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ABSTRACT

The amount of detected planets with sizes comparable to that of the Earth is increasing drastically. Most of the Earth-size planet
candidates orbit at close distances from their central star, and therefore are subjected to large tidal forces. Accurate determination of
the tidal parameters of exoplanets taking into account their interior structure and rheology is essential to better constrain their rotational
and orbital history, and hence their impact on climate stability and planetary habitability. In the present study, we compute the tidal
response of rocky and ice-rich solid exoplanets for masses ranging between 0.1 and 10 Earth masses using a multilayer approach and
an Andrade rheology. We show that the amplitude of tidal response, characterized by the gravitational Love number, k2, is mostly
controlled by self-gravitation and increases as a function of planet mass. For rocky planets, k2 depends mostly on the relative size
of the iron core, and hence on the bulk iron fraction. For ice-rich planets, the presence of outer ice layers reduces the amplitude of
tidal response compared to ice-free rocky planets of similar masses. For both types of planet (rocky and ice-rich), we propose relatively
simple scaling laws to predict the potential Love number value as a function of radius, planet mass and composition. For the dissipation
rate, characterized by the Q−1 factor, we did not find any direct control by the planet mass. The dissipation rate is mostly sensitive to
the forcing frequency and to the internal viscosity, which depends on the thermal evolution of the planet, which is in turn controlled by
the planet mass and composition. The methodology described in the present study can be applied to any kind of solid planet and can
be easily implemented into any thermal and orbital evolution code.

Key words. planets and satellites: interiors – planets and satellites: physical evolution – planets and satellites: composition –
planets and satellites: dynamical evolution and stability

1. Introduction

The number of detected exoplanets with radius and mass com-
parable to that of the Earth is increasing drastically (e.g. Bonfils
et al. 2013; Batalha et al. 2013; Marcy et al. 2014; Dressing &
Charbonneau 2015; Coughlin et al. 2016; Dittmann et al. 2017;
Gillon et al. 2017). Most of the low-mass planet candidates
orbit at relatively close distances from their central star and are
therefore likely subjected to large tidal forces due to the gravi-
tational tide raised by the star. Planets with masses lower than
10 M⊕ and with short orbital periods (<10–20 days) seem espe-
cially abundant around M-dwarf stars (e.g. Bonfils et al. 2013;
Dressing & Charbonneau 2015). For example, the TRAPPIST-1
system recently discovered by Gillon et al. (2016, 2017) exhibits
several small planets orbiting a low-mass star at relatively close
distance (<0.1 AU), corresponding to orbital periods of a few
Earth days. For such planets, tidal friction which controls both
the rotational and thermal evolution, is expected to have a large
impact on climate stability and the planetary heat budget, and
hence on planet habitability (e.g. Lammer et al. 2009; Barnes
2017; Turbet et al. 2018). Therefore, properly quantifying the way
in which the planets respond to tidal forces is crucial to assess
their evolution and address their potential habitability.

The impact of tidal interactions on planetary evolution
depends on the orbital configuration of the system, but also on
the way planetary bodies deform under the action of tides raised
by their central star, and in some cases by a potential plane-
tary companion, like in the Earth-moon system. In most studies,
the tidal response is described by using two simple parameters,
the potential Love number, k2 and the dissipation function, Q−1.

The potential Love number corresponds to the ratio between
the variation of potential induced by tidal deformation of the
interior and the external potential raised by the central star,
while Q−1 represents the fraction of energy which is dissipated
anelastically. In many models studying tidal evolution of plan-
etary rotations and orbits (e.g., Mardling 2007; Bolmont et al.
2014; Barnes 2017), global dissipation is classically parametrized
using prescribed constant values of k2 and Q−1 or the time lag ∆t
between the onset of tidal forcing and the response of the body
(with ∆t = arcsin(Q−1)/χ, χ being the tidal angular frequency).
However, the tidal response depends on the planet composition,
structure and thermal state as well as on the frequency of the
tidal forcing. This requires taking into account the specificity of
interior models and of orbital configurations when predicting the
appropriate tidal parameters and their time evolution.

Many models have been developed to compute the tidal
response of a variety of planetary objects of the solar system in
the past using multi-layer methods (e.g. Alterman et al. 1959;
Kaula 1964; Sabadini et al. 1982; Segatz et al. 1988; Tobie
et al. 2005; Wahr et al. 2009; Rivoldini et al. 2011; Beuthe
2013; Dumoulin et al. 2017). Most studies dedicated to exoplan-
ets have used simplified approaches to predict the tidal response
assuming, for instance, the formula derived for homogenous
viscoelastic interiors (Henning et al. 2009; Efroimsky 2012;
Makarov & Efroimsky 2014; Barr et al. 2018; Makarov et al.
2018), and thus neglecting the rheological effects of radial het-
erogeneity induced by the increase of temperature and pressure
with depth and the coupling between the different internal lay-
ers. Taking the latter parameters into account is particularly
important at the extreme pressures and temperatures relevant
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to exoplanets, and when very different materials (metals, sili-
cates, water) in both solid and liquid states are considered (e.g.
Takeushi & Saito 1972; Saito 1974; Henning & Hurford 2014;
Dumoulin et al. 2017). To our knowledge, only the study of
Henning & Hurford (2014) used a multi-layer method to predict
the tidal response of a variety of exoplanets. However, these lat-
ter authors considered interior models with constant values of
density, rigidity and viscosity for each internal layer. Here we
propose to compute the tidal response of exoplanets for a vari-
ety of compositions taking into account realistic interior models,
including variations of mechanical properties with depth.

