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Abstract:  

Egg-laying behavior is one of the most important aspects of female behavior, and has a 

profound impact on the fitness of a species. As such, it is controlled by several layers of 

regulation. Here, we review recent advances in our understanding of insect neural circuits that 

control when, where and how to lay an egg. We also outline outstanding open questions about 

the control of egg-laying decisions, and speculate on the possible neural underpinnings that 

can drive the diversification of oviposition behaviors through evolution. 
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INTRODUCTION 

Egg-laying is a dominant aspect of the reproductive biology of insects. With the few 

exceptions of larviparous insects, or insects providing parental care to their progeny, the 

deposition of an egg on a given substrate represents the last decision a female insect makes in 

favor of her progeny. There is therefore a heavy evolutionary weight on the process of how to 

lay an egg, and on the decision of when and where to lay an egg. Natural selection seems to 

have affected these two aspects – the process and the decision – in different ways, leading to a 

contrasting pattern of overall conservation of the former, and diversification of the latter. 

 

The need to tightly regulate when and where to lay an egg demands neuronal controls acting 

at multiple levels (e.g. peripherally, centrally) and across a wide range of timescales, along 

with the coordination between these controls. A gravid female will first need to commit to the 

laying of eggs, and switch her behavioral drive toward that goal. This decision process is 

initiated by mating-derived cues that promote egg-laying behaviors immediately and durably. 

Subsequently, the female must find a suitable site for egg deposition, detecting and exploiting 
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multimodal sensory cues associated with preferred substrates to guide this search. Finally, the 

female must execute the decision, releasing a tightly coordinated sequence of internal and 

external behaviors that culminate in the deposition of the egg in or on the substrate. Below, 

we review the neurons and circuits involved in the control of when, where and how insects 

lay eggs, highlighting their similarities over long phylogenetic distances, as well as their 

differences. Elaborating on this overview, we discuss outstanding questions about the control 

of oviposition and speculate on what neuronal changes likely evolved to accommodate the 

diversification of oviposition behaviors observed across insects. 

 

WHEN TO LAY AN EGG 

The timing of oviposition is not simply a matter of a site suitability, it is largely conditioned 

by changes in a female's internal state. The phenomenology of these temporal changes has 

been identified and extensively described during the 20th century. It is governed by successful 

mating in the first place, but is also influenced by circadian and seasonal rhythms. The 

mechanisms underlying the temporal control of oviposition, however, have only recently 

began to be unraveled. What are the precise signals? How does a female insect sense these 

external triggers? How is the information relayed to her brain or to other organs involved in 

egg production? 

 

The notion of a post-mating switch, a radical change in the overall reproductive drive of a 

female, breaks down in a suite of smaller behavioral and physiological changes geared 

towards egg production – packing particular food resources – and egg deposition – actively 

searching for an oviposition site (reviewed in (Gillott, 2003)). This implies the existence of 

molecular triggers, sensory receptors, and likely entire neuronal circuits and molecular 

pathways, which distribute the information and determine sustained motor and metabolic 

changes. 

 

Post-mating switch 

While insect reproductive behaviors are innate and produced by a tightly regulated 

developmental program (Arthur et al., 1998), these behaviors are subject to modulation. The 

post-mating switch of a female insect is a clear example of modulation, one for which the 

causal link between a complex stimulus (copulation) and the behavioral output is understood 

at the genetic and neuronal level in many organisms. 

 

The female post-mating switch has been described in several insect species (reviewed in 

(Gillott, 2003; Lenschow et al., 2018), however, it is best understood in Drosophila. In D. 

melanogaster, the post-mating switch becomes manifest within minutes or hours of mating 
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(Mack et al., 2006; Rezaval et al., 2014) and is sustained over days (Ram and Wolfner, 2007). 

It entails visible and durable changes in behavior including the rejection of courting males, 

and increased locomotor activity (Ferguson et al., 2015) and feeding (Carvalho et al., 2006). 

In particular, mated female flies develop a strong appetite for certain nutrients favorable to 

egg production such as polyamines (Hussain et al., 2016), in line with the increase in egg 

production triggered by mating (Heifetz et al., 2000; Soller et al., 1999). The post-mating 

response also reflects in an abrupt modification of gene expression (McGraw et al., 2008), 

notably in the female reproductive track (Mack et al., 2006) and likely in a tissue-specific 

manner in other parts such as the fat body or the brain (McGraw et al., 2008). Interestingly, 

while the suite of post-mating female responses is a robust signature of each species, there is 

also noticeable natural variation for these responses within-species that can for instance be 

measured in different levels of post-mating gene expression between flies from different 

geographical origins (Delbare et al., 2017). 

 

Sensing the mated state 
In sensory terms, mating involves at least two modalities: 1) chemosensation, through the 

molecular load delivered by the male to the female reproductive tract, and 2) 

mechanosensation, through the act of copulation per se, or possibly the stretch of sperm-

storage organs when they are filled 

 

Chemosensation. The male ejaculate contains, in addition to spermatozoids, a fast evolving 

cocktail of hundreds of proteins, peptides and transcripts (e. g., (Bono et al., 2011; Findlay et 

al., 2008; Kelleher et al., 2009)), as well as pheromones (e. g., cis-vaccenyl acetate or cVA, 

(Brieger and Butterworth, 1970)). These proteins encompass a variety of molecular functions 

meant to facilitate sperm transfer – including proteases, odorant binding proteins, and 

molecules involved in lipid metabolism – while a subset act as triggers capable of influencing 

the post-copulatory behavior of the female. The best characterized of these molecules, Sex 

Peptide (SP), was identified in Drosophila (Chen et al., 1988). It is not particularly well 

conserved across insects, but the study of its function offers an explicit framework to think of 

chemical triggers for post-mating responses. Upon transfer to the female genital system, SP 

binds to Sex Peptide Receptor (SPR) (Yapici et al., 2008), a receptor expressed in the female 

reproductive system, and modulates its signaling. Specifically, SPR is expressed and active in 

a handful of internal sensory neurons that innervate the female reproductive tract and its 

lumen (Hasemeyer et al., 2009; Yang et al., 2009b). These sensory neurons, genetically 

identified as expressing both the DEG/ ENaC protein Pickpocket and transcripts of the sex-

specific transcription factors fruitless (fru) and doublesex (dsx) (Hasemeyer et al., 2009; 

Rezaval et al., 2012; Yang et al., 2009a), are necessary and sufficient to mediate the post-
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mating state of a Drosophila female. Their projections to the abdominal ganglion are relayed 

to the higher brain (dorsal protocerebrum) by second-order neurons known as SAG (Feng et 

al., 2014). In short, SP binding to SPR in sensory neurons innervating the uterus reduces the 

activity of these neurons, which in turn lowers their activation of SAG neurons (Feng et al., 

2014). 

