lemma we obtain

Ω |u| dx + Ω |g(u)| η 1 dσ ≤ Ω |µ| η 1 dx.
We deduce that u ∈ L 1 (Ω) and ρg(u) ∈ L 1 σ (Ω). We conclude as in Step 2 that u is solution of (1.2).

Step 4: Proof of (3.17) and (3.18).

For < 0 < k we set µ k = sup{ , inf{k, µ}} and (µ ) k = sup{ , inf{k, µ }}, and denote by u k and (u ) k the solution of (1.2) with right-hand side µ k and (µ ) k . Then, by Corollary 3.8, for any ζ ∈ X(Ω) there holds

- Ω u k -(u ) k ∆ζdx + Ω g(u k ) -g((u ) k ) ζdσ ≤ Ω sign 0 (u k -(u ) k )(µ k -(µ ) k )ζdx.
Using the previous convergence theorem when k → ∞ and then → -∞, we derive (3.17). The proof of (3.18) is similar.

Remark. If it is not assumed that g is nondecreasing, the above proof by monotonicity does not work. However the existence will follow from Theorem B if it is assumed that the extra assumptions in this theorem are satisfied: θ > N -q for some q ∈ (1, N N -1 ) and the growth assumptions of Theorem B.

Diffuse case

We recall that a measure µ is said to be diffuse with respect to the c s,p -capacity defined in (1.18) if |µ| vanishes on all sets with zero c s,p -capacity. An important result due to Feyel and de la Pradelle [START_REF] Feyel | Topologies fines et compactifications associées à certains espaces de Dirichlet[END_REF] is the following:

Proposition 3.9 Let α > 0 and 1 < p < ∞. If λ ∈ M + b (Ω)
does not charge sets with zero c α,p -capacity, there exists an increasing sequence {λ n } ⊂ H -α,p (Ω) ∩ M + b (Ω), λ n with compact support in Ω, which converges to λ.

Proposition 3.10 Assume σ ∈ M + N N -θ
with N ≥ θ > N -2, and that g : R → R is a continuous nondecreasing function vanishing at 0. Then for any µ ∈ M + b (Ω) diffuse with respect to the c 1,2 -capacity there exists a unique very weak solution u to (1.2).

Proof. According to Proposition 3.9, there exists an increasing sequence of nonnegative measures {µ n } belonging to W -1,2 (Ω) and converging to µ and by Proposition 3.1, {u µn } is a nondecreasing sequence of weak solutions of (1.2) with µ = µ n . We claim that u µn ↑ u µ which is a very weak solution of (1.2 ). There holds,

Ω u µn dx + Ω g(u µn )η 1 dσ = Ω η 1 dµ n ≤ Ω η 1 dµ,
where η 1 is defined in (3.32). Since u µn ≥ 0, u µn ↑ u and g(u µn ) ↑ g(u). Since u µn is σ-measurable by Proposition 3.1, u is also σ-measurable. Hence g(u) shares this measurability property since g is continuous. Hence, by the monotone convergence theorem

Ω udx + Ω g(u)η 1 dσ = Ω η 1 dµ. (3.38)
Furthermore u µn → u in L 1 (Ω). Indeed it suffices to show that {u µn } is uniformly equiintegrable which follows from 0 ≤ ω u µn dx ≤ ω udx and the fact that u ∈ L 1 (Ω). We show in the same way that ρg(u µn ) → ρg(u) in L 1 σ (Ω). This implies that u = u µ is the very weak solution of (1.2).

Subcritical nonlinearities: proof of Theorem B.

Lemma 3.11 Assume N > 2 and σ ∈ M

+ N N -θ (Ω) with N ≥ θ > N -2. If µ ∈ M b (Ω) and λ ≥ 0, we set E λ [µ] := {x ∈ Ω : G[|µ|](x) > λ}. Then e σ λ (µ) := E λ [µ] dσ ≤ c µ θ N -2 M b λ -θ N -2
for all λ > 0.

(3.39)

Proof. It suffices to prove the result if µ ≥ 0. Indeed since G[|µ|] = G[µ + ] + G[µ -],
we have

E λ [µ] ⊂ E λ/2 [µ + ] ∪ E λ/2 [µ -]
and thus e σ λ (µ) ≤ e σ λ/2 (µ + ) + e σ λ/2 (µ + ). If the result holds for nonnegative measure, in particular for µ ± , then Thus, we assume from now on that µ is nonnegative.

If µ = δ a for some a ∈ Ω, then G[δ a ](x) ≤ c N |x -a| 2-N so that E λ [δ a ] ⊂ B ( c N λ ) 1 N -2 (a). Since σ ∈ M + N N -θ (Ω) it follows that e σ λ (δ a ) ≤ cλ -θ N -2 . (3.40)
Let E ⊂ Ω be a Borel set. For any given t > 0 there holds

E G[δ a ]dσ = E∩Et[δa] G[δ a ]dσ + E∩E c t [δa]
G[δ a ]dσ.

Clearly

E∩E c t [δa] G[δ a ]dσ ≤ tσ(E) and E∩Et[δa] G[δ a ]dσ ≤ Et[δa] G[δ a ]dσ ≤ - ∞ t s de σ s (δ a ) ≤ c θt 1-θ N -2 θ + 2 -N ,
where the last inequality follows by integration by parts and the help of (3.40).

Then E G[δ a ]dσ ≤ tσ(E) + c θt 1-θ N -2 θ + 2 -N .
Minimizing the right-hand side with respect to t, we infer

E G[δ a ]dσ ≤ cσ(E) 1-N -2 θ . (3.41)
We first suppose that µ = ∞ j=1 α j δ a j for some α j > 0 and a j ∈ Ω. In particular ∞ j=1 α j = µ M b . Using Fubini's theorem and (3.41) we see that for any Borel set

E ⊂ Ω, E G[µ](x)dσ(x) = ∞ j=1 α j E G[δ a j (x)]dσ(x) ≤ cσ(E) 1-N -2 θ µ M b .
(3.42)

Taking in particular E = E λ [µ] we obtain λe σ λ (µ) ≤ E λ [µ] G[µ](x)dσ(x) ≤ c(e σ λ (µ)) 1-N -2 θ µ M b ,
which implies the claim. Notice that the constant c in the right-hand side depends only on N and σ M N N -θ .