With the growing number of detected exoplanets, a variety
of structural models have been developed this last decade to pre-
dict the internal structure of massive rocky planets and large icy
worlds (e.g., Valencia et al. 2006; Sotin et al. 2007; Seager et al.
2007; Grasset et al. 2009; Swift et al. 2012; Weiss & Marcy
2014; Dorn et al. 2015). These studies showed that the mass–
radius relationship is sensitive to planet composition, meaning
that accurate determination of planet mass and radius combined
with stellar elemental abundances may potentially provide con-
straints on the core size, mantle composition, and water fraction
of the planet. Even if the uncertainties are still relatively high
on the mass determination of small-size planets (e.g., Weiss &
Marcy 2014), we can already observe some compositional ten-
dencies. Rogers (2015) noticed, for instance, that most planets
with a radius larger than 1.6 R⊕ have density lower than terres-
trial planets suggesting a significant fraction of volatile material,
in the form of H/He atmosphere and/or water layers. Based on
2025 Kepler planets, Fulton et al. (2017) noticed that planets
tend to prefer radii of either ∼1.3 R⊕ or ∼2.4 R⊕, with rela-
tively few planets having radii of 1.5–2.0 R⊕, suggesting two
distinct planet classes: super-Earths below this radius transition
and mini-Neptunes above it. More recently, Wu (2019) showed
that this radius transition shifts systematically to a larger radius
for planets around more massive stars. Most of the detected plan-
ets have so far been found around low-mass stars. While taking
into account the stellar mass dependence, Wu (2019) showed that
the masses of super-Earth planets would peak around 8 M⊕ for
planets around Sun-like stars, suggesting that super-Earth plan-
ets may extend up to 10 M⊕. All the calculations and derived
scaling laws that we provide in the present study apply for solid
(rocky or icy) planets with no extended external envelop. There-
fore, for planet radii between 1.5 and 2 R⊕ and masses ranging
between ∼6 and 8 M⊕, our proposed scaling laws should be used
with care, after verifying that the derived density and estimated
surface temperature of the planets are consistent with solid rocky
or ice-rich planets.

In the present study, we perform a systematic computation
of the tidal response for planet masses ranging between 0.1 and
10 M⊕, with variable iron and water ice content. For that purpose,
we use a numerical code initially developed for computing the
tidal response of icy moons (Tobie et al. 2005), recently applied
to Venus and Earth (Dumoulin et al. 2017). In Sect. 2, we deter-
mine the internal structure of a planet as a function of its mass
and composition following the method of Sotin et al. (2007). The
rheological properties are adapted from the Earth case assuming
an Andrade viscoelastic rheology and are extrapolated to high-
pressure ranges (see Sect. 3). The method for computing tidal
deformation is presented in Sect. 4. Validation of the structural
and tidal computation is then presented for the Earth case in
Sect. 5. Section 6 displays the results for rocky planets, with var-
ious Fe/Si ratios, while Sect. 7 is devoted to ice-rich planets. For
both types of planets, we show that the tidal Love number can be
described as a function of planet mass using a relatively simple
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Fig. 1. Computed interior structure for a given mass and bulk composi-
tion. The bulk composition is defined relative to a reference composition
corresponding to the solar value for the Fe/Si and Mg/Si ratio and to the
terrestrial value for the Mg/(Mg+Fe) ratio in the silicate mantle. For
rocky planets, the water ice mass ratio is 0%, while it can reach val-
ues up to 50% for ice-rich planets. For the examples shown here, an ice
mass ratio of 20% is considered and planet masses of 1 and 10 M⊕ are
displayed. The interior structure is divided into three main layers: ice
mantle, rock mantle and iron core. The dashed lines indicate the sepa-
ration between the low-pressure and high-pressure phases for both ice
and silicate mantle.

relationship. We also present the sensitivity of the dissipation
function to planet mass, tidal frequency and assumed viscoelastic
parameters. Some applications of our derived scaling laws to a
selection of exoplanets are finally provided in Sect. 8.

2. Computation of the interior structure

We consider two classes of planets: rocky Earth-like planets, and
planets enriched in water ice. For the two planet classes, we con-
sider planet masses ranging between 0.1 and 10 M⊕. For a given
mass and assumed composition, the surface radius as well as the
radius of each internal interface is computed using the method
described below. The interior is assumed to be differentiated into
a metallic core (assumed fully liquid), a silicate mantle, divided
in an upper and lower mantle, and, for ice-rich planets, a thick
ice layer (see Fig. 1). We do not consider the possible presence of
external fluid envelops (dense atmosphere, magma ocean or liq-
uid water ocean) and leave these particular cases to be addressed
in future studies.

The interior structure is modeled using the approach of Sotin
et al. (2007). The same equations of state (EoS) and parameters
are used for all layers, except for the surface liquid water layer
which is replaced by low-pressure ices. The density profile in the
upper part of the silicate mantle (P< 25 GPa) as well as in the
low-pressure ice layers (P< 2.2 GPa) is computed with a Birch-
Murnaghan EoS, up to third order in finite strain. For simplicity,
no phase transition is considered in the upper rock mantle (P <
25 GPa) and the low-pressure ice layers. A Mie-Grunëisen-
Debye EoS is employed for the liquid iron core, the lower part of
the silicate mantle, and the high-pressure ice layer (Ice VII). The
iron-rich core is assumed to be entirely liquid, and therefore no
inner solid core is considered here. In all layers, the temperature
profile is assumed to follow an isentropic temperature profile.

The planetary composition is described in terms of bulk
ratios of Fe/Si and Mg/Si, the Mg content of the silicate mantle,
and the mass fraction of H2O. For simplicity, we consider a Mg
content in the silicate mantle equal to that of the Earth (defined
as the mole fraction Mg/(Mg+Fe) = 0.9) for the two classes of
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Fig. 2. Mass–radius relationship, normalized to the Earth, obtained
for rocky and ice-rich planets with various iron contents (−50%≤
δFe ≤+50%) and ice fractions (0≤ xice ≤ 50%), relative to the compo-
sition of Earth. Each point corresponds to the results obtained using the
modeling approach described above, based on Sotin et al. (2007). The
lines correspond to the scaling laws using the polynomial coefficients
provided in Table 1.

Table 1. First-order polynomial coefficients derived to reproduce the
M–R relationship (R/R⊕ =αM−R(M/M⊕)βM−R ) as a function of planet
composition for rocky and ice-rich planets: αM−R = a0 +a1 x; βM−R = b0 +
b1 x.