 

Other aspects of the suite of post-mating phenotypes are also sensed through SPR signaling, 

but independently of SP, or indirectly. For instance, the enhanced appetite for polyamines in 

mated females described above results from increased SPR expression and signaling directly 

in chemosensory neurons of the mouthparts and antennae that detect polyamines. The 

modulation happens not via SP, but via other ligands of SPR produced by the female, the 

MIPs (Hussain et al., 2016). Another example is the stimulation of egg production regulated 

by the hormone ecdysteroid upon mating and in response to SPR signaling (Ameku and 

Niwa, 2016). In both examples, the mechanism by which information regarding copulation 

flows from the reproductive tract to distant body parts, affording these physiological changes, 

remains unclear. In the case of polyamines, the modulation happens equally well in females 

mated with males mutant for SP, indicating that other initial triggers are involved, possibly 

some of the many other seminal fluid proteins. Like SP, they may be mostly active in the 

female reproductive tract with their physiological effects somehow relayed to other parts of 

the body (chemosensory organs, ovaries, etc.). In any case, the question of these relays 

remains open. On one hand, some of the male seminal fluid molecules (Sitnik et al., 2016) 

may pass to the hemolymph and act as endocrine agents in a systemic way. Particular organs 

or cells in distant regions may specifically respond to these circulating agents, promoting 

particular post-mating responses. Non exclusively, the information picked up by the sensory 

system innervating the uterus upon mating may be distributed throughout the nervous system 

by means of dedicated circuits (Feng et al., 2014), or more broadly by the secretion of 

neuromodulators. Such a role for neuromodulation has in fact been implicated in D. 

melanogaster, where a small number of abdominal ganglion neurons, which release the 

biogenic amine octopamine (OA) and show extensive innervation of the lower reproductive 

tract, appear required for the robust exhibition of post-mating behaviors (Rezaval et al., 

2014). 

 

Little is known of the molecular and neural mechanisms underlying post-mating switches in 

other insects, but there are reasons to think that the overarching principles are similar to D. 

melanogaster. SP is not a universal trigger, and was in fact only found in few insect groups 

(Kim et al., 2010), suggesting the existence of alternative triggers. In Anopheles mosquitoes, 

for instance, a steroid hormone, 20-hydroxyecdysone, assumes a similar role as SP (Gabrieli 



	 5 

et al., 2014): it is transferred from males upon copulation and appears necessary and sufficient 

to elicit a series of physiological and behavioral changes in females, including egg laying and 

the reluctance to re-mate. Other elements of similarity in post-mating mechanisms have also 

been suggested from studies in moths, particularly the idea of cross-talk between neuronal 

circuits and physiological changes, such as changes in pheromone production (Delisle et al., 

2000). In the Mediterranean fruit fly, Ceratitis capitata, there are significant changes in gene 

transcription post-mating, but their magnitude is more modest than in D. melanogaster, and 

the changes in immune-response gene expression seen in D. melanogaster are absent from 

Ceratitis (Gomulski et al., 2012). This suggests that, although the general logic of one or a 

few triggers affecting multiple aspects of insect physiology and behavior is maintained, the 

underlying mechanisms evolve rapidly. 

 

Mechanosensation. There is surprisingly little literature that explores the role of 

mechanosensation in sensing mating and triggering post-mating responses in insects. Yet, 

there are all reasons to think that this modality is also involved in the switch. The external 

genitalia of female insects are covered with mechanosensory bristles and sensillae 

(Snodgrass, 1935; Taylor, 1989). While these organs may play a role during the process of 

oviposition, they may also be stimulated during copulation (Yassin and Orgogozo, 2013). 

Perhaps analogous, a single pair of bristles on the genital claspers of male D. melanogaster 

are necessary for maintaining proper posture during copulation (Acebes et al., 2003). There is 

also circumstantial evidence that the female insect reproductive system senses mechanical 

stimulation, for instance in response ovulation (Gou et al., 2014) (see below) or through 

copulation, resulting in removal of a previous male's sperm from the spermathecae (von 

Helversen and von Helversen, 1991). 

 

Circadian and seasonal modulation of when to lay an egg 
The phenomena described above are strictly triggered by the act of mating itself, either 

immediately or shortly thereafter. While this act strongly influences the exact time of egg 

laying (Brady, 1974), “when” an insect lays an egg is also modulated by cyclical variations 

occurring throughout the day and across seasons, affecting factors such as photoperiod, 

temperature, and food availability (Brady, 1974). 

 

The effects of circadian rhythms on oogenesis and oviposition are particularly well 

characterized in different Drosophila species (Allemand, 1974, 1976a, 1976b, 1976c, 1977). 

Monitoring the oviposition activity of mated D. melanogaster females under 12:12 day/night 

cycles, Allemand observed consistent and recurrent peaks of egg laying at the onset of each 
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dark phase. Unlike several circadian behaviors, which require an entrainment (typically light 

cycles), the daily rhythm of egg laying persists in an aperiodic environment for up to several 

hundred generations (Allemand, 1976a; Sheeba et al., 2001). This is not generally true for all 

insects, and some species such as Oncopeltus quickly lose rhythmicity in egg laying in the 

absence of light cycles (Brady, 1974). Allemand made two additional interesting 

observations: 1) that the process of oogenesis is also circadian and coordinated with 

oviposition (Allemand, 1976a) and 2) that the variation in circadian rhythms across related 

species ranged from small to large. While different species of the genus Zaprionus 

(drosophilids closely related to Drosophila) showed very similar circadian rhythms 

(Allemand, 1976c), species of the D. melanogaster group presented striking species-specific 

differences in their rhythms (Allemand, 1974). 

 

Perhaps in line with the persistence of rhythmicity under aperiodic conditions, the molecular 

and neural substrates underlying oviposition rhythms seem to be distinct from the circadian 

clock known to modulate other behaviors, and remains unidentified (reviewed in (Manjunatha 

et al., 2008)). (Manjunatha et al., 2008) speculate that the integration of mating signals, egg 

production and circadian rhythmicity is likely happening in the abdominal ganglion, but this 

remains to be examined. 

 

What affords the sustained post-mating state? 

The timing of oviposition is hence tightly regulated by a female insect's physiological state. 