For a general nonnegative measure µ ∈ M b (Ω), we consider a sequence of nonnegative measures {µ n } ⊂ M b (Ω) where each µ n is a sum of Dirac masses as before and such that µ n → µ weakly as n → ∞. Then we have

e σ λ (µ n ) := E λ [µn] dσ ≤ c µ n θ N -2 M b λ -θ N -2 , with µ M b ≤ lim inf n→∞ µ n M b .
We thus need to prove that lim inf

E λ [µn] dσ ≥ E λ [µ]
dσ.

(3.43)

We first observe that for any t > 0 and x ∈ Ω the set {y ∈ Ω :

G(x, y) > t} is open (with G(x, x) = +∞). It follows from [7][Thm 2.1] that lim inf n→∞ µ n ({G(x, •) > t}) ≥ µ({G(x, •) > t}).
We can take the lim inf using Fatou's lemma in

Ω G(x, y) dµ n (y) = +∞ 0 µ n ({G(x, •) > t}) dt, to derive lim inf n→∞ G[µ n ](x) ≥ +∞ 0 µ({G(x, •) > t}) dt = Ω G(x, y) dµ(y) = G[µ](x).
We infer that for any

x ∈ Ω such that χ E λ (µ) (x) = 1 we have lim inf n→∞ G[µ n ](x) > λ, hence G[µ n ](x) > λ for n large enough. Thus χ E λ (µn) (x) = 1 eventually, and then lim inf n→∞ χ E λ [µn] (x) ≥ χ E λ [µ] (x)
for all x ∈ Ω.

The claim (3.43) follows by Fatou's lemma.

We are now in position to prove Theorem B.

Proof of Theorem B. We note that if g is nondecreasing, uniqueness follows from estimate Lemma 3.5. Let {η n } be a sequence of mollifiers, µ n = µ * η n and u n ∈ W 1,2 0 (Ω) a minimizing weak solution of

-∆u n + g(u n )σ = µ n in Ω, u n = 0 in ∂Ω, (3.44) 
given by Proposition 3.1. We write g(r) = g 1 (r) + g 2 (r) with g 1 = gχ (-r 0 ,r 0 ) ,

g 2 = gχ (-∞-r 0 ]∪[r 0 ,∞) , and set m = sup{g(r) : -r 0 ≤ r ≤ r 0 } ≥ 0 and m = inf{g(r) : -r 0 ≤ r ≤ r 0 } ≤ 0. Then -G[µ - n ] -mG[σ] ≤ u n ≤ G[µ + n ] -m G[σ]. Since σ ∈ M + p (Ω) for some p > N/2, G[σ] ∈ C 0,α (Ω) by Lemma 2.2. Moreover G[|µ n |] ∈ C(Ω) since |µ n | ∈ C(Ω). It follows that |u n | ≤ G[|µ n |] + M ≤ c n , (3.45) 
where M, c n ≥ 0. Since u n ∈ W 1,2 0 (Ω), its precise representative (that we identify with u n ) is defined c 1,2 -quasi-everywhere, is c 1,2 -continuous and

u n (x) = lim r→0 1 |B r (x)| Br(x)
u n (y) dy for any y ∈ Ω \ E n with c 1,2 (E n ) = 0 (see [START_REF] Adams | Function spaces and potential theory[END_REF]). It follows that

|u n | ≤ c n in E := ∪E n . Note that c 1,2 (E) = 0 so that σ(E) = 0 by Lemma 3.3. Hence |u n | ≤ c n σ-almost everywhere, g(u n ) ∈ L ∞ σ (Ω), and therefore g(u n )σ ∈ M + N N -θ
(Ω). We can then apply Corollary 3.8 to obtain, for any ζ ∈ X + (Ω), that

- Ω |u| n ∆ζdx + Ω sign 0 (u n )g(u n )ζdσ ≤ Ω sign 0 (u n )ζµ n dx, which implies - Ω |u| n ∆ζdx + Ω |g 2 (u n )|ζdσ ≤ Ω sign 0 (u n )ζµ n dx + c Ω ζdσ. (3.46) 
We take ζ = η 1 and obtain

Ω |u n | dx + Ω |g 2 (u n )| η 1 dσ ≤ Ω |µ n | η 1 dx + c ≤ Ω η 1 d |µ| + c = c , (3.47) 
so that {u n } is bounded in L 1 (Ω). We also have from Corollary 3.8 that

Ω sign 0 (u n )g(u n )dσ ≤ C Ω |µ n |ρdx
and so

Ω |g 2 (u n )|dσ ≤ C Ω |µ n |dx + Ω |g 1 (u n )|dσ ≤ C (3.48)
with C independent of n. We deduce that the sequence of measures {g(u n )} is bounded.

By the standard regularity estimates, the sequence {u n } is bounded in W 1,q (Ω), q < N N -1 . Then there exists u ∈ W 1,q (Ω), q < N N -1 , such that, up to a subsequence, u n → u in L 1 (Ω) and also pointwise in Ω\E where c 1,q (E) = 0. We fix q ∈ 1, N N -1 such that θ > N -q. In view of Lemma 3.3, σ(E) = 0 so that g(u n ) → g(u) σ-almost everywhere. Applying Fatou's lemma in (3.48) gives that g(u) ∈ L 1 σ (Ω). In order to prove the uniform integrability of {g(u n )} for the measure σ we can assume that |g 2 | ≤ g with a function satisfying (1.8) still denoted by g and let E ⊂ Ω be a Borel set. Then

E |g 2 (u n )| dσ ≤ E∩{|un|≤t} |g 2 (u n )| dσ + E∩{|un|>t} |g 2 (u n )| dσ ≤ g(t) E dσ + {|un|>t} g(|u n |)dσ.
Then we estimate the second integral in the right-hand side: for λ > M we set

S n (λ) = {x ∈ Ω : |u n (x)| > λ} and b σ n (λ) = Sn(λ)
dσ.