Rocky Ice-rich
(x = δFe) (x = xice)

αM−R
a0 0.987 0.997
a1 −0.055 0.432

βM−R
b0 0.281 0.281
b1 −0.001 −0.015

interior models. The reference values for Fe/Si and Mg/Si are
fixed to the solar values, 0.977 and 1.072, respectively. For the
rocky planets, the iron fraction is determined by the quantity:
δFe =

(Fe/Si)−(Fe/Si)⊕
(Fe/Si)⊕

, which varies between −50 and +50%. For
ice-rich planets, the iron content ratio is fixed to the reference
value (δFe = 0%) and only the ice fraction (xice = Mice/Mtot) is
varied between 0 and 50%.

Figure 2 displays the mass–radius relationship we obtained
by computing a range of interior models with various iron and
ice contents and the comparison with scaling laws using the
polynomial coefficients provided in Table 1.

3. Rheological parameters and assumptions

The viscoelastic response of the interior to tidal forces is con-
trolled by the density and the mechanical properties of each layer
composing the interior, namely the elastic bulk, shear modulii,
and viscosity. To model the viscoelastic response, we use an
Andrade rheology, which is consistent with existing experimen-
tal data on silicate minerals and ices (Castillo-Rogez et al. 2011;
Efroimsky 2012). Compared to the standard Maxwell rheology,
the Andrade rheology provides an accurate description of the
frequency dependency of both elastic and dissipative responses

on a wide range of forcing frequencies and periods. The Maxwell
rheology provides a reasonable description of viscoelastic behav-
ior for forcing periods close to the Maxwell time (defined as
the ratio between viscosity and the shear modulus), but strongly
underestimates viscous dissipation (or overestimates Q factor)
for forcing periods much smaller than the Maxwell time (e.g.
Sotin et al. 2009). The mantle of the Earth, for instance, has a
Maxwell time of the order of 10 000 yr, while the tidal forcing
is of the order of days. Applying a Maxwell rheology for the
computation of viscoelastic tides on Earth results in an overesti-
mation of the Q factor by several orders of magnitude (see, e.g.
Fig. 2 of Sotin et al. 2009), while, as we show in Sect. 5, an
Andrade rheology with appropriate parameters is able to repro-
duce the observed Q value for the interior of the Earth, at diurnal
tidal frequencies as well as at lower forcing frequencies.

Complex quantities taking into account this frequency
dependency are thus defined from the elastic “unrelaxed” shear
modulus µ, the elastic “unrelaxed” bulk modulus K, and the
Newtonian viscosity. The complex compliance, which corre-
sponds to the inverse of the complex shear modulus (µc(χ) =
1/J(χ)), is given for the Andrade model by:

J(χ) =
1
µ
− i
ηχ

+ β (iχ)−α Γ (1 + α), (1)

where χ is the tidal frequency, α and β are parameters describ-
ing the frequency dependence and the amplitude of the transient
response, and Γ is the gamma function. Comparison with avail-
able experimental data for rock and applications to the Earth
(see Sect. 5) indicate that the Andrade model is a good approx-
imation to describe the anelastic attenuation at tidal frequencies
(Castillo-Rogez et al. 2011). For the α parameter, we explore
a range of values varying between 0.2 and 0.3, which frames
the typical value required to explain the Q factor of the man-
tle of Earth (see Sect. 5). For the β parameter, following the
approximation of Castillo-Rogez et al. (2011), we assume that
β ' µα−1η−α, which is justified for olivine minerals (Tan et al.
2001; Jackson et al. 2002).

The elastic bulk isentropic modulus, K, is derived from the
density and pressure profiles: K = ρ dP

dρ . The shear modulus, µ, in
each solid layer is then estimated from the bulk modulus and the
pressure. For the silicate part, the following relationship is used:(
µ
K

)
sil

= 0.52 − 0.5 P
K for P < 25 GPa,

(
µ
K

)
sil

= 0.63 − 0.885 P
K for

P > 25 GPa, which accurately reproduces the shear modulus
profile of the mantle of Earth (Dziewonski & Anderson 1981;
Stacey & Davis 2008). For pressures above 130 GPa, we assume
a similar relationship. For the ice layers, a similar relationship
constrained from existing experimental data at high pressures
(Polian & Grimsditch 1983) is used:

(
µ
K

)
ice

= 0.6−0.9 P
K . We note

that
(
µ
K

)
= 0.6 corresponds to a Poisson body.

The viscosity is assumed to increase due to phase transition
(ice I > high-pressure ice; low-pressure silicate mantle > high-
pressure silicate mantle > very-high-pressure silicate mantle) or
due to composition change (ice > rock). For sake of simplicity,
the viscosity is assumed constant in each sublayer. The vis-
cosity in the ice layers typically varies within the range 1014–
1016 Pa s for low-pressure ice (ice I to Ice VI) and 1016–1018

Pa s, and possibly even larger values (e.g. Durham et al. 1997),
for high-pressure ices (ice VII). Based on estimates for Earth, the
viscosity in the silicate mantle typically varies within 1019–1021

Pa s in the upper mantle and 1022–1023 Pas in the lower mantle
(e.g. Čížková et al. 2012, and references therein). For larger plan-
ets, the silicate viscosity is expected to strongly increase above
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Table 2. Viscoelastic parameters used to compute the tidal response.

ηref (Pa s) ηmin − ηmax µ (GPa), K (GPa)

Ice
P < 2.2 GPa: 1015 1014–1016 µ= 3.3, K = 10
P > 2.2 GPa: 1017 1016–1018 (µ/K) = 0.6–0.9P/K

Silicate
P < 25 GPa: 5 × 1020 5 × 1019–5 × 1021 (µ/K) = 0.52–0.5P/K
P > 25 GPa: 5 × 1022 5 × 1021–5 × 1023 (µ/K) = 0.63–0.9P/K
P > 130 GPa: 5 × 1025 5 × 1022–5 × 1026 (µ/K) = 0.63–0.9P/K

Notes. Apart from the low-pressure ice mantle (P < 2.2 GPa), where
the shear and bulk moduli (µ,K) are assumed constant, the elastic
parameters are derived from the density profiles computed using the
method presented in Sect. 2 and the viscosity, η is assumed constant in
each layer and has a prescribed value comprised between ηmin and ηmax.