Mechanisms that link this behavioral output with factors that track mating status or the 

photoperiod likely rely upon the function of slow-acting neuromodulators and perhaps also 

upon specified circuits. In Drosophila, SP was shown to bind to sperm, and its gradual release 

from the female’s sperm storage organs over days following mating ensures a sustained 

mating state (Peng et al., 2005). But other mechanisms may mediate the persistence of a post-

mating state. Recent experiments in D. melanogaster argued that mechanical stretch of the 

female reproductive tract resulting by an egg during ovulation serves as a cue to promote the 

active search of egg-laying substrates. In other words, the act of laying eggs, one of the 

immediate post-mating responses, maintains the female fly in a sustained mating state (Gou et 

al., 2014). 

		
WHERE TO LAY AN EGG 
Behavior: Insects lay eggs in a broad repertoire of niches 

Once the question of "when" is behind and the time has come for gravid females to deposit 

their eggs, they need to find a good location. Because larvae have limited ability to change 

their habitats, gravid females are very selective when it comes to choosing an oviposition 
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substrate. They look for substrates that will protect eggs and larvae from predators and 

pathogenic microorganisms, and sustain larval development. Insects in general use a plethora 

of different oviposition substrates, a non-exhaustive list includes: soil (beetles, flies, etc.); 

plants (all parts, all stages) (countless phytophagous insects); vertebrate wounds (flies); insect 

larvae (parasitic wasps, leafhoppers); the body of insects or spiders (parasitic wasps); water 

(mosquitoes); decaying wood, fruits, animals (all saprophagous insects) see (Carson and 

Kaneshiro, 1976; Kambysellis and Heed, 1971). Even among fairly closely related species, 

e.g., within Drosophilidae, an extravagant diversity of oviposition substrates has been 

documented: living crabs (Stensmyr et al., 2008), fungi, fruits, leaves, rotten cacti, compost 

heaps, slime flux (Ashburner, 1978; Markow and O'Grady, 2005), spider eggs 

(Titanochaetus) (Hardy, 1965), spittlebug fly larvae (Cladochaeta) (Grimaldi, 1999). 

 

This seemingly endless diversity raises the question of how females from different species 

locate, recognize, and choose suitable oviposition substrates. In general, insects first localize 

their targets from a distance using long-range sensing (i.e., olfaction and vision). Olfactory 

cues can also stimulate egg laying when females are very close to the substrate. Finally, 

contact-based sensing (gustation and mechanosensation) completes the representation of the 

target as a possible oviposition substrate. With all this sensory information, females assess the 

quality of the substrate and decide to lay or not. Ideally, to understand how a female chooses 

where to lay an egg, one would like to identify all the different cues involved in oviposition 

site choice and determine how they are perceived through the different sensory modalities. 

Subsequently, one could then decipher how the various neural pathways sensing these cues 

are integrated with one another (and with internal states) to compose a representation of the 

quality of the substrate and, finally, decipher how this ultimately leads to a decision to lay an 

egg or not. A huge body of work has been accumulated on the various cues guiding 

oviposition behavior in many species over the past decades, however, only a handful of these 

insect species have been amenable to molecular or neuronal investigations. We will mostly 

focus here on species for which genetic or neuronal data are available, drawing parallels with 

other species when possible. 

 

Olfactory stimulation of egg-laying behavior  

Insects, like many other animals, use their sense of smell to locate a possible oviposition 

substrate from a distance. Some odors elicit oviposition, others inhibit it. We will focus our 

attention on the odors that modulate oviposition behavior specifically, although distinguishing 

odors that attract females because they signal an oviposition substrate from odors that 

stimulate oviposition over shorter distances can be challenging. A clear distinction between 
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these two categories is sometimes only possible with the targeted functional manipulation of 

the odorant sensory neurons detecting these odors. 

 

Phytophagous female insects often use the same host plant for feeding and for oviposition. 

This suggests that females may be equipped with a sex-specific olfactory neural pathway that 

detect the host plant as a possible oviposition substrate, while a distinct neural pathway that 

recognize the same plant as a food source might be shared by both sexes. In insects, odors are 

detected by olfactory sensory neurons, housed in sensilla located on the antenna and 

maxillary palps, which send their axonal projections to the antennal lobe, the first olfactory 

processing center of the brain. The antennal lobe is made of glomeruli, each receiving inputs 

from a sub-population of olfactory sensory neurons expressing the same type of olfactory 

receptor (OR) (Vosshall et al., 2000). At each glomerulus, olfactory sensory neurons connect 

with downstream projection neurons (PNs), which then convey the signals to higher brain 

centers, namely the mushroom body and lateral horn (Masse et al., 2009). Where in the 

olfactory system is the distinction between odors that signal an oviposition substrate and 

odors that indicate a food source encoded? Males and females of the hawkmoth Manduca 

sexta feed on the nectar of solanaceous flowers (Riffell et al., 2008), and females also use the 

solanaceous plants as oviposition substrates (Mechaber and Hildebrand, 2000). In this moth 

species, both feeding and oviposition behaviors are mediated primarily by olfactory cues 

(Ramaswamy, 1988; Sparks, 1970, 1973). One key floral scent involved in these two 

behaviors is linalool (Reisenman et al., 2010), which is produced in two chiral forms (or 

enantiomers), (+)-linalool and (-)-linalool, by hawkmoth-pollinated flowers. The linalool 

enantiomers mediate different behaviors in M. sexta: (+)-linalool elicits oviposition, while (-)-

linalool instead promotes feeding in both sexes (Reisenman et al., 2010). Remarkably, the 

(+)- or (-)-linalool enantiomers activate preferentially different PNs in the female brain. PNs 

that respond selectively to antennal stimulation with (+)-linalool project to a female-specific 

glomerulus (Reisenman, 2004). By contrast, linalool-responsive PNs associated with sexually 

monomorphic glomeruli respond equally well to both enantiomers (Reisenman, 2004). This 

suggests that the two linalool enantiomers can modulate different behaviors through two 

distinct neural pathways, and that the neural circuit that responds to the oviposition-eliciting 

odor is female-specific. 

 

More generally, different sets of plant-derived odors attract female moths for feeding or 

oviposition. Remarkably, the odorants eliciting feeding or oviposition activate different 

collections of olfactory glomeruli (Bisch-Knaden et al., 2018). These results indicate that 

moths do not rely on a single odor to locate an oviposition site, but can instead exploit several 

scents to guide them to a suitable substrate. They also suggest a model in which the various 
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odors indicating oviposition substrates to a female are recognized by different olfactory 

receptors, expressed in distinct olfactory sensory neurons.  