In view of (3.45) we have

|u n | ≤ G(|µ n |) + M so that S n (λ) ⊂ E λ-M [µ n ]. Hence b σ n (λ) ≤ e σ λ-M (|µ n |). This implies {|un|>t} g(|u n |)dσ = - ∞ t g(λ)db σ n (λ) ≤ ∞ t b σ n (λ)dg(λ) ≤ ∞ t e σ λ-M (|µ n |)dg(λ).
Using (3.39) we obtain

{|un|>t} g(|u n |)dσ ≤ c µ θ N -2 M b ∞ t (λ -M ) -θ N -2 dg(λ) ≤ cθ N -2 ∞ t (λ -M ) -θ N -2 -1 g(λ)dλ.
In view of assumption (1.8), given > 0 we fix t > M such that

cθ N -2 ∞ t (λ -M ) -θ N -2 -1 g(λ)dλ ≤ ε 2 .
Then, setting δ = 2g(t) , we deduce

E dσ ≤ δ =⇒ E |g 2 (u n )| dσ ≤ ε.
Since g 1 is bounded, this implies that {g(u n )} is uniformly integrable in L 1 σ (Ω). Since we already know that g(u n ) → g(u) σ-almost everywhere, it follows by Vitali's convergence theorem that g(u n ) → g(u) in L 1 σ (Ω). Taking ζ ∈ X(Ω) and letting n → ∞ in the equality

- Ω u n ∆ζdx + Ω g(u n )ζdσ = Ω ζdµ n yields the result.

The 2-D case

In this section Ω is a bounded C 2 planar domain. The next result is the 2-D version of Lemma 3.11. 

2-θ (Ω) with 2 ≥ θ > 0. If µ ∈ M b (Ω) and λ ≥ 0, we set E λ [µ] := {x ∈ Ω : G[|µ|](x) > λ}. Then e σ λ (µ) := E λ [µ] dσ ≤ |Ω| σ e 1- λ γ µ M b for all λ > 0, (4.1) 
for some γ = γ(θ, diam(Ω)) > 0

Proof. If µ = δ a for some a ∈ Ω, one has 0 ≤ G[δ a ](x) ≤ 1 2π ln d Ω |x-a| where d Ω = diam(Ω). Hence E λ [δ a ] ⊂ B d Ω e -2πλ =⇒ e σ λ (δ a ) = E λ [δa] dσ ≤ cd θ Ω e -2θπλ .
Let E ⊂ Ω be a Borel set,

E dσ = |E| σ and t > 0, then, as in Lemma 3.11, E G[δ a ]dσ ≤ t E dσ - ∞ t sde σ s (δ a ) ≤ t |E| σ + cd θ Ω t + 1 2πθ e -2θπt .
If we choose e -2θπt =

|E| σ |Ω| σ we infer E G[δ a ]dσ ≤ γ |E| σ ln |Ω| σ |E| σ + 1 . (4.2) 
For proving (3.39) we can assume that µ ≥ 0. Then there exists α j > 0 and a j ∈ Ω such that

µ = ∞ j=1 α j δ a j =⇒ ∞ j=1 α j = µ M b .
Hence, for any Borel set

E ⊂ Ω, E G[µ](x)dσ(x) = ∞ j=1 α j E G[δ a j (x)]dσ(x) ≤ γ |E| σ ln |Ω| σ |E| σ + 1 µ M b . (4.3) If E = E λ [µ] we infer λe σ λ (µ) ≤ γe σ λ (µ) ln |Ω| σ e σ λ (µ) + 1 µ M b ,
which implies the claim. Proof. Let g * be the monotone nondecreasing hull of g defined by (1.11)

. If m = sup{g(r) : -r 0 ≤ r ≤ r 0 } and m = inf{g(r) : -r 0 ≤ r ≤ r 0 } then g ≤ g * + m on R + and g * + m ≤ g on R -. If {η n } is a sequence of mollifiers and µ = µ + -µ -, we set µ + n = µ + * η n , µ - n = µ - * η n , µ n = µ + n = -µ -
n and denote by u n the very weak solution of

-∆u n + g(u n )σ = µ n in Ω u n = 0 on ∂Ω. (4.4) 
Since µ n L 1 ≤ µ M b , there holds by Proposition 3.2,

u n L 1 + ρg(u n ) L 1 σ ≤ c µ M b + M, (4.5) 
and by Lemma 2.1,

u n BM O + ∇u n L 2,∞ ≤ c µ M b + ρg(u n ) L 1 σ ≤ c µ M b . (4.6)
Again, there exists a set E with c 1,q (E) = 0 for any q ≤ 2-θ such that u n (x) → u(x) for all x ∈ Ω\E, hence u n (x) → u(x) and g(u n (x)) → g(u(x)) dσ-almost everywhere in Ω. This implies that g(u) is σ-measurable. In order to conclude we have to prove that g(u n ) → g(u) in L 1 σ (Ω). Estimate (4.1) is valid, hence, for any t > 0,

τ n (t) = {|un(x)|>t} dσ ≤ e σ t-M [µ + n ] + e σ t-M [µ - n ] ≤ ce -t γ µ M , by Lemma 4.1. Since |g(u n )| ≤ g * + (u n ) -g * -(u n ) + m -m , we have that E |g(u n )| dσ ≤ E g * + (u n ) dσ - E g * -(u n ) dσ + (m -m ) |E| σ ≤ - ∞ t g * + (s)d |{u n > s}| σ + -t -∞ g * -(s)d |{u n < s}| σ + (m -m ) |E| σ ≤ - ∞ t g * + (s) -g * -(-s) dτ n (s) + g * + (t) -g * -(-t) + m -m |E| σ .
By integration by parts,

- ∞ t g * + (s) -g * -(-s) dτ n (s) = g * + (t) -g * -(-t) τ n (t) + ∞ t τ n (s)d g * + (s) -g * -(-s) ≤ g * + (t) -g * -(-t) τ n (t) -ce - t γ µ M b + c γ µ M b ∞ t e - s γ µ M b g * + (s) -g * -(-s) ds ≤ c γ µ M b ∞ t e - s γ µ M b g * + (s) -g * -(-s) ds.
(4.7) By assumption the integral on the right-hand side is convergent. We end the proof as in Theorem B, first by fixing t large enough and then |E| σ small enough, and we derive the uniform integrability of {g(u n )}.

A similar result holds when g has nonzero order of growth at infinty. Proof. The proof is a straightforward adaptation of the previous one. The choice of δ is such that

µ M b ≤ δ < 1 γ sup 1 a ∞ (g) , - 1 a -∞ (g) (4.8)
and the conclusion follows from (4.7).

5 The supercritical case 

Ω |g k (u k )|dσ ≤ C, (5.2) 
where the constant C depends only on Ω and |µ|(Ω). Thus the sequence of measures {g k (u k )σ} is bounded. This implies that {u k } is bounded in W 1,q (Ω), q < N N -1 , and thus that, up to a subsequence, it converges in L 1 (Ω) to some u ∈ W 1,q (Ω), q < N N -1 . We can also assume that the convergence holds pointwise except on a set E with zero c 1,q -capacity, which in turn is σ-negligible by Lemma 3.3 if we fix q ∈ 1, N N -1 such that θ > N -q. We also have that u is finite but on a set with zero c 1,q -capacity hence σ-negligible, therefore

g k (u k ) → g(u)
σ-almost everywhere.

