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On consensus of double integrators over directed graphs
and with relative measurement bias

Srikant Sukumar Elena Panteley Antonio Lorı́a William Pasillas

Abstract— In this paper we investigate sufficient conditions
for consensus of double integrators interconnected under con-
stant directed graphs, under the condition that there exists a
rooted spanning tree. We assume that only relative position as
well as absolute own velocity measurements are available that is,
each agent disposes of its own velocity only as well as its position
relatively to that of its neighbours. In addition, it is assumed
that the relative position measurements are unreliable, in the
sense that they are affected by a constant bias. Under these
conditions, we provide a consensus algorithm which ensures
that the systems stabilize near a common equilibrium point.
The analysis is based on Lyapunov direct method and a recent
novel approach of analysis of networked systems that takes into
account both the synchronization and the collective behavior.

I. INTRODUCTION

Significant recent strides in analysis of multi-agent con-
sensus protocols have been made in [1], [2], [3], [4] and
references therein. Recently a novel framework to analyze
synchronization and collective behavior of a network of
heterogeneous agents [5]. According with this approach,
the complete characterization of the dynamic behavior of
networked-interconnected systems coupled via diffusive cou-
pling comprises two essential and dichotomous elements:
synchronization and collective behavior. The latter pertains to
the dynamics of the networked systems as a whole hence, it
is described by what we call emergent dynamics, which may
be seen as an “average” of the dynamics of all interconnected
systems. In that light, synchronization may be described
as the “alignment” of each agent’s behavior relative to the
emergent dynamics.

Thus, from a dynamical-systems viewpoint, the synchro-
nization problem may be recasted as that of stability analysis
of two interconnected dynamical systems evolving in orthog-
onal spaces. That of the synchronization errors and that of
the emergent dynamics. Then, for the purpose of analysis
it is assumed in [5] that the emergent dynamics possesses a
stable attractor and we say that dynamic consensus is reached
if the trajectories of each agent converge asymptotically to
those produced by the emergent dynamics.

Even though only the analysis problem for the relative
degree one systems with linear coupling is broached in
[5], the framework serves as a basis for network control
design. Indeed, by modifying the consensus control law,
not only may one achieve the synchronization objective but
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also govern the consensus control goal. This is possible
by designing a second control law to govern the emergent
dynamics and steer its trajectories to a desired equilibrium.

In the current article, we take a first step forward into
the dynamic consensus control problem by addressing it in
the context of networks of relative-degree two (driftless)
systems interconnected over a directed graph. The motivation
stems from mechanical systems with the assumption that
only relative position and absolute velocity are available
for feedback. However, relative position sensors suffer from
errors such as bias in measurements. If not compensated this
bias could drive the agents to infinity when using relative
position feedback for consensus.

In the continuous systems context, bias uncertainties in
measurements are relatively sparsely studied. In the context
of a single rigid-body system, ‘gyro bias’ is the most
commonly addressed bias uncertainty and has been studied
in detail in several references including [6], [7], [8], [9].
However, the literature on adaptive compensation of position
sensor bias even for a single rigid-body is rather limited and
the only relevant contribution known to the authors is by
[10].

The rest of the paper is organized as follows. In the next
section we formulate the problem and recall the essentials
of the analysis framework of [5]; hence, we derive the
network model in appropriate coordinates. In Section III
we present our main results. Some simulation results that
illustrate our theoretical findings are presented in Section
IV, before concluding with some remarks in Section V.

II. PROBLEM FORMULATION AND NETWORK MODEL

We consider the consensus problem for a set of N double-
integrator systems

ẋ1i = x2i (1a)
ẋ2i = ui, i ≤ N, (1b)

interconnected over a directed graph. To that effect, we
dispose of decentralized controllers ui ∈ R with i ≤ N
which may be designed in function of the available measure-
ments which are relative positions, yet affected by a constant
measurement bias, as well as own velocities. More precisely,
we do not assume that either x1i, x2i, or estimates of the
latter are individually available for measurement, but rather
the quantity

x̂1i − x̂1j = x1i − x1j + δij (2)

where δij denotes the constant bias.



Thus, we pose the following consensus control law

ui := −
N∑
j=1

`ij(x̂1i − x̂1j)− γx2i + vi (3)

where vi is an additional control input that is to be designed
to compensate for the effect of the bias and the disturbance.

Now, to simplify the notation, let us define

v :=

 v1...
vN

 , δ :=

 δ1...
δN

 , δi :=

N∑
j=1

`ijδij .