 

This model has been tested in D. melanogaster. Like most Drosophila species, D. 

melanogaster has a special relationship with fermenting or rotten substrates, in particular 

fruits. Flies are attracted by fruit odors and their olfactory system is tuned to the scent of the 

various metabolic compounds produced by the microorganisms growing on fruits, many of 

which mimic the scent of fruits ((Mansourian and Stensmyr, 2015) for review). Some of these 

odors also modulate oviposition behavior, positively or negatively, through dedicated 

olfactory sensory receptors and neurons. Ethanol and acetic acid, produced during the 

fermentation process, elicit egg laying (Adolph, 1920; Chen and Amrein, 2017; Joseph et al., 

2009). In addition, oviposition is stimulated by the leaf odor E2-hexenal, detected by Or7a 

(Lin et al., 2015); by the volatile terpenes limonene and valencene, abundant in fruit of the 

Citrus family, detected by Or19a (Dweck et al., 2013); and by ethylphenols produced by 

yeast growing on fruit, detected by Or71a (Dweck et al., 2015). Of note, most of these 

oviposition-stimulating odors are otherwise not particularly attractive to females, suggesting 

instead that they specifically elicit oviposition when females are on, or very close to, the fruit. 

In parallel, females also detect olfactory cues that inhibit oviposition and which are produced 

by various threats that are common at or around oviposition sites. These deterrent odors 

include geosmin emanating from toxic molds, detected by Or56a (Stensmyr et al., 2012); 

phenol produced by pathogenic bacteria, detected by Or46a (Mansourian et al., 2016); and 

pheromones of parasitoid wasps, detected by Or49a (Ebrahim et al., 2015b). The activation of 

the olfactory sensory neurons expressing each of these receptors is sufficient to evoke, or 

inhibit, oviposition behavior, suggesting that these neurons and the odors they detect play key 

roles in the decision to lay an egg on a particular substrate. Most of the olfactory receptors 

involved in oviposition behavior are narrowly tuned (except Or7A, see below), and the 

olfactory sensory neurons expressing these receptors appear to be part of neural circuits that 

are dedicated to specific functions connected with egg-laying behavior. The specialization of 

these neural circuits to particular compounds contrasts with the combinatorial coding that is 

usually required to process odors. This uncommon situation could result from the strong 

ecological relevance of the signals detected by these circuits (Haverkamp et al., 2018). 

 

In addition to olfactory cues emanating from the substrate itself, female D. melanogaster are 

also attracted and stimulated to lay eggs on particular spots by volatile pheromones deposited 

on the substrate by other individuals, males or females. Males deposit 9-tricosene, a cuticular 

hydrocarbon, in response to food odors, and this molecule is detected by Or7a in females and 

encourages females to lay eggs nearby (Lin et al., 2015). Mated females expel in their excreta 
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the cVA that was transferred from males during copulation, which also acts as an aggregating 

pheromone for other mated females by marking high quality food (Sarin and Dukas, 2009; 

Wertheim et al., 2002). Mated females also deposit their own volatile, cuticular hydrocarbons 

that attract other females and stimulate oviposition (Duménil et al., 2016). Aggregating eggs 

in the same spot increases the local density of larvae, thereby maximizing the exploitation of 

the substrate (Dombrovski et al., 2017). 

 

Contribution of visual cues to oviposition site selection 

The visual system likely plays an essential role in the identification of suitable oviposition 

substrate for many insects. Some species that lay eggs in or nearby water sources, for instance 

midges (Lerner et al., 2008) or dragonflies (Horvath and Varju, 2004), use polarization of 

light reflected by the water surface to choose their oviposition substrate. Several Lepidoptera 

species use leaf shape (Rausher, 1978) or leaf color (Kelber, 1999) to target their favorite 

oviposition substrates. Mosquitoes also use water color and hues to choose an egg-laying site 

(Beehler et al., 1992; McCrae, 1984). D. melanogaster females can also discriminate egg-

laying substrates based on their color (Del Solar et al., 1974) and they avoid oviposition sites 

exposed to UV light (Zhu et al., 2014). This avoidance is mediated by UV-sensitive 

photoreceptors (Zhu et al., 2014), and also by UV-sensitive “bitter”-sensing neurons, located 

on the proboscis (Guntur et al., 2017). 

 

As mentioned above, parasitoid wasp odors inhibit Drosophila egg-laying behavior. 

Similarly, the visual detection of wasps is sufficient to alter female oviposition behavior: they 

actively search for a safe environment for their eggs, for instance a substrate containing high 

concentration of ethanol (Kacsoh et al., 2013), which protects the eggs from the wasps. 

Alternatively, if no suitable substrate is available, females retain their eggs and ultimately 

eliminate them. Females exposed to wasps can signal the danger to unexposed flies with wing 

movements: observers receiving this visual signal, although they have not seen the wasps 

themselves, will also retain and destroy their eggs (Kacsoh et al., 2015).  

 

Gustatory and contact-based assessment of oviposition substrates  

When females reach or land on a potential site for egg-laying, additional, contact-based cues 

become available. The stiffness and the texture of the substrate are assessed and contribute to 

the egg-laying decisions (Karageorgi et al., 2017; Rockwell and Grossfield, 1978), although 

not much is known about how this type of information is processed. 

 

Females also evaluate the chemical composition of the substrate with their gustatory system. 

They probe the substrate with the various body parts equipped with chemosensory organs, 
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mostly the legs, proboscis, and ovipositor. Although the role of some gustatory neurons 

located on the proboscis or the legs is well established (see below), the contribution of the 

ovipositor in oviposition site choice remains obscure in most species. The presence of 

chemosensory sensillae on the ovipositor of various species is indicated by the expression of 

chemoreceptor genes (odorant and gustatory receptors) (Glaser et al., 2013; Klinner et al., 

2016) as well as the electrophysiological responses of some of these sensilla to various 

volatile or non-volatile molecules ((Klinner et al., 2016; Seada et al., 2016) and references 

therein; (Yadav and Borges, 2017)). For instance, four gustatory neurons types housed in 

sensilla on the ovipositor of the noctuid moth Spodoptera littoralis detect salt, caffeine, sugar, 

and water (Seada et al., 2016). The ovipositor of M. sexta is also covered with sensilla 

housing functional olfactory and gustatory sensory neurons (Klinner et al., 2016). In 

particular, some of these neurons express the gustatory receptors (Gr) detecting CO2. The 

presence of chemosensory sensillae on the ovipositor can guide the search of concealed egg-

laying sites. This is illustrated with the oviposition behavior of the fig parasitoid wasp 

Apocrypta westwoodi, which insert their long, slender ovipositor into enclosed fig 

inflorescence, searching for pollinator wasp larvae, their favorite egg-laying site. The 

ovipositor of A. westwoodi detects and responds to CO2 emitted by these immobile larvae, 

guiding sensory probing inside the fruit (Yadav and Borges, 2017). 