Applying Fatou's lemma in (5.2) yields g(u) ∈ L 1 σ (Ω). By the maximum principle

-G[|µ|] ≤ u k ≤ G[|µ|], (5.3) 
hence g (-G[|µ|]) ≤ g k (u k ) ≤ g (G[|µ|]) , (5.4) 
since g is nondecreasing.

Because of assumption (1.13) and in view of (5.4), we infer from Lebesgue dominated convergence that ρg k (u k ) → ρg(u) in L 1 σ (Ω). Thus we can pass to the limit in weak formulation of (5.1) with any ζ ∈ X(Ω).

Proof of assertion II. We first notice that if g is nondecreasing, vanishes at 0 and satisfies (1.14), then the function g k defined above also satisfies (1.14) with the same constants a and b. We assume first that µ = µ r + µ s is nonnegative and we set µ n r = µ r * η n where {η n } is a sequence of mollifiers. Let u n k be the solution of (5.1) with right-hand side µ n r + µ s and v n k the one of (5.1) with right-hand side µ n r (in both cases existence and uniqueness follows from Theorem B). Then 0

≤ u n k ≤ v n k + G[µ s ], v n k ≥ 0 and G[µ s ] ≥ 0. Since g is non-decreasing, we deduce with (1.14) that 0 ≤ g k (u n k ) ≤ g k (v n k + G[µ s ]) ≤ a (g k (v n k ) + g k (G[µ s ])) + b. (5.5) Since v n k L 1 + ρg k (v n k ) L 1 σ ≤ c µ n r M b ≤ c µ M b , (5.6) 
up to subsequences, the sequences {v n k } and {u n k } converge in L 1 (Ω) to some v n ∈ L 1 (Ω) and u n such that ∇v n , ∇u n ∈ L q (Ω) for any q < N N -1 when k → ∞. As in I, {g k (v n k )} and {g k (u n k )} converge in L 1 σ (Ω) to {g(v n )} and {g(u n )} respectively. Furthermore v n and u n satisfy

-∆v n + g(v n )σ = µ n r in Ω v n = 0 on ∂Ω, (5.7) 
and

-∆u n + g(u n )σ = µ s + µ n r in Ω u n = 0 on ∂Ω, (5.8) 
respectively and 0

≤ u n ≤ v n + G[µ s ]. As in the proof of Proposition 3.2, v n → v in L 1 (Ω) and ρg(v n ) → ρg(v)in L 1 σ (Ω)
as n → ∞, and v is a very weak solution of

-∆v + g(v)σ = µ r in Ω v = 0 on ∂Ω.
(5.9)

As above {u n } converge in L 1 (Ω) to some u ∈ L 1 (Ω) (always up to some subsequence), there holds u ≤ v + G[µ s ] and g(u n ) → g(u) σ-almost everywhere in Ω since the uniform bound on ∇u n .11) Using the same estimates as above we conclude that lim

L N N -1 ,∞ holds. Furthermore 0 ≤ g(u n ) ≤ a (g(v n ) + g(G[µ s ])) + b =⇒ 0 ≤ g(u) ≤ a (g(v) + g(G[µ s ])) + b, (5.10) and since g(v n ) → g(v) in L 1 σ (Ω), the sequence {g(u n )} is uniformly integrable in L 1 σ (Ω). Again this implies that g(u n ) → g(u) in L 1 σ (Ω)
v n k -G[µ s ] ≤ u n k ≤ v n k + G[µ s ] which implies by (1.15) a (g k (v n k ) + g k (-G[µ s ])) + b ≤ g k (u n k ) ≤ a (g k (v n k ) + g k (G[µ s ])) + b. ( 5 
n→∞ lim k→∞ u n k = u exists in L 1 (Ω), that lim n→∞ lim k→∞ g k (u n k ) = g(u)
holds σ almost everywhere in Ω and in L 1 σ (Ω), which ends the proof.

Reduced measures

We adapt here some of the results in [START_REF] Brezis | Nonlinear Elliptic Equations with Measures Revisited[END_REF] which turn out to be useful tools in our framework. Proof. Let u µn be the solutions of (1.2) with right-hand side µ n then for any n, k ∈ N, k ≥ n, we have since

u 0 ∈ C α (Ω), -m ≤ u 0 ≤ u µn ≤ u µ k
for some m ≥ 0 and then

g(-m) ≤ g(u 0 ) ≤ g(u µn ) ≤ g(u µ k ).
We use ζ := (η 1 + ) αα as a test-function in the very weak formulation of the equation satisfied by u µn -u 0 as in the proof of (3.30); then, recalling that -∆ζ ≥ 0, we obtain that

Ω (g(u µn ) -g(u 0 ))((η 1 + ) α -α )dσ ≤ Ω (η 1 + ) α dµ n ≤ Cµ n (Ω) ≤ Cµ(Ω),
where C is independent of n. Letting successively → 0 and α → 0 we obtain 0 ≤ Ω (g(u µn ) -g(u 0 ))dσ ≤ C.

Hence {u µn } is bounded in W 1,q 0 (Ω) for any q < N N -1 . Thus there exists u ∈ W 1,q 0 (Ω), q < N N -1 , such that u µn ↑ u in L 1 (Ω) and pointwise but for a set E with zero c 1,qcapacity. Since θ > N -N N -1 we can find some q < N N -1 such that θ > N -q. It then follows from Lemma 3.3 that σ(E) = 0.Thus g(u µn ) ↑ g(u) σ-almost everywhere. Fatou's lemma yields Ω (g(u)-g(u 0 ))dσ ≤ C, thus g(u) ∈ L 1 σ (Ω). By the dominated convergence theorem, g(u µn ) → g(u) in L 1 σ . We can then pass to the limit in the equation satisfied by u µn to obtain that u = u µ . Proposition 5.2 Assume σ and g satisfy the assumptions of Lemma 5.1. Consider the set

Z = x ∈ Ω : Ω G(x, y) q ρ(y)dσ(y) = ∞ . If µ ∈ M + b (Ω) is such that µ(Z) = 0 then µ is good.
Step 2: proof of I. Denote by u k,ν the solution of