Then, the control law takes the form

u = −Lx1 − γx2 + v − δ (4)

where the Laplacian matrix L is defined as follows

Lij =

{ ∑
k 6=i lik if j = i

−lij if j 6= i
(5)

and, therefore, the closed-loop network dynamics becomes

ẋ1 = x2 (6a)
ẋ2 = −Lx1 − γx2 + v − δ. (6b)

The control problem boils down to designing the addi-
tional control v, which may depend only on biased relative
position measurements and local velocities to stabilize the
network over a synchronization manifold. The latter may be
defined in a number of ways; for instance

Sc :=
{
x1 ∈ RN , x2 ∈ RN : x1i − x∗1 = 0, x2i − x∗2 = 0

}
meaning that all systems stabilize to a common set point.
Such behavior, however, does not imply that the trajectories
of each pair of systems are convergent to each other that is,
that x1i → x1j and x2i → x2j . Therefore, one can set as
control goal to stabilize the manifold

Se :=
{
x1 ∈ RN , x2 ∈ RN , i, j ∈ [1, N ] :

x1i − x1j = 0, x2i − x2j = 0} .

Nonetheless, focusing on the stabilization of the manifold Se
only leads to the networked systems synchronization without
knowledge of the collective behavior of the systems. For in-
stance, one may obtain that the manifold Se is asymptotically
stable but all the systems’ states x1, x2 grow unbounded.

To understand the complete behavior of the network, one
needs to examine both, the collective behavior and the syn-
chronization error dynamics. According with the framework
in [5] the former is described by the emergent dynamics,
which, roughly speaking, consists in a weighted average of
the individual systems dynamics. Therefore, it consists in a
dynamical system with its own state, that we shall denote by
(s1, s2) ∈ R2. Thus the synchronization manifold shall be
defined as

Se :=
{
x1 ∈ RN , x2 ∈ RN , i, j ∈ [1, N ] :

x1i − s1 = 0, x2i − s2 = 0} .

In the sequel, we proceed to exhibit this inherent dichoto-
mous structure of the networked system (6) thereby, posing
the appropriate basis for the solution of the consensus
problem of double integrators under measurement bias and
measurement bias.

A. A dichotomous network model

By construction, the Laplacian matrix L shown in (5)
has at least one eigenvalue equal to zero, that we shall
denote λ1 while all the others have non-negative real parts.
Furthermore, if the network graph has a rooted spanning
tree the zero eigen-value λ1 has algebraic multiplicity equal
to one and the others have positive real parts, i.e., 0 =
<e{λ1} < <e{λ2} ≤ · · · ≤ <e{λN}. Moreover, the right
and left eigenvectors corresponding to λ1, denoted ϑr1 ∈ RN
and ϑ`1 ∈ RN , are given by

ϑ>r1 = 1>N :=
[
1, . . . , 1

]
, ϑ>`1 =

[
ν1, . . . , νN

]
(7)

If, in addition, the graph is strongly connected, νi > 0 for
all i ∈ I –see [11].

Thus, as we shall see the “weighted averaged” states of
the emergent dynamics are naturally defined using the left
eigen vector ϑ`, that is, s := [s1 s2]> is a projection of
x := [x1 x2]> on the subspace generated by ϑ`.

Now, for the Laplacian L there exists a Jacobian decom-
position of the form L = UΛU−1 where U ∈ CN×N is non-
singular and Λ̄ ∈ CN×N is a block-diagonal Jordan matrix

Λ̄ := diag [Λ1, . . . ,Λm] . (8)

For a network with a spanning tree, Λ1 is actually scalar
and equals to zero while Λi are Jordan blocks of appropriate
dimensions. For the sequel, we rewrite Λ̄ as

Λ̄ := blockdiag[0 Λ], Λ := blockdiag[Λ2 · · ·Λm]. (9)

Remark 1 It is important to stress, at this point, that even
though, in general, the Jordan blocks Λi are complex, they
may be replaced by a real upper block diagonal matrix —see
[12]. Therefore, in the sequel, without loss of generality we
will manipulate the matrix Λ in (9) as a real matrix. •

Furthermore, the matrix U is composed of generalized
right-eigenvectors of L among which the first is vr = 1N
hence, for further development, we decompose U as

U =
[
1N U1

]
, (10)

where U1 ∈ CN×N−1. In this case, the first row of U−1

corresponds to the first left eigen-vector of L, v`. Therefore,
we may decompose U−1 as

U−1 =

[
ϑ>`

U†1

]
(11)

and, necessarily,
ϑ>` U1 = 0.