 

For most insect species, though, the oviposition substrates are not hidden and females can 

easily contact them and probe their chemical composition with their legs and proboscis, and 

sometimes antennae and ovipositor. In many butterfly species, females drum on the leaf 

surface, by rapidly alternating movement of their forelegs, before oviposition (Baur et al., 

1998; Renou, 1983). Remarkably, this drumming behavior correlates with the presence on the 

foreleg tarsi of female-specific gustatory sensilla (Baur et al., 1998; Briscoe et al., 2013), and 

with the breadth of chemosensory receptor genes expressed specifically in female forelegs 

(Briscoe et al., 2013). These correlations suggest that females use drumming to taste 

oviposition stimulants and select their host plant. 

 

This hypothesis has been tested in swallowtail butterflies. Papilionidae species use a limited 

number of plants in the Rutacea, Apiaceae or Lauraceae families, and each butterfly species 

requires a specific combination of chemicals from their host plant to lay eggs (Honda, 1990; 

Murakami, 2003). For instance Papilio xuthus requires a mixture of ten chemicals produced 

by citrus leaves, none of which on their own is sufficient to elicit oviposition (Ohsugi et al., 

1991). One of these oviposition stimulant chemicals, synephrine, activates female-specific 

gustatory neurons housed in foreleg tarsi (Ryuda et al., 2013) and is sensed by a gustatory 

receptor, PxutGr1, expressed in female foreleg chemosensory neurons and required for the 
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oviposition response to synephrine (Ozaki et al., 2011). Because synephrine acts as an 

oviposition stimulant only in combination with other chemicals, it will be important to 

identify the additional neurons and receptors that detect these compounds to better understand 

how a particular combination of chemical signals controls P. xuthus oviposition decision. 

 

Insect species using water sources for oviposition can also face choices, for instance between 

freshwater and saltwater, especially for species or populations living in coastal areas. This is 

the case for many mosquito species, including Aedes aegypti. In this species, females lay their 

eggs on moist substrates near standing water, or just above the waterline (Hudson, 1956). 

Females, and their developing progeny, can tolerate salty water, but only up to a certain limit. 

A. aegypti females therefore avoid laying eggs near water sources containing high salt 

concentration (Matthews et al., 2018). Females assess salinity by touching the water surface 

with their legs and proboscis. Specifically, they rely on the DEG/ENaC channel ppk301 to 

detect suitable freshwater egg-laying sites. This channel is expressed in sensory neurons in 

the legs and the proboscis that respond both to salt and to water. Mosquitoes mutant for 

ppk301 channel are less stimulated to lay eggs near water, and are also less repelled by high 

salt concentrations, indicating that this channel plays a role in egg-laying site choice in A. 

aegypti (Matthews et al., 2018). Identifying whether the same neurons, or different 

subpopulations of ppk301-expressing neurons, respond to water and salt, will help to clarify 

how A. aegypti females choose an oviposition site between freshwater and saltwater. 

 

D. melanogaster females also use gustatory cues to make oviposition decisions. As mentioned 

above, D. melanogaster sensory systems are tuned to many chemicals produced by fruit or 

during fermentation, some of which stimulate egg-laying behavior. For instance, females are 

stimulated to lay eggs when exposed to lobeline (Joseph and Heberlein, 2012), sugar 

(Schwartz et al., 2012; Yang et al., 2008; Yang et al., 2015a), acids (Chen and Amrein, 2017; 

Joseph et al., 2009), polyamines (Hussain et al., 2016), all of which are abundant in overripe 

or fermenting fruits. All these compounds are detected by different gustatory receptors or 

ionotropic receptors (IR), expressed in distinct subsets of gustatory neurons of the proboscis 

or the legs. Interestingly though, these chemical compounds have been shown to either elicit 

opposite behaviors, such as oviposition attraction and positional aversion, or to modulate 

oviposition preference in a context-dependent manner. Acetic acid, for instance, is aversive 

when it is detected by antennal olfactory sensory neurons, but acid detection by gustatory 

neurons of the forelegs stimulates egg-laying (Chen and Amrein, 2017; Joseph et al., 2009). 

Similarly, lobeline stimulates oviposition, but females avoid staying on it for too long (Joseph 

and Heberlein, 2012). In this case, the positional repulsion and oviposition stimulation is 

controlled by distinct sets of gustatory sensory neurons expressing the same gustatory 
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receptor (Gr66) tuned to bitter compounds. A neuronal population of the leg dictates 

positional aversion, while a set of neurons in the internal mouthpart lining the pharynx 

stimulates oviposition (Joseph and Heberlein, 2012). In a converse manner, D. melanogaster 

females are strongly attracted to volatiles polyamines, but they avoid polyamine-rich agar 

oviposition substrates (Hussain et al., 2016). The preference is reversed, though, when 

polyamines are mixed with fruits: in this context females prefer to lay their eggs on 

polyamine-containing substrates (Hussain et al., 2016). 

 

Oviposition decisions are complex, context-dependent sensory choices 

In choosing precisely when and where to lay an egg, the nervous system of an animal must 

integrate internal drives with an evolutionarily defined look-up table of substrate preference. 

However, substrates can be complex, dynamic environments, and the decision circuits that 

regulate egg-laying behavior must factor in variables beyond the imminent oviposition site. 

These variables include the proximity of a site to suitable larval food sources and the presence 

of predators. This is reflected in oviposition behaviors and preferences that are heavily 

context-dependent. For instance, fermentation substrate (sugar), byproduct (alcohol) and 

actors (some strains of yeast and bacteria) are oviposition stimulants for D. melanogaster 

(Adolph, 1920; Becher et al., 2012; Yang et al., 2015a). However, the attraction to yeast, 

sugar and alcohol is dependent on the presence and the distance of an alternative oviposition 

site. D. melanogaster females prefer to oviposit on ethanol-containing substrates, but only as 

long as they are very close to an ethanol-free substrate (Sumethasorn and Turner, 2016). 

Symmetrically, they prefer to oviposit on sugar-free or yeast-free substrate, as long as 

substrates containing sugar or yeast are in close reach (Miller et al., 2011; Yang et al., 2008). 