-∆u + g k (u) = ν in Ω u = 0 in ∂Ω. (5.13) Then -m ≤ u k,ν ≤ u k,µ , u k ,µ ≤ u k,µ for k ≥ k > m by Lemma 3.6 and g k (u k,ν ) ≤ g k (u k,µ
). Furthermore {u k,ν } is bounded in W 1,q 0 (Ω) for 1 < q < N N -1 and thus relatively compact in L 1 (Ω). Therefore there exists u ∈ W 1,q 0 (Ω) such that u k,ν ↓ u in L 1 (Ω) and also pointwise up to a set with zero c 1,q -capacity which is therefore a σ-negligible set. By Step 1, the set {ρg

k (u k,ν )} is uniformly integrable in L 1 σ (Ω), this implies that u = u ν . Step 3: Proof of II. Because -µ ≤ ν ≤ µ there holds u k,-µ ≤ u k,ν ≤ u k,µ and g k (u k,-µ ) ≤ g k (u k,ν ) ≤ g k (u k,µ
). Since the sets {u k,-µ }, {u k,ν } and {u k,µ } are relatively compact in L 1 (Ω) and bounded in W 1,q 0 (Ω) for 1 < q < N N -1 and the sets {g k (u k,-µ )} and {g k (u k,µ )} are uniformly integrable in L 1 σ (Ω), then, up to a subsequence, u k,ν → u in L 1 (Ω) and σ-almost everywhere as k → ∞. This implies that g 

(u) ∈ L 1 σ (Ω) and ρg k (u k,ν ) → ρg(u) in L 1 σ ( 
Ω ζdµ i k ↑ L(ζ) ≤ Ω ζdµ as k → ∞.
By the Stone-Weiertrass theorem there exists a dense subset {ζ n } of the set of nonnegative elements in C 0 (Ω). By Cantor diagonal process there exists a subsequence As a consequence of Zorn's lemma, Z µ admits at least one maximal element that we denote µ * . If ν is any nonnegative good measure smaller than µ it belongs to Z µ and hence it cannot dominate µ * . It remains to prove that ν ≤ µ * . Set λ = sup{ν, µ * } and let λ * be a maximal element of Z λ . Since ν and µ * are good measures, we have ν * = ν and (µ * ) * = µ * . It follows that λ * ≥ ν * = ν and λ * ≥ (µ * ) * = µ * so that λ * ≥ sup{ν, µ * } = λ. This implies that λ * = λ ≥ µ * . On the other hand, since ν, µ * ≤ µ, we have λ ≤ µ and thus λ * ≤ µ. By definition of a maximal element it implies that λ * = λ = µ * , and finally µ * = sup{ν, µ * }. We infer ν ≤ µ * and then µ * is the maximum of Z µ . This implies λ = λ * , hence λ is a good measure.

{i n k } ⊂ I such that Ω ζ n dµ in k ↑ L(ζ n ) ≤ Ω ζ n dµ as k → ∞.

The capacitary framework

We start with the following regularity estimate for the Poisson problem Lemma 5.6 For any s ≥ 0 and 1 < p < ∞, the mapping µ → G[µ] is continuous from M b (Ω) ∩ H s-2,p (Ω) to H s,p (Ω).

Proof. It is classical that the mapping G D : λ → u = G D (λ) solution of -∆u = λ in Ω and u = 0 on ∂Ω is continuous from H s-2,p (Ω) to H s,p (Ω) for 1 < p < ∞ follows from Theorem D. Hence, a more accurate necessary condition must involve a notion of density of σ on its support, a property which has been developed by Triebel [START_REF] Triebel | Fractals and Spectra[END_REF] in connection with fractal measures.

We recall that the θ-dimensional Hausdorff measure H θ , 0 ≤ θ ≤ N , is defined on subsets E of R N by

H θ (E) = lim δ→0   inf    ∞ j=1 (diam U j ) θ : E ⊂ ∞ j=1 U j , diam U j ≤ δ      .
( (5.23)

The support Γ of σ is called a θ-set.

By [START_REF] Triebel | Fractals and Spectra[END_REF]Th 3.4] σ is equivalent in Ω to the restriction H θ Γ of H θ to Γ in the sense that there exists c > 0 such that

1 c H θ (E ∩ Γ) ≤ σ(E) ≤ c H θ (E ∩ Γ)
for all E ⊂ Ω , E Borel.

(5.24)

The description of L p σ (Γ) necessitates to introduce the scale of Besov spaces and their trace on Γ. For 0 < s < 1, 1 ≤ p, q ≤ ∞, we denote by B s p,q (Ω) the space obtained by the real interpolation method by B s p,q (Ω) = W 1,p (Ω), L p (Ω) s,q .

(5.25)

Details can be found in [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]. Its norm is equivalent to

φ B s p,q = v L p + ∞ 0
(ω p (t; v)) q t sq dt t For k ∈ N * , B k+s p,q (Ω) = {v ∈ W k,p (Ω) : D α v ∈ B s p,q (Ω) , for all α ∈ N N , |α| = k} with norm v B k+s p,q = v W k-1,p + |α|=k D α v B s p,q .

Removable singularities

It is easy to prove that for any compact set K ⊂ Ω, there exists µ K ∈ M + b (K) such that Ω (G[µ K ]) q dσ = 1 and c σ q (K) = µ K (K) (see [START_REF] Adams | Function spaces and potential theory[END_REF][Th 2.5.3]). Since µ K is an admissible measure, it follows from Theorem D that (1.3) is solvable with µ = µ K , hence K is not removable. Although it could be conjectured that a compact set with zero c σ q -capacity is removable we can prove this assertion only for sigma-moderate solutions. if there exists an increasing sequence {µ n } ⊂ M + b (K) of q-good measures such that u µn → u in L 1 loc (Ω \ K) ∩ L q σ, loc (Ω \ K).

Theorem 5.17 Under the assumptions on q, σ and K of Definition 5.16, if c σ q (K) = 0 then the only sigma-moderate solution of (5.35) is the trivial one.

Proof. Since c σ q (K) = 0 the set of nonnegative q-good measures with support in K is reduced to the zero function by Theorem F. This implies the claim.