It is also convenient to note that

U†1U1 = IN−1,



and the Laplacian satisfies

L = U1ΛU†1 (12)

Based on the latter, it becomes natural to introduce the
new network coordinates

ξ :=

[
ξ1
ξ2

]
,

ξ1 = U−1x1
ξ2 = U−1x2

(13)

so the network dynamics becomes

ξ̇1 = ξ2

ξ̇2 = −U−1U Λ̄U−1x1 − γU−1x2 − U−1δ + U−1v.

Now, to compact the notation, we introduce

θ := U−1δ, θ̂ := U−1v, (14)

and θ̃ = θ̂ − θ. Then,

ξ̇1 = ξ2 (15a)
ξ̇2 = −Λ̄ξ1 − γξ2 + θ̃ (15b)

The system (15) fully describes the dynamic model of
the network in the sense that it contains the information
regarding both, the synchronization-errors and the consensus
dynamics. To see this more clearly, we stress that ξ1 and ξ2
may, in turn, be subdivided into

ξ1 :=

[
s1
η1

]
, ξ2

[
s2
η2

]
(16)

where
si := ϑ>` xi, and ηi := U†1xi. (17)

Thus, the scalar variables si describe the sate of the averaged
dynamics with respect to which the synchronization errors,
which are defined as

e :=

[
e1
e2

]
=

[
x1 − 1Ns1
x2 − 1Ns2

]
. (18)

Note that ηi = 0 if and only if ei = 0 for i ∈ {1, 2}. Indeed,
since U1 is full-column rank, we have

ηi = 0 ⇐⇒ U1ηi = 0

⇐⇒ [I − 1Nϑ
>
` ]xi = 0

⇐⇒ xi − 1Nsi = 0.

Also, the effect of the perturbations is split into

θ> :=
[
θs, θ

>
η

]
where

θs := ϑ>` δ, θη := U†1δ (19)

are decoupled perturbations: the disturbance θs affects the
average dynamics

ṡ1 = s2 (20a)
ṡ2 = −γs2 + θ̃s, γ > 0 (20b)

while the disturbance θη , that affects the synchronization
error dynamics, which is given by

η̇1 := η2 (21a)

η̇2 := −Λη1 − γη2 + θ̃η, —with −Λ Hurwitz. (21b)

In addition, in the computation of the latter, we have intro-
duced the additional control input

v := 1N θ̂s + U1θ̂η (22)

where θ̂s and θ̂η are left to be designed to stabilize the
respective trivial solutions of the average dynamics (20) and
(21). Indeed, consensus is reached if and only if ηi → 0
for i ∈ {1, 2}. Note, however, that this does not imply that
consensus is reached to a set point but to the attractor of the
mean-field system (20). Hence the interest of also stabilizing
(if possible, under the constraints imposed by the lack of
absolute and global measurements) the consensus dynamics.
In the following section we design the update laws for

θ̂ =

[
θ̂s
θ̂η

]
=

[
ϑ>` v

U†1v

]
(23)

and we analyze the stability of both systems (20) and (21).

III. MAIN RESULTS

A. Consensus under reliable measurements

Let us assume, for the time-being, that the disturbance
d ≡ 0 and the relative measurements are reliable. That is,
consider the system (21) with θ̃η = 0. We have the following.

Proposition 1 The null solution of (21) with θ̃η = 0 is
globally exponentially stable. �

Proof: The system may be rewritten in the form

η̇ = Aη, η := [η>1 η>2 ]> (24)

A :=

[
0 I
−Λ −γI

]
. (25)

The eigenvalues of A are solutions to the equation (in λ)

det
[
λI −I
Λ (γ + λ)I

]
= 0 (26)

⇐⇒ det
[

λI −I
Λ + (γ + λ)λI 0

]
= 0 (27)

⇐⇒ det
[
− Λ− (γ + λ)λI

]
= 0. (28)

Now, since −Λ is Hurwitz, its eigenvalues, that we shall
denote σi, have negative real parts and, according to the last
equality above, they satisfy

−σi = (γ + λ)λ ∀ i ≤ N − 1.

Hence, they are solutions to the equations

λ2 + γλ+ σi = 0 γ > 0, ∀ i ≤ N − 1

and have negative real parts for appropriate values if, for
each i ≤ N − 1,

γ >
2
[
<{σi}2 + ={σi}2

]
<{σi}

where <{σi} and ={σi} represent the real and imaginary
parts of σi.



Let us now consider the behavior of the average dynamics
(20) with θ̃s = 0 that is,[

ṡ1
ṡ2

]
=

[
0 1
0 −σs

] [
s1
s2

]
.