The oviposition preference on sweet substrates is also influenced by the size of the arena, and 

therefore, presumably, by the frequency by which females encounter the sweet substrate 

(Schwartz et al., 2012). One possible interpretation to these observations is that females prefer 

to lay their eggs near a larval food source rather than on it because food can host pathogenic 

microorganisms, and attract predators and larval competitors. Furthermore, this ‘proximity 

effect’ suggests that females anticipate the foraging cost their progeny will face, and if the 

food source is too far from the oviposition site for the larvae to reach it, then females choose 

to lay their eggs directly on it. Importantly, these observations illustrate that the oviposition 

decision is not simply guided by the individual sensory inputs females perceive in their 

immediate environment. Rather, they suggest that females integrate a variety of parameters, 

assess and remember all available options and measure the distance separating them, and 

anticipate the consequences for her progeny before reaching a decision. 
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Consistent this idea, there is mounting evidence in Drosophila that the egg-laying decision 

process is ultimately regulated by neurons and circuits classically associated with other forms 

of decision-making, learning and memory. Subsets of dopamine expressing neurons in the 

brain, specifically the SOG, PAL, and PPL2 clusters, have been implicated in the valuation of 

sugar content in potential egg-laying (Yang et al., 2015b). The assessment of ethanol 

concentration of a substrate, which can improve the fitness of the developing larvae by acting 

as both a food source and repellent of parasites, has also been tied to subsets of dopamine 

expressing neurons. High levels of ethanol can actually be detrimental to the development and 

survival of offspring and it has been suggested, interestingly, that distinct subsets of 

dopamine neurons encode either ethanol-favoring or ethanol-avoiding drive when multiple 

options are available (Azanchi et al., 2013). Furthermore, deciding between nearby substrate 

patches of different quality may be dependent on memory circuits previously implicated in 

olfactory conditioning, including the release of the amnesiac neuropeptide from the paired 

DPM neurons, and output from mushroom body αβ neurons (Wu et al., 2015). 

 

In addition to the modulation of particular oviposition cues, the nervous system must also 

integrate a variety of signals all at once to reach a behavioral decision. Several recent studies 

have started to examine where in the brain the integration of several olfactory signals 

directing oviposition decisions is taking place. All projection neurons immediately 

downstream of olfactory sensory neurons send their axons to the mushroom body calyx and 

the lateral horn, two brain centers crucial for associative learning, and innate odor responses, 

respectively (Marin et al., 2002). Strikingly, the innervation patterns of the projection neurons 

downstream of olfactory neurons detecting the aversive odors geosmin and iridomyrmecin 

overlap strongly and target the same regions of the mushroom body calyx and lateral horn 

(Ebrahim et al., 2015a; Huoviala et al., 2018). Furthermore, additional projection neurons 

downstream of olfactory sensory neurons involved in oviposition also send some axonal 

segments to the same ventral-posterior region of the lateral horn (Chin et al., 2018). 

Altogether, these results suggest that olfactory integration is taking place in this region of the 

lateral horn, where oviposition site selection, at least the component guided by olfactory cues, 

might be encoded. Whether or not a functionally analogous integration brain center exists for 

gustatory or visual cues involved in oviposition remains to be determined. 

 
 
HOW TO LAY AN EGG 

After a suitable site has been identified using both long- and short-range cues, the mated 

female must actuate the physical process of egg deposition. In general, this process entails an 

ordered sequence of behavioral motifs in which the animal contorts its abdomen to make 
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contact with the substrate with a specialized egg-laying appendage, the ovipositor, and then 

undergoes a series of contractions resulting in the expulsion of an egg (Thompson, 1986; 

Yang et al., 2008). Eggs are deposited one at a time, with some insects laying a large clutch of 

eggs in a single site while others deposit just a single egg. 

 

Reproductive Anatomy 

This orderly sequence of external behaviors is paralleled by an internal sequence of processes 

by which mature eggs are shuttled through the internal reproductive system, fertilized and 

readied for deposition. Anatomically, the overall organization of the female reproductive 

system is conserved across insects (Demerec, 1950; Lange, 2009a). First, there is an egg 

factory, in the form of bilateral ovaries. These structures are the sites where germ cells mature 

into unfertilized eggs. Mature eggs are released from the ovaries into the lumen of a canal, the 

oviduct, where they start their journey towards the outside world. Each ovary feeds into its 

own oviduct, and these two lateral oviducts converge, forming a single common oviduct that 

ultimately leads to the genital chamber, or uterus. Only a single egg can be retained within the 

genital chamber, and it is here that fertilization occurs as sperm stored in attached sperm 

storage organs is released. Some insects have multiple sperm storage organs, three in the case 

of Drosophila (the seminal receptacle and two spermathecae), while others have a single 

organ (locusts, beetles). Additional secretions from a number of attached accessory glands 

release molecules that regulate ovulation (Sun and Spradling, 2013), or provide adhesion or 

protection to the expelled eggs (Thompson, 1986). 

 

In the final stage of egg laying, eggs are expelled from the uterus and physically deposited in 

the environment via a highly specialized appendage, the ovipositor. This complex structure is 

made up of multiple ventral abdominal components originating from different segments 

(Grimaldi and Engel, 2005). In most winged insects (Pterygota), the shaft of the ovipositor 

combines different derivatives of the 8th and 9th ventral abdominal segments, organized in 

appressed bilateral structures and forming a tube or a guide. In contrast to the roughly 

conserved internal reproductive anatomy, the ovipositor exhibits dramatic diversification 

across the insect group, adapting to the particular demands of the substrate upon which eggs 

are laid. Yet, the ovipositor has retained at least one common element throughout insect 

evolution, a pair of bilateral plates derived from abdominal segment 9, called gonocoxites 

(Grimaldi and Engel, 2005). From a mere guide to push the egg out, it has become in some 

species an organ to dig, to drill, or to navigate deep through wood cracks or fruits. The variety 

and versatility of ovipositors across Insecta is mirrored by the diversity in the number and 

type of sensory hairs across its surface (Ahmed et al., 2013; Belanger and Orchard, 1992; 

Zhang et al., 2012). 
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Motor Coordination 

The entirety of the female reproductive tract is highly muscularized, and these muscle 

systems are richly innervated by the neurites of sensory and motor neurons relaying signals to 

and from the central nervous system, more specifically the abdominal ganglia of the ventral 

nerve cord. The ventral nerve cord resides downstream of the head and is composed of 

multiple ganglia, roughly corresponding in number to the total number of body segments. In 

some cases, the ganglia are distributed as a chain across the length of the body (locusts), 

while in other insects the ganglia have become fused (flies) (Niven et al., 2008). Analogous to 

the vertebrate spinal cord, neural circuits of the ventral nerve cord regulate internal and 

external body functions, including vital functions such as circulation and digestion, as well as 

the generation of rhythmic behaviors such as flying or walking. Studies in locusts have 

revealed the presence of neural circuits known as central pattern generators (CPGs) within 

particular abdominal ganglia for multiple components of egg-laying behavior, including the 

opening and closing of the ovipositor valves during digging, the contraction of the oviducts 

during ovulation, as well as the release of sperm from storage during fertilization (Ayali and 

Lange, 2010; Silva and Lange, 2011; Thompson, 1986). These circuits are defined as CPGs 

because they are capable of generating rhythmic output autonomously, in the absence of 

patterned input (Marder et al., 2005). In fact, these rhythmic activity patterns were initially 

described in preparations where the relevant abdominal ganglia were isolated from 

descending inputs via nerve transection, which suggests that their expression is under 

inhibitory control from higher brain centers (Thompson, 1986). 