Remark. We conjecture that for any compact set K ⊂ Ω, any nonnegative local solution of (5.12) is sigma-moderate. This would imply that a necessary and sufficient condition for a local nonnegative solution of (5.12) to be a solution in Ω is c σ q (K) = 0. However this type of result is usually difficult to prove, see [START_REF] Mselati | Classification and Probabilistic Representation of Positive Solutions of a Semilinear Elliptic Equations[END_REF], [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear elliptic equations with absorption[END_REF], [START_REF] Dynkin | Superdiffusion and Positive Solutions of Nonlinear Partial Differential Equations[END_REF] in the framework of semilinear equations with measure boundary data.

In order to find necessary and sufficient conditions for the removability of a compact set K ⊂ Ω, we assume that σ is a positive measure in Ω absolutely continuous with respect to the Lebesgue measure, with a nonnegative density w. For proving our results we will assume that the function ω = w -1 q-1 is q -admissible in the sense of [START_REF] Heinonen | Nonlinear Potential Theory of Degenerate Elliptic Equations[END_REF]Chap 1]. One sufficient condition is that w belongs to the Muckenhoupt class A q , that is sup

B 1 |B| B wdx 1 |B| B w -1 q-1 dx 1 p-1
= m w,q < ∞ (5.36)

Lemma 3 . 4

 34 Assume N ≥ 2 and µ ∈ M(Ω) satisfies Ω ρd |µ| < ∞. (3.20) Then u = G[µ] satisfies lim →0 Σ 0 |u|( , τ )dS(τ ) = 0. (3.21) Proof. If u = G[µ], it is the unique weak solution of -∆u = µ in Ω, u = 0 on ∂Ω. Hence u = u 1 -u 2 where u 1 = G[µ + ] and u 2 = G[µ -]. Since µ + and µ -satisfy the integrability condition (3.20) both u 1 and u 2 have a zero measure boundary trace (M -boundary trace in the sense of [18, Sec 1.3]). Hence, taking for test function the function ζ = 1, lim →0 Σ 0 u j ( , τ )dS(τ ) = 0, (3.22)

Lemma 3 . 5

 35 Assume N ≥ 2, σ ∈ M + N N -θ(Ω) with N ≥ θ > N -2 and g : R → R is a continuous nondecreasing function. If µ ∈ M(Ω) there exists at most one very weak solution of (1.2).

  it follows from Lemma 3.4 that lim →0 Σ |w| ( , τ )dS(τ ) = 0 We use Kato inequality for measures as in [10, Th 1.1]: Since w ∈ L 1 (Ω), ∆w + is a diffuse measure and ∆w + ≥ χ {w≥0} ∆w = χ {w≥0} (g(u) -g(u ))σ ≥ 0 in Ω Since w + has a M-boundary trace by Lemma 3.4, we can apply [18, Lemmma 1.5.8] with µ = -χ {w≥0} (g(u) -g(u ))σ which is a measure in M ρ (Ω) := {ν ∈ M(Ω) : ρν ∈ M b (Ω)}. Then there exists τ ∈ M + ρ (Ω) such that -∆w + = µ -τ.

  .35) and (3.29) with ζ = η 1 gives

  by the dominated convergence theorem which finally implies that ρg(u k ) → ρg(u) in L 1 σ (Ω). Using ζ ∈ X + (Ω) as a test function in the very weak formulation of the equation satisfied by u k gives -

Lemma 4 . 1

 41 Assume N = 2 and σ ∈ M +

2

 2 

Theorem 4 . 2

 42 Assume N = 2, σ ∈ M +

  with 2 ≥ θ > 0 and g : R → R a continuous function satisfying (1.1). If a ∞ (g) = a -∞ (g) = 0, for any µ ∈ M b (Ω) problem (1.2) admits a very weak solution.

Theorem 4 . 3

 43 Assume N = 2, σ ∈ M +

  with 2 ≥ θ > 0 and g : R → R a continuous function satisfying(1.1). If 0 < a ∞ (g) < ∞ and -∞ < a -∞ (g) < 0, there exists δ > 0 such that for any µ ∈ M b (Ω) satisfying µ M b ≤ δ problem (1.2) admits a very weak solution.

5. 1

 1 Proof of Theorem DProof of assertion I. For k > 0 set g k (r) = max{g(-k), min{g(k), g(r)}} and denote by u k the very weak solution of-∆u + g k (u)σ = µ in Ω u = 0 on ∂Ω, (5.1) which exists by Theorem B. It follows from the proof of Theorem B (see (3.48) with g = g 2 and g 1 = 0) that

  and u is a very weak solution of (1.2). If µ is signed measure, we construct successively the solutions u n k , u n k and u n k of (5.1) with right-hand side µ n r +µ s , |µ n r |+|µ s | and -|µ n r |-|µ s | respectively, and the solutions v n k and v n k of (5.1) with right-hand side |µ n r | and -|µ n r | respectively. Then

Lemma 5 . 1

 51 Let σ ∈ M + N N -θ (Ω) with N ≥ θ > N -N N -1 and g be nondecreasing satisfying (1.1). Assume {µ n } ⊂ M + b (Ω) is an increasing sequence of good measures for problem (1.2) converging to µ ∈ M + b (Ω).Then µ is a good measure.

Lemma 5 . 4

 54 Ω). Hence u = u ν . The proof of the next result, based upon Zorn's lemma, is a variant of the one of [9, Th 4.1] which uses inverse maximum principle [9, Corollary 4.8]. Assume σ and g satisfy the assumptions of Lemma 5.1. If µ ∈ M + b (Ω) there exists a largest good measure smaller than µ, and it is nonnegative.Proof. Let Z µ be the subset of all bounded nonnegative good measures smaller than µ. Notice first that Z µ is non-empty since it contains the regular part µ r of µ with respect to the N -dimensional Hausdorff measure. We now show that Z µ is inductive. Let C I := {µ i } i∈I be a totally ordered subset of Z µ . For ζ ∈ C 0 (Ω), ζ ≥ 0, the set of nonnegative real numbersC I (ζ) := Ω ζdµ iis bounded from above by Ω ζdµ. Note that can we extend µ as a positive linear form on C 0 (Ω) since it is a Radon measure and µ(∂Ω) = 0. Hence C I (ζ) admits an upper bound L(ζ) and there exists a sequence {i k } ⊂ I such that

  Clearly the map ζ n → L(ζ n ) is additive, positively homogeneous of order one and satisfies L(ζ) ≤ Ω ζdµ for all ζ ∈ C 0 (Ω), ζ ≥ 0. Hence L extends as a positive linear functional on C 0 (Ω), dominated by µ denoted by µ C I . Since µ is a Radon measure in Ω, µ C I (∂Ω) = 0, hence it is a Radon measure. Furthermore it is a good measure by Lemma 5.1. It follows that µ C I ∈ Z µ . Moreover since L(ζ) is an upper bound of C I (ζ) for any nonnegative ζ ∈ C 0 (Ω), we have µ C I ≥ µ i for any i ∈ I. Hence the set Z µ is inductive.