∼120 GPa, possibly up to 1025−1026 Pa s and more (e.g. Karato
2011; Tackley et al. 2013).

The behaviour of the viscosity at the very high pressure
and temperature conditions of extra-solar planets is a current
matter of debate (e.g. Mocquet et al. 2014). Stamenković et al.
(2012) used a semi-empirical homologous temperature approach
to scale enthalpy variations with melting temperature and to
assess the very high pressure and temperature dependence of the
viscosity. They obtained a factor of two reduction for the acti-
vation volume of Mg-perovskite between 25 GPa and 1.1 TPa,
resulting in a viscosity increase by approximately 15 orders of
magnitude through the adiabatic mantle of a 10-M⊕ planet. Their
results contrast with the conclusions of Karato (2011) that vis-
cosity should decrease with pressure when the latter exceeds
approximately 0.1 TPa. Tackley et al. (2013) argued that thermal
convection through a self-regulation effect controls the viscos-
ity values reached at high pressure and should be of the order
of 1025–1026 Pa s and remain relatively constant with depth.
Moreover, as shown in the case of Venus, the tidal response for
interiors with viscosity that varies with depth is comparable to
that computed for interiors with constant viscosity (equal to the
average of the variable profile; Dumoulin et al. 2017), meaning
that depth-variable viscosity can be reasonably neglected at first
order.

For each layer, we define a reference viscosity which is
equal to 5 × 1020 Pa s in the low-pressure silicate mantle layer,
5.1022 Pa s in the high-pressure silicate mantle layer (corre-
sponding to the upper mantle and lower mantle of Earth,
respectively), and 5 × 1025 Pa s in the very-high-pressure silicate
mantle, existing for M ≥ 1 M⊕ (see Table 2).

4. Computation of the viscoelastic tidal response

The viscoelastic deformation of the planet interior under the
action of periodic tidal forces is computed following the method
of Tobie et al. (2005), adapted to terrestrial planets in Dumoulin
et al. (2017). The iron core is supposed to be fully liquid, invis-
cid, and incompressible, following the static formulation of Saito
(1974), and all the other layers consist of viscoelastic compress-
ible solids. Using the density profile and rheological properties
determined using the methodology described in Sect. 3, the
Poisson equation and the equation of motions are solved for
small perturbations in the frequency domain for compressible
media (assuming finite values for the bulk modulus, K) and
assuming an Andrade viscoelastic rheology (e.g. Castillo-Rogez
et al. 2011).

The potential Love number, k2, characterizing the potential
perturbation, and the dissipation function, Q−1, are computed
by integrating the six complex radial functions associated with
the radial and tangential displacements, the radial and tangential
stresses, the gravitational potential and the potential continu-
ity, as defined by Takeushi & Saito (1972). The formulation
of the spheroidal deformation developed by Takeushi & Saito
(1972) was initially derived for the elastic case. Nevertheless,
as explained in Tobie et al. (2005), the same formulation can
be used for the viscoelastic case by solving it in the frequency
domain and by defining complex shear and bulk modulii, equiv-
alent to the elastic modulii used in the elastic problem. For more
details, please see Tobie et al. (2005) where applications to icy
moons using a Maxwell rheology are presented. Here we use
the Andrade rheological model, which is more appropriate and
accurately reproduces the dissipation function of the interior of
the Earth as well as its frequency dependence over a wide range
of frequencies (see Sect. 5).

For the fluid core, the simplified formulation of Saito (1974)
relying on two radial functions, is employed assuming a quasi-
static and nondissipative fluid material. The solution in the solid
part of the interior is expressed as the linear combination of three
independent solutions, which reduces to two independent solu-
tions in the fluid part. The system of six differential equations
is solved by integrating the three independent solutions using
a fifth-order Runge-Kutta method with adaptive step-size con-
trol from the center (r = 0 km) to the planet surface (r = RP)
and by applying the appropriate boundary conditions (see for
more details Tobie et al. 2005). For a given frequency, the com-
plex Love numbers, k∗2, is determined from the radial function
of the potential at the planet surface (r = RP), and the global
dissipation function, Q−1, is equal to the ratio between the imag-
inary part and the modulus of the complex Love number k∗2 :
Q−1 ==(k∗2)/‖k∗2‖.

5. Model validation on the Earth case

Figure 3 compares our synthetic profiles of density, ρ, bulk
modulus, K, and shear modulus, µ, derived following the
method described in Sect. 2 and using the reference parameters
(Fe/Si = 0.977, Mg/Si = 1.072, Mg/(Mg+Fe) = 0.9), to the Prelim-
inary Reference Earth Model (PREM; Dziewonski & Anderson
1981). The density and bulk modulus is accurately reproduced
throughout the entire silicate mantle, with only some slight
departure in the upper mantle as we neglect any phase transition
occurring in this layer. Obviously, as we neglect the presence of
a solid inner core, the density is underestimated in the inner part
of the core, which has only minor effects on the tidal response.

For viscosities in the ranges of 1020–1021 Pa s and 1022–
1023 Pa s in the upper and lower mantles, respectively, α param-
eters between 0.2 and 0.3, and using the PREM profiles for ρ,
µ and K, we obtain a potential Love number for a semi-diurnal
tidal period between 0.302 and 0.306, which is consistent with
the observed value estimated between 0.304 and 0.312 (Table 3,
Ray et al. 2001). At the period of 18.6 yr, we also obtained a k2
value consistent with the value inferred from observations. Using
the synthetic profiles, we obtain a slightly smaller value (0.299–
0.302 at 12.42 h and 0.312–0.336 at 18.6 yr) due to the modest
difference in the density profile related to the absence of a solid
inner core in our synthetic model. This remains, however, very
close to the value for Earth, the discrepancy being less than 1%.