 

Experiments, primarily in D. melanogaster and locusts, hint at generally conserved 

mechanisms in insects by which the central nervous system engages the muscles associated 

with egg laying. A prominently conserved feature in both animals is that reproductive muscle 

tissue is innervated by neurons that either release glutamate, the primary excitatory 

neurotransmitter at the invertebrate neuromuscular junction, or release OA, a biogenic amine 

(Lange, 2009a; Middleton et al., 2006; Monastirioti, 2003; Rodríguez-Valentín et al., 2006). 

OA is considered the invertebrate homolog to norepinephrine in mammals, given its closely 

related synthesis pathway, chemical structure and function (Roeder, 2005). Along these lines, 

OA has been implicated in priming the organism for action, for example by increasing the 

sensitivity of jump muscles in locusts (Walther and Zittlau, 1998), or by increasing the gain 

of visual interneurons during flight in Drosophila (Suver et al., 2012). Numerous studies have 

documented the diversity of effects that OA exerts on reproductive tissues, particularly on the 

oviduct. In both D. melanogaster and locusts, one function of OA is to inhibit oviduct 

contractions and muscle tonus via a cAMP-dependent mechanism linked to its binding to 
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Octβ receptors (Farooqui, 2012; Lange and Nykamp, 1996; Nykamp and Lange, 2000; 

Rodríguez-Valentín et al., 2006). Separately, in D. melanogaster, OA application increases 

contractile activity of the muscle sheath that wraps the ovaries (Rodríguez-Valentín et al., 

2006), while in the cricket Gryllus bimaculatus, OA has also been demonstrated to increase 

the amplitude and frequency of myogenic, or muscle intrinsic, contractions of the oviduct 

(Tamashiro and Yoshino, 2014). In the extreme case, Drosophila mutants for OA production 

fail to expel eggs from the uterus, and this phenotype can be rescued by restoration of OA 

production in subsets of abdominal ganglion neurons (Monastirioti, 2003). Thus, as with 

other behaviors, OA release appears necessary to amplify the egg-laying capacity of the 

organism, particularly with regards to the progression of the egg. In contrast to these more 

modulatory affects, the impact of glutamate signaling is acute. This has been demonstrated in 

both locusts and fruit flies where glutamate induces immediate contraction of the oviduct, 

which in the locust results in egg retention (Gou et al., 2014; Lange et al., 1984). Taken 

together, it appears that these two neurotransmitter systems operate in parallel, with OA 

priming reproductive tissue to allow for the passage of eggs, while glutamatergic neurons 

mediate acute control from higher centers. 

 

The execution of the component behaviors of egg laying is coordinated in part by sensory 

feedback from abdominal sensors, both internal and external, that convey the sensory state of 

the reproductive system and relevant appendages. Perhaps the most salient sensory stimulus 

for the coordination of egg-laying behaviors is the egg itself. For example, sensory neurons 

that detect the presence of an egg within the genital chamber have been implicated in the 

regulation of ovulation in the stick insect, by reflexively inducing constriction of the common 

oviduct (Thomas, 1979). Thus, this reflex circuit prevents ovulation until the egg is laid and 

the genital chamber is unoccupied. A similar circuit may coordinate fertilization, as 

experiments in the locust demonstrated that stimulation of the genital chamber by an egg-

shaped probe acutely increased motor input to and contractions of the spermathecal 

musculature (Clark and Lange, 2001). Beyond internally derived signals, central egg-laying 

circuits are modulated by feedback from external sensors, such as mechanosensory hairs that 

contact the substrate during oviposition. In the locust, there is evidence that afferent signaling 

from mechanosensory bristle neurons that line the ovipositor valves generates a reinforcing 

drive to the aforementioned digging CPG (Belanger and Orchard, 1992). Likewise, in the 

hawkmoth, cutting mechanosensory hairs on the anal papillae which normally maintain 

contact with the substrate during oviposition results in disorganized placement of eggs 

(Yamaoka et al., 1971). 

 

An Organizational Hierarchy 
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The advanced genetic toolkit available in D. melanogaster has allowed for a more detailed 

description of the genes and neural circuits that regulate how eggs are laid. For one, there is 

overwhelming evidence that the gene dsx plays an essential role in delineating the neural 

circuits that control female sexual behavior, including egg-laying behavior (Rideout et al., 

2010). Silencing all dsx-positive neurons, as well as subsets that reside within the abdominal 

ganglion or those expressing OA, yields a complexity of reproduction-related deficits, 

including the reduction or even abolition of egg-laying behavior (Rezával et al., 2014; 

Rezával et al., 2012; Rideout et al., 2010). dsx is also expressed in distinct clusters of sensory 

neurons throughout the lower reproductive tract, all of which are co-labelled by a reporter for 

Pickpocket, a DEG/ ENaC protein associated with proprioception. These neurons are thus 

poised to play critical roles in sensory feedback regarding the conformational state of the 

tract, particularly with regards to the position of the egg (Gou et al., 2014; Rezával et al., 

2012). 

 

Further studies of dsx-positive neurons out of the Yamamoto lab hint at the hierarchical 

organization of egg-laying motor circuits (Kimura et al., 2015). Activation of ventral nerve 

cord dsx-positive neurons could reliably induce components of egg-laying behavior, including 

abdominal bending and egg extrusion. This observation is consistent with those described in 

the locust in that it indicates that the circuits underlying the egg-laying motor pattern reside 

within the ventral nerve cord, though it is unclear from this study whether dsx-positive 

neurons merely activate or directly participate in these pattern generating circuits. Also, out of 

this work came the identification of female-specific dsx-positive descending interneurons, 

pMN2, whose activation was highly correlated with the induction of the sequence of 

oviposition behavior. Thus, pMN2 may represent command neurons that engage ventral nerve 

cord dsx-positive neurons for the induction of egg-laying. If true, deciphering the inputs to 

pMN2 will reveal critical insights into how the “when” and “where” aspects of egg-laying 

behavior are integrated to drive oviposition, meanwhile surveying the connections 

downstream of pMN2 within the ventral nerve cord will provide insight into the “how.” 
 