Corollary 5 . 5

 55 Assume σ and g satisfy the assumptions of Lemma 5.1. If µ, ν ∈ M + b (Ω) are good measures, then sup{µ, ν} is a good measure. Proof. Set λ = sup{µ, ν}. Then λ ≥ λ * = (sup{µ, ν}) * ≥ sup{µ * , ν * } = sup{µ, ν} = λ. (5.14)

. 22 )

 22 Definition 5.11 A nonnegative Radon measure σ on Ω with support Γ is θ-regular with 0 ≤ θ ≤ N if there exists c > 0 such that1 c r θ ≤ |B r (x)| σ ≤ cr θfor all x ∈ Γ , for all r > 0.

Definition 5 . 16

 516 Let q > 1, σ ∈ M + N N -θ (Ω) where N ≥ θ > N -2 and K ⊂ Ω a compact set. A nonnegative function u ∈ L 1 loc (Ω \ K) ∩ L q σ, loc (Ω \ K) is a sigmamoderate solution of -∆u + |u| q-1 uσ = 0 in Ω \ K u = 0 in ∂Ω,(5.35)

We denote by M b (Ω) the space of outer regular bounded Borel measures on Ω equipped with the total variation norm, and by M + b (Ω) its positive cone. Since Ω is

Proof. We adapt to our case the proof of [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potential[END_REF][ Thm 3.10]. Consider the sets C n = {x ∈ Ω : Ω G(x, y) q ρ(y)dσ(y) ≤ n}, n = 1, 2, . . . .

Since the function x → Ω G(x, y) q ρ(y)dσ(y) is lsc (by Fatou's lemma) the sets C n are closed. Moreover C n ⊂ C n+1 and n C n = Ω\Z. Define µ n := 1 Cn µ i.e. µ n is the measure µ restricted to C n . Then each µ n satisfies (1.13). Indeed

Ω Ω G(x, y) q-1 dµ n (x)dσ(y)

Cn Ω G(x, y) q-1 dσ(y) dµ(x)

≤ nµ(Ω) q .

It follows from Theorem D that µ n is good. Since 0 ≤ µ n ↑ µ we deduce from Lemma 5.1 that µ is good. (Ω) is a good measure. For k > 0 define g k by g k (r) = max{g(-k), min{g(k), g(r)}}, and denote by u k,µ the solution of (5.1), which exists by Theorem B, and by u µ the solutions of (1.2). Then -m ≤ u 0 ≤ min{u µ , u k,µ }. If k > m, then g k (u k,µ ) = min{g(k), g(u k,µ )} ≤ g(u k,µ ). Hence -∆(u µ -u k,µ ) + (g k (u µ ) -g k (u k,µ )) σ ≤ 0.

Then u µ ≤ u k,µ by Lemma 3.6. Similarly u k ,µ ≤ u k,µ for k ≥ k > m. Using η 1 as test-function we obtain

, the right-hand side converges to 0 as k → ∞ and the second term on the left-hand side is nonnegative. Hence

and s > 

is a very weak solution, hence, since

In particular

and

In particular this inequality holds if v ∈ C c (Ω) which is dense in H -s,p (Ω). Finally this inequality means that the mapping v → Ω G D (λ)vdx is a continuous linear form over H -s,p (Ω), it thus belongs to H s,p (Ω).

Proposition 5.7 Let σ and g satisfy the assumptions in Theorem

Ω) for some p > 1 and s > 0 such that N -θ < sp < N and θp N -sp ≥ q, then (1.3) admits a unique very weak solution.

Proof. By Lemma 5.6, if |µ| ∈ H s-2,p (Ω) then G[|µ|] ∈ H s,p (Ω). By Proposition 2.4

if and only if σ ∈ M + r (Ω) with 1 r = q 1 q -1 p + s N = N -θ N . Then q = θ p N -sp . Hence, if θp N -sp ≥ q we get θ ≥ θ and then

(Ω) by [2.7). We conclude by Theorem D.

Remark. This result covers the case q = p, in which any bounded measure such that |µ| ∈ H N -θ q -2,q (R N ) is eligible for solving problem (1.2).

Proof of Theorem E. If µ is absolutely continuous with respect to the c 2-s,p -capacity, so are µ + and -µ -. By [START_REF] Feyel | Topologies fines et compactifications associées à certains espaces de Dirichlet[END_REF] there exists an increasing sequence of positive bounded Radon measures µ j ∈ H s-2,p (Ω) converging to µ + . By Proposition 5.7 µ j is a good measure, hence by Lemma 5.1 µ + is a good measure. In the same way -µ -is a good measure. Since -µ -≤ µ ≤ µ + , it follows from Lemma 5.3-II that µ is a good measure.

In particular µ is absolutely continuous w.r.t c s,p -capacity. Indeed under the assumption on θ * we have H s,p (Ω) → L 1 |µ| (Ω). It follows that for any v ∈ H s,p (Ω), v ≥ 1 on K, we have

We deduce (5.15) taking the infimum over v. To apply Theorem E we need µ to be c 2-N -θ q ,q -diffuse. It thus suffices to take θ * > N -sp with s = 2 -N -θ q and p = q .

We obtain exactly the condition on θ * stated in Proposition 1.1.

5.4

The case g(u) = |u| q-1 u.

In the sequel we consider the following equation

where q > 1. A measure for which there exists a solution, necessarily unique by Lemma 3.5, is called q-good.

Then the critical exponent q from the point of view of (1.8) in Theorem B is

which is larger than 1 if N > 2.