As illustrated in Fig. 4, the modeled Q value is very sensitive
to the assumed values of mantle viscosity and α parameter. At
the period of semi-diurnal tide (M2), for a lower mantle viscosity
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Table 3. Comparison between observed and computed k2 and Q at different forcing periods for the solid Earth (corrected from ocean tides), using
0.23 ≤ α ≤ 0.28, 0.2 × ηref ≤ η ≤ 2 × ηref .

12.42 h 13.66 d 433 d 18.6 yr

Observed
k2 0.304–0.312 (a) – – 0.337–0.340 (b)

Q 230–360 (a) 65–135 (c) 50–150 (d) 10–30 (b)

Computed
k2 (PREM) 0.302–0.306 0.304–0.311 0.309–0.323 0.318–0.341
k2 (synth.) 0.299–0.302 0.300–0.306 0.304–0.318 0.312–0.336

Q 200–380 80–190 40–80 20–40

References. (a)Ray et al. (2001); (b)Benjamin et al. (2006); (c)Ray & Egbert (2012); (d)Furuya & Chao (1996).
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Fig. 3. Comparison between our synthetic profiles (solid line) of den-
sity, ρ, bulk modulus, K, and shear modulus, µ, derived following the
method described in Sect. 2 with those of the Preliminary Reference
Earth Model (PREM; Dziewonski & Anderson 1981) (dotted line),
assuming an interior composition corresponding to the reference case
(see Table 2).

Fig. 4. Computed Q factor of the solid mantle of Earth for the 12.42-h
tidal period using the synthetic profile displayed in Fig. 3 for various
values of viscosity for the lower high-pressure (HP) mantle, ηHP (with
ηLP/ηHP = 100) and of α parameter for the Andrade rheological model.
The bold black line indicates the estimated value of Q for the interior
of Earth and the gray area shows the uncertainty range estimated by
Ray et al. (2001).

in the range 1022–1023 Pa s, consistent with existing geophysical
constraints (Čížková et al. 2012), the Q value of Earth of about
230–360 inferred from satellite tracking and altimetry (Ray et al.
2001) can be reproduced for α values between 0.22 and 0.29. For

this range of α, we verified also that we reasonably reproduce
the frequency dependence of the Earth Q (see Table 3), inferred
from the fortnightly M f tide (13.66 days; Ray & Egbert 2012),
the Chandler Wooble (433 days; Furuya & Chao 1996; Benjamin
et al. 2006) and the 18.6-yr tide (Benjamin et al. 2006).

6. Results for rocky planets

Figure 5 displays the computed k2 as a function of planet mass
for three iron contents ranging between −50 and +50%, relative
to the reference value. Planets with higher iron content can be
seen to be characterized by higher k2, which is explained by the
larger size of the liquid iron core, resulting in a larger deforma-
tion of the silicate mantle. For all tested values of iron content,
we find that the dependency of k2 with mass can be scaled
to the surface gravity relative to the Earth using the following
relationship:

k2(δFe) = k1M⊕
2 (δFe) −

1 −
(
g
g⊕

)2

1 +
(
g
g⊕

)2

 × ∆k2(δFe) (2)

with g being gravity. The factor k1M⊕
2 corresponds to the k2 value

for a mass equal to that of the Earth. ∆k2 corresponds to the
correction that should be considered relative to the mass of Earth
to reproduce the k2 value for mass ranges between 0.1 and 10 M⊕.
For masses below 0.1 M⊕ and above 10 M⊕, our interior model
is no longer valid as the relationship between µ , K, and ρ likely
diverge from that based on the Earth. The scaling law we derived
here for k2 is therefore only valid in the range of 0.1–10 M⊕.

We also derived the variations of the coefficients k1M⊕
2 (δFe)

and ∆k2(δFe) as a function of iron content using a polynomial
fit to degree 2 with x = δFe. The coefficients derived from this
polynomial fit are provided in Table 4. As shown in Fig. 5, this
simple relationship reproduces k2 relatively well over the whole
range of masses tested here (0.1–10 M⊕). The tidal frequency and
assumed viscosity have only a very minor effect on k2 (less than
1%) as the tidal response is dominated by the elastic response for
the range of tidal period tested here (0.5–100 days).

For the dissipation factor, Q, we also observe a systematic
increase as a function of planet mass as well as a dependency
with iron content (which controls the ratio between mantle thick-
ness and core radius). However, Q is much more sensitive to
tidal frequency and mantle viscosity than the mass and inter-
nal structure (Fig. 6). As expected (e.g. Efroimsky 2012), Q
decreases with increasing forcing periods and decreasing viscos-
ity. For high viscosity values in the very-high-pressure rock layer,
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δFe=+50%

δFe=-50%

δFe=-25%

δFe= 0%
δFe=+25%

Earth

Fig. 5. Computed k2 for rocky planets with mass ranging between 0.1
and 10 Earth’s mass and iron content varying between −50 and +50%
relative to the reference value, for a tidal period of 1 day. The lines rep-
resent the fit based on Eq. (2) and the polynomial coefficient provided
in Table 4.

Table 4. Third-order polynomial expansion coefficients of k2 as a func-
tion of composition and planet mass for rocky and ice-rich planets:
k1M⊕

2 (x) = a0 + a1 × x + a2 × x2 + a3 × x3 and ∆k2(x) = b0 + b1 × x + b2 ×
x2 + b3 × x3.

Rocky Ice-rich
(x = δFe) (x = xice)

k1M⊕
2
a0 0.2997 0.2998
a1 0.1466 −0.9826
a2 −0.0198 2.836
a3 −2.659

∆k2
b0 0.1688 0.1687
b1 0.0219 −0.5691
b2 −0.0328 1.997
b3 −2.266

Q increases with planet mass as the proportion of the rock mantle
with P> 130 GPa and hence the average viscosity of the mantle
increases with mass. For planet masses below 1 M⊕, we note
also a strong decrease of Q, which is explained by a decrease of
the silicate mantle viscosity as the low-pressure phase becomes
more predominant with decreasing mass.