We see that s2(t) = s2(0)e−γt and s1(t) = s1(0) +
1
γ s2(0)

[
1 − e−γt

]
. That is, s2 → 0 and s1(t) → s1(0) +

1
γ s2(0) as t→∞ hence, consensus is reached.

The previous developments are summarized in the follow-
ing statement.

Proposition 2 Consider the systems (1) with di ≡ 0, in
closed loop with (3), which uses only relative position
measurements as in (2), and let δij = 0. Let these systems
be interconnected over a directed graph containing a rooted
spanning tree. Then, the systems achieve set-point consensus
if γ > 0. �

B. Consensus under unreliable measurements and influence
of external disturbances

Let us consider now the system under the influence of the
additive constant disturbance and the measurement bias, (6).
Equivalently, we consider the decoupled average system’s
dynamics (20) and the synchronization error dynamics (21).

To ensure that the collective behavior tends to a steady-
state, we need to steer the variable s2 in (20b) to zero. This
equation is

ṡ2 = −γs2 + θ̂s − θs
where θs is constant. Therefore, we see that a simple integral
action

˙̂
θs = −αs2 (29)

should compensate for the effect of θ. Note, however, that
at first sight the update law requires the measurement of
s2 which, roughly, corresponds to a weighted average of
all neighbors’ velocities. Hence, s2 may seem unavailable
from local measurements. To show that (29) is actually
implementable with only local information we define vi in
(3) as

v̇i = −αx2i + µi, α > 0 (30)

where µi is to be chosen subsequently. This choice yields
for the cumulative multi-agent dynamics,

v̇ = −αx2 + µ (31)

where we introduced v = [v1 · · · vN ]> and µ =
[µ1 · · · µN ]>.

Now, using the transformation proposed in (23), we can
now write the parameter update law (30) as

˙̂
θs = ϑT` v̇ = −αs2 + ϑTµ =

˙̃
θs (32)

so the mean-field system in the presence of disturbance and
bias is modified to

ṡ1 = s2 (33)

ṡ2 = −γs2 + θ̃s, γ > 0 (34)
˙̃
θs = −αs2 + ϑTµ, α > 0. (35)

At this point, we chose µ to be orthogonal to the space of the
average dynamics that is, it must satisfy ϑ>` µ = 0. Indeed,
in this case, equations (34), (35) become[

ṡ2
˙̃
θ

]
=

[
−γ 1

−α 0

][
s2

θ̃

]
. (36)

A direct computation shows that the matrix above is Hurwitz
for any positive values of α and γ.

Let us analyze now the qualitative behavior of the
synchronization-error dynamics in the projected coordinates
(η1, η2), that is, system (21). The task at hand is, as for the
mean-field system, to define θ̂η in order to guarantee that
η2 → 0 and η1 → const. Since the relative measurements
are biased, however, it is expected that, the systems reach
consensus with a steady state offset. With that in mind let us
define the new synchronization error y := Λη1 − θ̃η which,
as a matter of fact, is available from the measurements since

y = U†1 [Lx1 + δ]− θ̂η

in which [Lx1+δ] corresponds precisely to the biased relative
position measurement and, in view of (23) and (31), θ̂η
satisfies

˙̂
θη = U†1 v̇ = −αη2 + U†1µ (37)

Next, consider the function

V (y, η2) :=
1

2

[
|y|2 + |η2|2

]
(38)

whose total derivative along the trajectories of the error
dynamics

ẏ = Λη2 − ˙̃
θη (39a)

η̇2 = −y − γη2 (39b)

yields

V̇ =
1

2
y>η
[
Λ + Λ>

]
η2 − y>η

˙̃
θη − η>2 yη − γ|η2|2. (40)

Then, we set

U†1µ := σyη, with σ > 0 (41)

or, equivalently, µ := σU1y —note that this definition
satisfies the relation ϑ>` µ = 0. That is, µ has an influence
only in the space of the synchronization errors. Hence, using
(41), (37), and ˙̃

θ =
˙̂
θ, in (40) we obtain

V̇ ≤ λM + α+ 1

2

[
|yη|2 + |η2|2

]
− γ|η2|2 − σ|yη|2.

where λM :=
√
λmax(Λ>Λ).

It follows that, provided that

c :=
1

3
min{γ, σ} ≥ λM + α+ 1

2
,

and defining ζ := [y>η η
>
2 ]>, we obtain

V̇ (ζ(t)) ≤ −2cV (ζ(t))

hence,
|ζ(t)| ≤ |ζ(0)|e−ct



that is, η2 → 0. Furthermore,

θ̃η(t) = θ̃η(0) +

∫ t

0

(σyη(τ)− αη2(τ))dτ.