Let q > 1 and σ ∈ M + b (Ω). Recall that the Green function

and y → G(x, y) is lower semicontinuous in Ω, and thus is σ-measurable. Following [2, Sec. 2.3] we then consider the following set function with values in [0, +∞],

for any E ⊂ Ω. According to the general theory developped in [2, Sec. 2.3] c σ q is a regular capacity in the sense of Choquet. Using the lower semicontinuity of

) it is easy to verify that for any compact set K ⊂ Ω, there holds

The dual formulation of the capacity is the following (see [2, Th 2.5.1]), c σ q (K) Remark. Note that the ≥ inequality in (5.20) follows directly from the following one

which holds for any ν ∈ M + b (Ω) such that G[ν] ∈ L q σ and any K ⊂ Ω compact. We now give some sufficient conditions for a bounded measure to be absolutely continuous with respect to the capacity c σ q . First in view of (5.21) and the dual expression of the capacity it is clear that there holds:

As a direct consequence we have Lemma 5.9 If ν ∈ M b (Ω) is c 2-s,p -diffuse where s and p are as in Lemma 5.8, then ν is absolutely continuous with respect to the capacity c σ q .

Proof. If ν ≥ 0 there exists a sequence of nonnegative measures {ν n } ⊂ H s-2,p (Ω) such that ν n ↑ ν. If K is a compact such that c σ q (K) = 0 then ν n (K) = 0 by Lemma 5.8 and thus ν(K) = 0. When ν is a signed measure, we apply the above to its positive and negative part ν ± .

The following particular case will be useful:

(Ω) with N ≥ θ > N -2, then ν is absolutely continuous with respect to the capacity c σ q .

Proof. We have |ν| ∈ M p (Ω) for some p > N 2 . We then obtain from (2.9) that G[|ν|] is bounded so that G[|ν|] ∈ L q σ (Ω). The conclusion follows from the previous lemma.

Remark. It is noticeable that if the support of a nonnegative measure µ does not intersect the support of σ, then µ is always q-good. This is due to the fact that G[µ] is bounded on the support of σ, hence G[µ] ∈ L q σ (Ω) for any q < ∞ and the result If Γ ⊂ R N is a closed set with zero Lebesgue measure, we consider the set

endowed with the B s p,q (R N ) norm, where v, φ is the pairing between S (R N ) and S(R N ). If v ∈ L p σ (Ω) and σ has support Γ ⊂ Ω, the linear map Proposition 5.12 Assume σ is θ-regular, 0 < θ < N , with support Γ ⊂ R N , and let v ∈ L q σ (Ω) with 1 < p ≤ +∞. There holds

for all φ ∈ S(R N ).

(5.30)

Proposition 5.13 Assume σ is θ-regular, 0 < θ < N with support Γ ⊂ R N . Then for any 1 < p ≤ ∞ the restriction operation from S(R N ) to C(Γ), φ → φ Γ can be extended as a continuous linear operator from B N -θ p p,1 (R N ) to L p σ (Γ) that we denote T r Γ . Furthermore this operator is onto.

where

(5.32)

Then there exists a positive constant M > 0 such that

for all compact set K ⊂ Ω.

Proof. By standard elliptic equations and interpolation theory (see [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF], [START_REF] Triebel | Theory of Function Spaces[END_REF]), for

(Ω) and there holds

(5.34) By Proposition 5.12 we can replace ψ

(K) ≤ c q c σ q (K). Proof of Theorem F. By Lemma 5.10 the measure u q vanishes on Borel sets with zero c σ q -capacity. Since u ∈ L q σ (Ω) the mapping

is a tempered distribution that we denote by T σ u , hence

Therefore it vanishes on Borel sets with zero c 2-N -θ q ,Γ q ,∞ -capacity, which actually coincide with Borel sets with zero zero c σ q -capacity.

for all ball B ⊂ R N .

If K ⊂ Ω is compact, we set

(5.37) This defines a capacity on Borel subsets of Ω. Since ω is q -admissible, it satisfies Poincaré inequality, hence a set with zero c ω q -capacity is ω-negligible. Furthermore, following the proof of [2, Th 3.3.3], c ω q is equivalent to ċω q defined by ċω

Proof of Theorem G.

Step 1: The condition is sufficient. We assume first that [START_REF] Mselati | Classification and Probabilistic Representation of Positive Solutions of a Semilinear Elliptic Equations[END_REF] in the sense of distributions in Ω \ K where K ⊂ Ω is a compact subset with c ω q -capacity zero. There exists a sequence of functions {ζ k } ⊂ C ∞ 0 (Ω) with value in [0, 1], value 1 in a neighborhood of K and such that ∆ζ k L q ω → 0 when k → ∞. Let ρ ∈ C ∞ 0 (Ω), 0 ≤ ρ ≤ 1, such that ρ = 1 in a neighborhood of K containing the support of the ζ k . Using φ k := (1 -ζ k ) α ρ α , with α > 1, in the very weak formulation of equation (1.22) we obtain,

(5.40) Notice that the second integral in the right-hand side vanishes since ∇ζ k .∇ρ α = 0 by the assumption on their support. If we choose α = 2q , we can bound the remaining integrals as follows:

, and finally

Since the Gagliardo-Nirenberg inequality holds with the q -admissible weight ω, we have for some τ ∈ (0, 1) and some c = c(q, N ) > 0,

(5.41) Therefore, if we set

, we obtain the inequation

for some positive constants c 1 , c 2 , c 3 depending on q, N and ρ. By definition of ζ k we have Z k → 0. We thus deduce that X q k ≤ cX k with q > 1 and then that the sequence {X k } is bounded. Since ζ k → 0 almost everywhere, we have φ k → ρ 2q almost everywhere. It then follows by Fatou's lemma that Ω u q ρ 2q wdx ≤ c.

(5.43)

We deduce that u ∈ L q w,loc (Ω). Since ω (1.22) in Ω \ K, then |u| is a nonnegative subsolution with the same integrability constraints and we derive u ∈ L q w,loc (Ω) ∩ L 1 loc (Ω). Since u ∈ L q w,loc (Ω), φ has compact support, and ζ k → 0 almost everywhere, we can pass to the limit as k → +∞ in the second integral using Lebesgue convergence theorem and obtain Ω |u| q-1 uφ(1 -ζ k ) 2q w dx → Ω |u| q-1 uφw dx.

Moreover we can pass to the limit in the first integral expanding the laplacian. Using that u ∈ L 1 loc (Ω) and that ∆ζ k → 0 in L q ω , it is easy to prove from the previous computation that Step 2: The condition is necessary. Let K be a compact set with positive c ω qcapacity. According to [START_REF] Adams | Function spaces and potential theory[END_REF][Th 2.5.3] there exists an extremal µ k ∈ M + b (K) in the dual formulation (5.39) of the capacity. According to Theorem D, problem (5.16) with µ = µ K admits a positive solution which is therefore a positive solution of (5.35).
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