PERSPECTIVES 

Overall, the decision and the process of laying an egg are governed by similar principles 

across insects, meanwhile the inputs shaping the decision and the context in which the 

behavior is expressed show extensive variation. The commonalities include: 1) a mating-

derived trigger that biases female behaviors towards those that favor the production of eggs 

and their deposition; 2) the integration of this mating status, plus other internal states such as 

the circadian clock, with sensory information about the environment; 3) a hierarchical system 

whereby dedicated neural circuits for the execution of egg-laying behavior reside within the 
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ventral nerve cord and are under the control of higher brain centers (Fig. 1A). The variation, 

on the other hand, mirroring the diversity of niches and egg-laying substrates occupied by 

insects, is readily perceptible in the diversity of sensory cues used to guide oviposition across 

insects. This duality of conservation and variation leaves us with two broad categories of 

questions to fully understand when, where and how a female insect lays an egg. 

 

First, critical links are missing regarding the relationship between sensory integration, 

decision-making and actuation. As we have seen, the decision rests on the integration of 

multiple parameters (sensory information, mating-state, circadian rhythms). How and where 

is this integration happening? Is there perhaps a neuron or small subset of command-like 

neurons in the brain that serve as master integrators? If true, how is the prioritization 

happening? Negative cues (signaling a threat or a danger), for instance, seem to overrule the 

positive signals stimulating oviposition. Likewise, some cues stimulate oviposition, but only 

in particular contexts. What is the neuronal organization that affords such ranking or context-

based rules? 

 

Should there be a center in the brain that serves as the final gate for the decision to lay an egg, 

it remains possible that the integration of multiple sensory inputs is computed elsewhere, in 

centers like the mushroom body or lateral horn, with the processed output subsequently fed to 

the gate. To understand the underlying logic, it will be necessary to identify the components 

of the central nervous system involved in this processing and unravel their connectivity and 

function, for instance using the approach taken by (Huoviala et al., 2018). Likewise, to 

understand how the decision made by the brain is translated into the motor act of laying an 

egg, it is essential to clarify the circuit and functional architecture of the various CPGs 

associated with egg-laying, and to determine how they are engaged by descending neurons 

from the brain. Perhaps, as is the case with backwards crawling in Drosophila larvae, the 

circuit that links descending command-like neurons and premotor neurons is shallow, 

spanning only one or two synapses (Carreira-Rosario et al., 2018). 

 

Second, the diversity of oviposition behaviors among insect species raises the question of 

how, from a neuronal perspective, has this behavior evolved. Are changes occurring in the 

input channels, in the central processing circuits, or in the motor pathways? As for variation 

in oviposition substrate choice, it is very likely that this results from changes in either the 

peripheral sensory system, or the circuit processing these inputs, or both. As species diverge 

to occupy new niches, it is important to develop heightened sensitivity to cues associated with 

new oviposition substrates. One strategy nature has taken towards this issue is by changing 

the sensitivity or number of sensory neurons detecting relevant cues (Fig. 1B). For instance, 
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D. sechellia is particularly driven to lay eggs on Morinda citrifolia fruit because of their 

elevated hexanoic and octanoic acid concentration, which is otherwise toxic to other 

Drosophila species (Legal et al., 1999). This adaptation results, in part, from increased 

expression of two Odorant Binding Proteins in taste chemosensillae of the legs (Matsuo et al., 

2007). In parallel, D. sechellia is also more attracted to volatile hexanoic acid as compared to 

other Drosophila species due to an increase in the number of acid-sensing olfactory sensory 

neurons, combined with the fine-tuning of the sensory receptor that detects this odor (Prieto-

Godino et al., 2017). In the same vein, the specialization of D. erecta on Pandanus spp. fruits 

correlates with an expansion of the population of olfactory sensory neurons that detect 3-

methyl-2-butenyl acetate, a fruit volatile compound that elicits oviposition in D. erecta (Linz 

et al., 2013). 

 

Another mechanism that can enable diversification of behavior on evolutionary timescales 

relies not on peripheral changes but rather on the modification of how sensory inputs are 

processed centrally (Fig. 1C). Such a phenomenon has been observed in neural circuits that 

regulate courtship behavior between two closely related species, D. melanogaster and D. 

simulans, and serves as a mechanism that reinforces reproductive isolation between the two 

species (Seeholzer et al., 2018). Though the males of both species detect a pheromone 

specific to D. melanogaster females using homologous sensory neurons, whether the signal 

promotes (D. melanogaster) or suppresses (D. simulans) courtship is determined by species-

specific alterations in the balance of excitation and inhibition in downstream relays onto the 

neurons that regulate courtship. Perhaps, as is the case here, more dramatic shifts in behavior 

with regards to a sensory cue, such as a change in valence from positive to negative, may 

invoke central modifications as opposed to peripheral ones. 

 

Insect oviposition is a powerful paradigm to address fundamental questions about decision-

making, multimodal integration and the evolution of behavior. Using modern technologies on 

a handful of models and their satellite species will both deepen our comprehension of the 

neural circuits that control an ecologically essential behavior, and reveal how and which 

variations in these circuits can produce the breadth of behavioral diversity we observe in 

insects. 
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FIGURE LEGEND 
 

Figure 1. General layout of the information flow underlying egg-laying, and its evolution. 

(A) Schematic representation of the information flow governing insect oviposition. Mating 

triggers a change of internal state, sensed in part by peripheral sensory neurons. The 

information is relayed to higher brain centers, but also distributed to other organs and tissue 

involved in egg-laying. Together with other sensory information from the environment 

(substrate suitability, light), the mating state information is gated in the brain, resulting in the 

decision to lay an egg. Descending pathways, subjected to neuromodulation (e.g., as a result 

of photoperiod, or available options) activate motor circuits of the ventral nerve chord (VNC) 

controlling the oviposition machinery. These include central pattern generators (CPGs) that 

channel the egg down toward the ovipositor, coordinate the release of stored sperm to fertilize 

it, and control ovipositor movements necessary to deposit the egg into the substrate. 

(B, C) Evolutionary changes in peripheral (B) and central (C) neuronal circuits likely to 

impinge on egg-laying behavior. 

 

 