Therefore,

|θ̃η(t)| ≤ | ˜θη(0)|+
∫ t

0

|(σ,−α)T ||ζ(τ)|dτ

≤ |θ̃η(0)|+
√
σ2 + α2

∫ t

0

|ζ(τ)|dτ

≤ |θ̃η(0)|+
√
σ2 + α2

c
|ζ(0)|

which, in turn, and since y(t)→ 0, implies that

|η1(t)| ≤ 1

λm

[
|θ̃η(0)|+

√
σ2 + α2

c
|ζ(0)|

]
.

That is, η1, or equivalently the synchronization errors, are
ultimately bounded by a bound that is inversely proportional
to the smallest eigenvalue of the Laplacian. However, in-
creasing γ and σ affects c := min{γ, σ} which satisfies√
σ2 + α2/c ≥ 1. Therefore, the previous bound is some-

what conservative. On the other hand, this is expected since
the part of the perturbation is induced by the measurements.

The previous developments are summarized in the follow-
ing statement, which is our second main result.

Proposition 3 Consider the systems (1) in closed loop with
(3), (2) and

v̇ = −αx2 + σ
(

[Lx1 + δ]− v
)
. (42)

Let the coefficients `ij be such that the interconnected
systems form a directed graph with a rooted spanning tree.
Then, the systems achieve set-point consensus in a practical
sense if

1

3
min{γ, σ} ≥ λM + α+ 1

2

where λM :=
√
λmax(Λ>Λ) and Λ corresponds to the block

diagonal matrix corresponding to the Jordan decomposition
of L. �

IV. SIMULATION RESULTS

Simulations on a test setup of 10 agents connected via a
directed graph as shown in figure 1 were carried out to verify
the claims made in Propositions 2 and 3.

The initial conditions for the numerical experiments were
assumed to be, x1(0) = [−10, 9, 2,−4, 2, 7, 8,−6,−4, 2]T ,
x2(0) = [0.3, 0.2,−0.5, 0.4, 1,−0.7, 0.2,−0.4,−0.2, 0.3]T ,
and v(0) = 0.

A. Case of reliable measurements

We implement Proposition 2 for the case when we have
perfect measurements. The parameter, γ = 2 for these
simulations. In the absence of bias in measurements, it is
evident from figure 2 that the synchronization errors (η1(t))
converge to zero and the average values (s1(t)) converge to
-1.21.
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Fig. 1. Communication graph structure

0 10 20 30 40 50 60
t(s)

-1.25

-1.24

-1.23

-1.22

-1.21

-1.2

s 1(t)

0 10 20 30 40 50 60
t(s)

-10

-5

0

5

10

15

x 1(t)
 - 

1 N
 s

1(t)

Fig. 2. Perfect measurements: System average and synchronization error
evolution

B. Case of unreliable measurements

For the case when there is a non-zero bias in the mea-
surements of inter-agent positions, x1i − x1j we consider
two scenarios. In one, we apply the correction term v(t)
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Fig. 3. With bias: System average and synchronization error evolution



as prescribed by (42) and in the second variant, we apply
no correction, i.e. v(t) = 0. For the bias correction imple-
mentation, we choose, α = 0.5 while γ, σ are selected as
per requirements of Proposition 3. The bias are chosen from
uniformly distributed random variables with unity bound on
each component of δ.

Figures 3-4 display the simulation results when the correc-
tion term v(t) is applied to the control law. As expected by
theory, the average value, s1(t) and synchronization errors
η1(t) converge to constant values, but consensus is not
achieved in the presence of bias. The velocity states, x2(t)
however converge to zero as expected.

In the absence of a correction term in the control, figure 5
indicates that the average values diverge. The results pre-
sented agree well with the theoretical findings presented in
earlier sections. The correction term leads to slightly larger
synchronisation error in lieu of which we obtain bounded
state trajectories in presence of measurement bias.
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Fig. 4. With bias: x2(t) and bias correction v(t) evolution
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Fig. 5. With bias: System average and synchronization error with correction
term, v(t) = 0

V. CONCLUSIONS

We have presented some preliminary, but original, results
on synchronization of double-integrator systems intercon-
nected over directed graphs and under measurement bias.
We have established consensus in a practical sense. That
is, we showed that all systems reach a set-point that is in a
neighbourhood of the ideal consensus state (that is in the case
of reliable measurements). Our results, which are established
via Lyapunov’s direct method, constitute are a first step into
the analysis and design of second-order networked systems
over directed graphs.
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