We did not find any straightforward scaling for the Q vari-
ations as a function of planet mass. Nevertheless, for a given
planet mass, we found that the variation of Q as a function of
tidal frequency, viscosity, iron content and α parameter can be
reproduced with the following relationship:

Q = 10(A+Bα) ×
(

χη

χrefηref

)α
, (3)

with ηref being the reference value for the viscosity profile (see
Sect. 2) and χref = 2π/1day. As illustrated in Fig. 7, this scaling
reproduces the Q factor very well for a wide range of viscosity,
frequency and iron content. This scaling remains valid as long
as the tidal period is much smaller than the Maxwell time, τM ,
defined as the ratio between the viscosity, η, and the shear mod-
ulus, µ. For the range of viscosity tested here, the Maxwell time

a)

ηVHP=5.1025 Pa.s

ηVHP=5.1022 Pa.s

1 day

δFe=-50%

δFe=+50%

b)
ηVHP=5.1025 Pa.s

1 day

10 days

100 days

ηVHP=5.1022 Pa.s

δFe=0%

Fig. 6. Computed Q factor for rocky planets with mass ranging between
0.1 and 10 Earth masses (a) for a tidal period of 1 day and three iron
content values varying between −50 and +50% relative to the reference
value, and (b) for the iron content of the Earth and three tidal peri-
ods of 1 (square), 10 (triangle) and 100 (diamond) days. Two extreme
values are considered for the very-high-pressure rock viscosity (ηVHP):
5 × 1022 Pa s (gray) assuming no viscosity increase relative to the refer-
ence Earth lower mantle and 5.1025 Pa.s (black) assuming a factor 1000
increase relative to the reference, i.e. the lower mantle of the Earth.
Curve symbols are the same as in Fig. 2.

is always larger than 100 yr (up to 1 million years for massive
highly viscous exoplanets), which is much longer than the tidal
periods we considered (<100 days).

7. Results for ice-rich planets

For ice-rich planets, we observed similar tendencies as a function
of mass to those for rocky planets (Fig. 8). The dependencies
of the k2 coefficients (Eq. (2)) as a function of ice content can
be well reproduced using a polynomial fit up to degree 3 with
x = xice, corresponding to the mass fraction of ice relative to the
total planet mass. The corresponding coefficients are provided in
Table 4.

As shown on Fig. 9, Q varies only moderately with planet
mass. It is mostly sensitive to the ice fraction, viscosity and forc-
ing frequency. Like for the rocky planets, we noticed a systematic
dependency with frequency and viscosity. However, for ice-rich
planets, this dependency is more complex as the Maxwell time
of the ice layer, τM = η/µ, is much shorter and hence comparable
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Fig. 7. Scaling of the Q factor as a function of mantle viscosity η, tidal
frequency χ, Andrade α parameter, and iron content, δFe, relative to
reference values (ηref = 5 × 1022 Pa s, χref = 2π/1day), for four planet
masses (1, 2, 5 and 10 M⊕).

xice= 50%

xice= 20%

xice= 10%

xice= 0%

Fig. 8. Computed k2 for ice-rich planets with masses ranging between
0.1 and 10 Earth masses and H20 mass fraction up to 50% relative
to total mass. The lines represent the fit based on Eq. (2) and the
polynomial coefficient provided in Table 4.

to the tidal period. For ηχ values ranging between 109 and
1010 Pa, Q reaches a minimal value, which varies between 2 and
7 depending on the ice content and planet mass (Figs. 10, 11).
For ηχ� 1010 Pa, Q follows a behavior comparable to the rocky
planets with Q∼ (ηχ)α. When approaching values of typically
1010–1011 Pa, the frequency–viscosity dependency changes to
Q ∼ ηχ. Furthermore, after the minimal Q value is reached,
ηχ � 1010–1011 Pa, the ηχ-dependency becomes negative, Q ∼
(ηχ)−1, consistent with the prediction for a Maxwell model (e.g.
Efroimsky 2012).

This indicates a progressive change from an Andrade-like
behavior to a Maxwell behavior with decreasing ηχ. For forcing
periods between a few days and a few tens of days and vis-
cosity between 1016 and 1018 Pa s, the values of ηχ typically
ranges between 1010 and 1012 Pa s, corresponding to an inter-
mediate regime between Andrade and Maxwell behaviors. A
purely Maxwell regime can be reached only for very long forcing
periods (>100 days) or low viscosity values (≤1014–1015 Pa s).

1 day

xice= 20%

xice= 50%

xice= 10%

xice= 0%

100 days

Fig. 9. Computed Q factor for ice-rich planets with masses ranging
between 0.1 and 10 Earth masses for two tidal periods (1 day in black
and 100 days in gray) and three values of ice fraction (10% – cross,
20% – triangle, and 50% – diamond) for a HP ice viscosity of 1018 Pa s
and the reference viscosity profile for the rocky part (see Sect. 2). Curve
symbols are similar to those in Fig. 2.

We find that the Q factor variations as a function of ηχ can
be qualitatively reproduced by the following relationship:

Q =
Qmin/2

X
+

(
2

QminX
+

1
Qα

)−1

, (4)

where Qmin is the minimal value of Q, X = (ηχ)/(ηχ)Q = Qmin

and Qα is a function depending on the α-parameters similar to
Eq. (3). However, as the function Qα for ice-rich planets varies
as a function of planet mass and composition in a more com-
plex manner than for rocky planets, we failed to derive a good
fit as a function of ice content comparable to what was obtained
for the rocky planet (see Fig. 7). As displayed in Fig. 11, for
rocky planets, the ηχ values are in a range where the frequency–
viscosity dependence is controlled by the α parameter of the
Andrade model (Eq. (1)), while ice-rich planets are in a regime
in transition between a Maxwell and Andrade behavior, making
the frequency–viscosity dependence more complex. For ice-rich
planets, Q is lower than 100 with minimal values as low as
2, while for rocky planets Q typically varies between 100 and
1000, depending mostly on the planet mass and internal viscosity
(Fig. 11).

8. Applications to a selection of solid rocky and
ice-rich exoplanets

We applied the scaling laws derived here to a selection of exo-
planets with masses comprised between 0.1 and 10 M⊕, either a
rocky or ice-rich composition, and a low surface temperature in
order to avoid surface melting (for ice or rock; see Table 5). In
order to derive a meaningful planet composition, we also chose
planets for which both masses and radii were determined with
relatively good accuracy (<5–10%). For each planet, we deter-
mined the composition in terms of iron content (for water-free
rocky planets) or ice content (for ice-rich planets) compatible
with the range of their observed mass and radius using the M–R
relationship provided in Table 1. Subsequently, the Love number
k2 was determined using the scaling laws provided in Table 4.
The Q factor was estimated from the values computed for planet
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Fig. 10. Computed Q factor for ice-rich planets with masses of 1 (a),
5 (b), and 10 (c) M⊕, and three ice contents (10, 20, and 50%), as a
function of viscosity η and tidal frequency χ for the ice mantle. The
vertical thick black segments indicate the expected values of Q for three
planet candidates (Trappist-1 f, Trappist-1 g, and K2-240 c) for a high-
pressure ice viscosity of 1016Pa s. The black arrows indicate the trend if
larger ice viscosity values are considered.

masses of 1, 5 and 10 M⊕ (see Figs. 7 and 10) and then extrap-
olated to the corresponding planet mass. As shown in Figs. 7
and 10, the Q factor strongly depends on the assumed viscosity.
In Table 5, we provide the values estimated for a given viscosity
profile in order to highlight the sensitivity to planet composition.

Q
 ~ (ηχ) -1

Qα 
~ (η

χ)
α

α=0.
2

α=0
.3

Ice-rich planets Rocky planets

Qmin

(ηχ)Qmin

Fig. 11. Evolution of Q as a function of internal viscosity and tidal
frequency for ice-rich and rocky planets.

For rocky planets, the Q factor is calculated by considering the
reference viscosity profile (see Sect. 2) using Eq. (3). For ice-rich
planets, the Q factor is estimated for a viscosity of high-pressure
ice of 1016 Pa s (e.g. Durham et al. 1997), which can be con-
sidered as a reasonable lower limit (ηmin). Table 5 and Figs. 12
and 13 summarize the results obtained for six exoplanets: three
rocky ones and three ice-rich ones.

8.1. Rocky planets

Kepler-36 b. This planet is consistent with an iron content
larger than that of Earth, possibly up to 50%. However, due to the
uncertainties on the mass determination, an iron content slightly
lower than that of Earth (down to −23.5%) is also possible. Also,
a small fraction of water cannot be excluded, but for simplicity
we consider only a rocky composition.

LHS 1140 b. This planet is consistent with an iron content
smaller than that of Earth possibly down to −50%. Here again,
due to the relatively large uncertainty on the mass determina-
tion, a larger iron content cannot be excluded. Alternatively to
a low iron content, the mass and radius of this planet could be
explained by a small fraction of water ice (up to 5–10% depend-
ing on the iron content). We consider here only the rocky case.

Trappist-1 e. Among the three planets, this is the planet
containing the largest iron content. Even if both radius and mass
are determined with very good accuracy, the uncertainty on iron
content remains relatively large as the M–R relationship is less
sensitive to iron content in this mass range. As a consequence,
a slightly subterrestrial iron content cannot be excluded. On the
other hand, it is possible that the iron content exceeds 50% of
the value for Earth. However, as we did not perform any compu-
tation above this value, we cannot estimate the upper limit with
confidence in terms of iron content. This translates to an indeter-
mination of the upper limit for k2, indicated by a dotted line on
Fig. 12.

The Love number, k2, is mostly sensitive to the iron content
of the planet, and also is slightly sensitive to planet mass for
masses below ∼2 M⊕ (Fig. 12). Relatively large uncertainties on
the iron content translate to equally large uncertainty on k2. As
already illustrated in Fig. 6, the Q factor is much less sensitive
to iron content and depends mostly on the forcing period and
the assumed internal viscosity. As a consequence, assuming the
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Table 5. Characteristics for a selection of rocky and ice-rich exoplanets.

Planet Reference Porb (days) M/M⊕(∗) R/R⊕ (∗) x k2 Q

Rocky x = δFe Q(ηref)

Kepler-36 b (Carter et al. 2012) 13.84 4.454.78
4.18 1.4861.521

1.451 0.164>0.5
−0.235 0.4290.488

0.358 120–150
LHS 1140 b (Ment et al. 2019) 24.73 6.987.87

6.09 1.7271.759
1.695 −0.2960.267

<−0.5 0.3680.470
0.297 100–140

Trappist-1 e (Grimm et al. 2018) 6.10 0.7720.851
0.697 0.910.936

0.883 0.457>0.5
−0.116 0.360>0.383

0.258 220–280

Ice-rich x = xice Q(ηmin)

K2-240 c (Díez Alonso et al. 2018) 20.52 4.65.3
4.3

(∗∗) 1.82.1
1.7 0.417>0.5

0.235 0.2090.223
0.163 3–20

Trappist-1 f (Grimm et al. 2018) 9.21 0.9341.014
0.856 1.0461.075

1.016 0.11550.163
0.055 0.1850.230

0.156 50–100
Trappist-1 g (Grimm et al. 2018) 12.35 1.1481.246

1.053 1.1481.179
1.115 0.1930.258

0.131 0.1620.188
0.143 20–50

Notes. (∗)The indice and exponent values correspond to the published maximal and minimal values. (∗∗)Planet mass estimated from the M–R
relationship of Weiss & Marcy (2014).
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Fig. 12. Predicted k2 using Eq. (2) for a selection of three rocky exo-
planets (Trappist-1e, Kepler-36 b, LHS 1140 b) from their mass, radii,
and iron content, δFe derived from the M–R relationship provided in
Table 1. Curve symbols are similar to those in Fig. 2.

same reference viscosity structure, the planet LHS 1140 b has
the lowest Q factor among the three planets, as its orbital period
is the largest one. As already mentioned, the values of Q factor
listed in Table 5 have been calculated assuming the reference
viscosity structure and an α parameter of 0.25. The viscosity may
vary by a factor of 10–100 relative to the reference value, which
results in Q values possibly three to four times larger. The values
listed in Table 5 should be considered only as indicative. For any

other viscosity and α values, the Q factor can be estimated using
Eq. (3).

8.2. Ice-rich planets

K2-240 c. We chose this planet as a possible represen-
tative of ice-rich planets of masses of the order of five times
that of Earth. Among the catalog of detected exoplanets, we did
not find any planet in this range of mass with surface temper-
ature low enough to be compatible with cold icy surfaces. The
surface temperature of K2-240 c is estimated to 389 K (Díez
Alonso et al. 2018), which is the lowest temperature we found
for this range of planet size. For this planet, only the radius has
been constrained from transit measurements. The mass has been
estimated using the only M–R relationship, following the law
published by Weiss & Marcy (2014). Radial-velocity follow-up
should be able to provide some constraints on the mass in the
near future. Based on the published mass estimate, we concluded
that this planet is an ice-rich planet with ice content approaching
50%, and possibly even more.

Trappist-1 f. This planet has an estimated surface tempera-
ture of 219 K, compatible with a cold icy surface. The mass and
radius constraints imply that the planet contains at least 5% of
water ice (assuming that the rocky part has a composition com-
parable to the Earth). Its ice content may reach values of 16%,
and even larger values if iron-enrichment is considered in the
rocky interior.

Trappist-1 g. This planet has an even lower surface temper-
ature (199 K, Gillon et al. 2017) and ice content slightly higher
than Trappist-1 f. Using our M–R relationship, we estimated the
ice content to range between 13 and 26%.

The computed Love number for ice-rich planets is about
half the values obtained for rocky planets at comparable masses
(Fig. 13). By contrast, ice-rich planets are significantly more dis-
sipative than rocky ones, with Q values possibly as low as 3; such
as in the case of K2-240 c for example. This strongly depends
on the assumed values for the viscosity of ice at high pressure
however, which is not well constrained. The Q values listed in
Table 5 correspond to the expected values for a viscosity of
1016 Pa s, which should be considered as the lowest estimate. For
viscosity values ten times higher, Q can reach values exceeding
100 for Trappist-1 f and g, and thus become comparable to the
Q factor predicted for rocky exoplanets. The Q factor provided
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Fig. 13. Predicted k2 using Eq. (2) for a selection of three ice-rich exo-
planets (Trappist-1 f, Trappist-1 g, K2-240 c) from their mass, radii,
and the ice content, xice derived from the M–R relationship provided in
Table 1. Curve symbols are similar to those in Fig. 2.

here is only indicative and should be considered as the lowest
estimate.

9. Conclusion

In the present study, we computed the tidal response of rocky
and ice-rich solid exoplanets for masses ranging between 0.1 and
10 Earth masses. Accurate determination of the tidal parame-
ters of exoplanets (k2 and Q) taking into account their interior
structure and rheology is essential to better characterize their
rotational and orbital history, which has a direct impact on their
climate stability and habitability. We showed that the ampli-
tude of tidal response, characterized by the gravitational Love
number, k2, depends mostly on planet mass and the internal strat-
ification (mostly controlled by the bulk composition). We found
that for a given planet composition k2 is mostly controlled by
self-gravitation and increases as a function of planet mass; for
a given mass, it depends on the relative size of the iron core,
and hence on the bulk iron fraction. For a given mass, the pres-
ence of outer ice layers reduces the amplitude of tidal response
compared to rocky planets with no ice. This reduction is con-
trolled by the ice fraction. For both types of planet (rocky and
ice-rich), we proposed relatively simple scaling laws to predict
k2 as a function of radius, planet mass, and composition.

For the Q factor, we did not find any direct control by the
planet mass, which contrasts with the prediction of Efroimsky
(2012) who assumes a homogeneous interior. However, as in
this latter author, we observed a decrease of dissipation rate
with increasing mass (larger Q with large planets), but not for

the same reason. The reduction of dissipation rate is attributed
here to the increase of mantle viscosity, which is expected
to increase with pressure and hence with planet size (Tackley
et al. 2013), while Efroimsky (2012) attributed it to self-gravity
effects. While prediction using homogeneous body formulation
is a relatively good approximation for small undifferentiated
bodies, it does not describe correctly the tidal response of large
planets. The effect of density stratification, the increase of elas-
tic parameters and viscosity with increasing pressure, and the
presence of a central liquid metallic core cannot be taken into
account with such a simplified formulation.

Consistent with the results of Henning & Hurford (2014),
we obtained a strong increase of dissipation rate (decrease of
Q factor) for ice-rich planets compared to ice-free planets. This is
explained by the relatively low viscosity of ice, which is expected
to be several orders of magnitude below that of rocks. However,
we should keep in mind that the effect of pressure is not well con-
strained and that it might approach values similar to rock near the
melting point (1018–1019 Pa s). Viscosity is known to be strongly
dependent on temperature, and therefore both temperature and
viscosity profile should be modeled in a consistent way. In the
present work, we assumed constant viscosity in each internal
layer for simplicity and did not take into account coupling with
thermal evolution as was done for instance by Běhounková et al.
(2011) who dedicated their study to Earth-like planets. Future
works are required to determine the influence of thermal struc-
ture on the dissipation rate and the retroaction of tidal dissipation
on thermal evolution.

For planets orbiting at close distance to their stars, tidal dissi-
pation may significantly contribute to the planetary heat budget.
The amount of heat potentially dissipated depends primarily
on the orbital configuration but also on the internal properties
of the planets. The approach we developed in the present study
allow the global tidal dissipation and its distribution in the plan-
etary interior to be computed. We decided to focus here on the
global tidal parameters, k2 and Q, which are directly relevant to
determining the retroaction of tidal friction on the orbital and
rotational evolution of exoplanets. The distribution of heat dissi-
pation in the interior and its implications for thermal evolution
is addressed in a companion study dedicated to the Trappist-1
system (Breton et al. 2018, and in prep.). More generally, the
methodology described in the present paper can be applied to any
kind of solid exoplanet and can easily be coupled to any thermal
or orbital evolution code.
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